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Heavy inertial particles transported by a turbulent flow are shown to concentrate in the regions where an
advected passive scalar, such as temperature, displays very strong frontlike discontinuities. This novel
effect is responsible for extremely high levels of fluctuations for the passive field sampled by the particles
that impacts the heat fluxes exchanged between the particles and the surrounding fluid. Instantaneous and
averaged heat fluxes are shown to follow strongly intermittent statistics and anomalous scaling laws.
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Turbulent transport has the contradictory feature of
enhancing the dispersion of passive substances and trigger-
ing the clustering of finite-size impurities. These two
violent mechanisms are simultaneously at play for the heat
exchanges in colloidal nanofluids [1], for the condensation
of cloud droplets in a supersaturated environment [2], for
the interactions between plankton and nutrients [3], and for
the accretion of gas and dust by planetary embryos [4]. As
the induced biases are apparently opposite, it is commonly
presumed that the dispersed particles sample the field with
which they interact in a uniform and uncorrelated manner.
Such arguments justify the mean-field kinetic approaches
describing the rates at which particles change phase,
change size, or multiply. We show in this Letter that the
complex dynamic behavior of the carrier turbulent flow
concentrates finite-size particles in the regions where the
passive scalar displays very strong frontlike discontinuities.
This new effect is responsible for extremely high levels of
fluctuations for the passive field sampled by the particles
and henceforth breaks the underlying assumptions of
traditional approaches.
Heavy particles are ejected by inertial centrifugal forces

from vortices and form preferential concentrations.
Consequently, they sample the underlying flow in a very
nonuniform manner. At the same time, passively trans-
ported fields develop nontrivial geometrical and statistical
properties, displaying anomalous scaling laws [5].
Turbulence creates fronts across which the scalar strongly
varies on very small length scales [6]. Such quasidisconti-
nuities appear at the boundaries between the different
circulation zones of the flow and concentrate diffusion.
Mixing is weakened in preferential concentrations and
enhanced in fronts. While these two kinds of inhomoge-
neities result from turbulent eddies, very little is known on
how they relate. To address this issue we consider a passive
scalar field θ evolving according to the advection-diffusion
equation

∂tθ þ u · ∇θ ¼ κ∇2θ þ φ; ð1Þ

where uðx; tÞ is a stationary homogeneous and isotropic
turbulent velocity field solving the three-dimensional
incompressible Navier-Stokes equation, κ is the diffusivity,
and φðx; tÞ is a large-scale force. In many physical
situations, for instance, in clouds or in convection experi-
ments, there is an imposed mean scalar gradient G. This
gradient, which can be taken into account by setting
φ ¼ −G · u, breaks the isotropy of the system. However,
it is known that the scaling properties of a passive scalar are
universal and do not depend on the large-scale forcing [7].
Therefore, in this Letter, unless explicitly mentioned, we
use a large-scale white noise in time forcing in order to
preserve isotropy. At the same time we solve (1), we
consider heavy inertial (point) particles which experience a
viscous drag with the velocity field u. Their individual
trajectories are given by

_Xp ¼ Vp; _Vp ¼ −
1

τp
½Vp − uðXp; tÞ�; ð2Þ

where dots designate time derivatives. The relaxation time
reads τp ¼ 2ρpa2=ð9ρfνÞ, ρp and ρf being the particle and
fluid mass density, respectively, a the particle radius, and ν
the fluid kinematic viscosity. Particle inertia is measured in
terms of the Stokes number St ¼ τp=τη, where τη desig-
nates the turnover time associated with the Kolmogorov
dissipative scale η (the smallest active scale of the turbulent
flow). The case St ¼ 0 corresponds to tracers (inertialess
particles), whose dynamics is _Xp ¼ uðXp; tÞ.
We make use of direct numerical simulations of the

incompressible Navier-Stokes equations with a large-scale
forcing. The velocity field u and the advected passive scalar
θ are obtained by the (standard) pseudospectral code LATU
[8] using 5123 and 10243 grid points (corresponding to
Taylor-scale Reynolds numbers Rλ ¼ 180 and 315). We
consider a scalar field of Schmidt number one (κ ¼ ν). The
values of the different fields at the particle positions are
obtained by tricubic interpolation. The Lagrangian trajec-
tories of millions of particles with different values of the
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Stokes number St are integrated simultaneously. After a
transient, the full system reaches a statistical stationary state
and all results of this Letter refer to this regime.
Figure 1 (top) shows a snapshot of the passive scalar

field together with particle positions in a thin slice of the
three-dimensional domain. The scalar field is characterized
by the presence of large-scale regions where it varies
smoothly separated by sharp fronts where it varies abruptly.
Particles form clusters that display a strong correlation with
these fronts as emphasized in the inset. The regions where
the scalar is almost constant are the so-called Lagrangian
coherent structures of the flow [9]. They relate to zones
where the mixing is ineffective and thus consist of fluid
elements sharing a common history of the scalar forcing
along their paths. Fronts appear at the border between such
closed dynamical regions. The inertial centrifugal forces
acting on heavy particles are responsible for their ejection

from these regions and their concentration at the edges.
This mechanism is sketched in Fig. 2 left. The correlations
appearing between particle clusters and the fronts of the
scalar field certainly relate to the sweep-stick mechanism
[10], bringing into question possible relations between the
zeros of the fluid acceleration and the strong variations of a
passive scalar.
This effect can also be understood by local arguments.

The fronts correspond to locations where the scalar dis-
sipation rate ϵθ ¼ ðκ=2Þj∇θj2 is very strong. These violent
spatial fluctuations are clearly appreciated in Fig. 1
(bottom), where ϵθ is displayed for the same snapshot. It
is easily seen from (1) that ϵθ is stretched by the velocity
gradients. Namely, when neglecting the diffusive and
forcing terms, the scalar dissipation along tracer trajectories
obeys _ϵθ ¼ −κð∇θÞTSðXp; tÞ∇θ, where S is the symmetric
part of the fluid velocity gradient tensor ∇u. This results in
an enhancement of dissipation in the regions where the
fluid flow has a large contraction rate. At the same time,
large values of the shear rate S enhance the concentration of
particles. As shown in [11], particles with small inertia
(St ≪ 1) can be approximated as the tracers of a synthetic
compressible velocity field, namely, _Xp ≈ vðXp; tÞ with
v ¼ u − τpð∂tuþ u ·∇uÞ. For incompressible fluid flows,
the divergence of the velocity field v reads ∇ · v ¼
−τpðtrS2 − jωj2=2Þ, where ω ¼ ∇ × u is the vorticity.
Particles concentrate in high-strain low-vorticity regions,
explaining their correlation with the high values of ϵθ and
the location of the fronts.
A quantitative measurement of particle clustering is

given by the correlation dimension D2, which is estimated
by finding the small-scale algebraic behavior of
P2ðrÞ ∼ rD2 , the probability to find two particles at a
distance less than r. The dependence of the codimension
3 −D2 on the Stokes number is shown in Fig. 2. A

FIG. 1 (color online). Top: snapshot of the scalar field θ (from
white to dark red), together with the positions of St ¼ 1 particles
(black dots) in a thin slice of width ≃η at Rλ ≈ 315. The lower-
right inset shows a zoom of the black box. Bottom: corresponding
snapshot of the scalar dissipation rate ϵθ (from black to white).
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FIG. 2 (color online). Left: sketch of the mechanism leading to
the concentration of particles in the fronts of the scalar field. The
red and yellow areas outline two different Lagrangian coherent
structures and the blue lines show typical particle trajectories.
Right: complementary correlation dimension 3 −D2 and relative
enhancement of the scalar dissipation rate at particle positions
ϵθ@p=ϵθ − 1 as a function of the Stokes number.
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nonmonotonic behavior with a maximum of clustering at
St ∼ 1 is observed as in [12]. As particles cluster in the
fronts, the average scalar dissipation at the particles’
position ϵθ@p is expected to be sensitive to the Stokes
number. This is apparent in Fig. 2 where the relative
enhancement of the scalar dissipation rate ϵθ@p=ϵθ − 1 is
also plotted (ϵθ designates here the mean scalar dissipa-
tion). The dissipation along particle trajectories can be 70%
larger than the average for values of the Stokes number for
which preferential concentration is the strongest. Note that
this behavior is independent of the way the scalar is forced
as it is also observed when an average gradient is imposed.
We now turn to study the statistics of the passive scalar

along particles trajectories. It is well known that it presents
large fluctuations leading to an anomalous scaling of the
Eulerian structure functions [5,6]. Here we focus on
the Lagrangian increments of the scalar field δτθ ¼
θðXpðtþ τÞ; tþ τÞ − θðXpðtÞ; tÞ that strongly depend on
the particles’ inertia. For St ¼ 0, particles are simple tracers
and mainly remain inside the Lagrangian coherent struc-
tures. The variations of θðXpðtÞÞ are both diffusive due to
the forcing φ and relate to the formation, deformation, and
destruction of fronts. When St > 0, inertia allows particles
to cross the fronts and thus to sample larger fluctuations of
the scalar field. When St → ∞, the particles decouple from
the flow and move almost ballistically. A frozen Taylor
hypothesis leads then to predict that δτθ is given by the
Eulerian increments Δlθ ¼ θðxþ l; tÞ − θðx; tÞ with
l≃ τvp, where vp is the typical particle velocity. This is
manifest when looking at the moments of the Lagrangian
increments that are expected to scale as hjδτθjni ∼ τζn for
τη ≪ τ ≪ τL, with τL the large-eddy turnover time of the
turbulent flow. Similarly, the Eulerian increments scales as
hjΔlθjni ∼ lζEn inside the inertial range (η ≪ l ≪ L with L
the largest scale of the system). Figure 3 shows the scaling
exponents ζn as a function of their order n for various
values of the particle Stokes number St. For tracers (St ¼ 0)

the results are very close to the normal scaling ζn ¼ n=2,
indicating that anomalous corrections, if any, are very weak
and quantifying them precisely would require a major
augmentation of the statistics. When increasing St the
exponents ζn go from a tracer behavior to those obtained
from Eulerian statistics ζn ¼ ζEn , showing the enhancement
of Lagrangian scalar intermittency due to particle inertia.
These findings have important consequences on possible

heat exchanges between particles and a carrier fluid.
Indeed, let us assume that the transported scalar field is
the fluid temperature. For particles much smaller than the
scales at which the fluid temperature varies, the heat flux at
the particle surface is proportional to the difference
between the particle temperature θp and that of the
environment [13,14], so that

_θp ¼ −
1

τθ
½θp − θðXp; tÞ�; ð3Þ

where τθ ¼ cpa2=ð3cfκÞ, with cp and cf the volumetric
heat capacities of the particles and the fluid, respectively.
The particles then have a thermal inertia that is measured in
terms of the thermal Stokes number Stθ ¼ τθ=τη.
Heat exchanges between the particles and the fluid are

entailed in the dependence of the particle temperature
increment δτθp ¼ θpðtþ τÞ − θpðtÞ upon the time lag τ.
As the system is in a statistical steady state, the increments
are independent of t. Different regimes occur. For small
time lags τ ≪ τθ, the heat flux remains almost constant and
θpðtþ τÞ≃ θpðtÞ þ τ _θpðtÞ, so that hδτθnpi≃ τnh_θnpi. This
regime is observed in Fig. 4, which represents the evolution
of hδτθ2pi for St ¼ 0.6 and various values of the particle
thermal inertia. At larger time lags, one observes
that temperature increments follow anomalous scaling
laws of the form hδτθnpi≃ ταn . This regime occurs when

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

FIG. 3 (color online). Anomalous exponents ζn of the Lagran-
gian increments hjδτθjni ∼ τζn for different Stokes numbers. The
anomalous exponents ζEn of the Eulerian increments hjΔlθjni ∼
lζEn are also displayed.

FIG. 4 (color online). Time evolution of hδτθ2pi for St ¼ 0.6 and
five different values of the thermal Stokes number Stθ. The inset
displays the exponent α2 of the inner particle temperature scaling
δτθp for time lags τ ≫ τθ, together with the anomalous exponent
ζ2 of the fluid temperature for different Stokes numbers.
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τθ ≪ τ ≪ τL that is in the limit when thermal inertia
becomes negligible and particle temperature follows that
of the fluid. We then expect hδτθnpi≃ hδτθni, so that the
scaling laws of particle temperature are given by the
anomalous Lagrangian exponents of the scalar field intro-
duced above, namely, αn ¼ ζn. This is confirmed from the
inset of Fig. 4, where both α2 and ζ2 are displayed as a
function of the Stokes number.
The instantaneous heat exchanges between the particles

and the fluid are also strongly depending on both the
thermal and dynamical inertia. This is evidenced from
Fig. 5, which represents the heat flux variance h_θ2pi as a
function of the thermal Stokes number Stθ and various
values of St. One clearly observes that when particle inertia
increases, the fluctuations of the heat flux become stronger
with a maximum deviation from tracers when Stθ is of the
order of unity. For the largest Stokes number we have
investigated here (St ¼ 3.7), one observes at Stθ ¼ 1 a gain
of a factor almost 3. The variance of the heat flux can be
related to the Lagrangian fluid temperature increment. One
can indeed easily check, using (3), that statistical statio-
narity implies

h_θ2pi ¼
1

2τ3θ

Z
∞

0

hδτθ2ie−τ=τθdτ; ð4Þ

where hδτθ2i designates the second-order Lagrangian
structure function of the fluid temperature along the particle
path and over a time lag τ. When τθ ≪ τη the integral is
concentrated on the small values of τ where the variations
of θ are dominated by the δ correlated in time forcing and
thus θ diffuses and hδτθ2i ∼ τ. A saddle-point argument

then gives h_θ2pi ∼ St−1θ when Stθ ≪ 1, as observed in our
data. Conversely, for extremely large τθ, the integral is
dominated by the large values of τ. When τ ≫ τL, one
expects hδτθ2i≃ 2hθ2i, so that h_θ2pi ∼ St−2θ for τθ ≫ τL,
that is Stθ ≫ Rλ=

ffiffiffiffiffi
15

p
. In between these two asymptotics,

the anomalous scaling hδτθ2i ∼ τζ2 of the Lagrangian
temperature structure function yields a nontrivial behavior.
Indeed, when 1 ≪ Stθ ≪ Rλ=

ffiffiffiffiffi
15

p
, the main contribution to

the integral comes from τ in the inertial range. This leads to
h_θ2pi ∼ Stζ2−2θ , giving a behavior that hence depends on the
dynamical Stokes number. The increase of the variance of
heat flux as a function of the particle inertia is thus directly
related to the enhancement of Lagrangian scalar intermit-
tency. This effect is of course not limited to second-order
statistics, as illustrated in the inset of Fig. 5. The probability
density functions of _θp normalized to a unit variance
strongly depart from a Gaussian and develop fatter and
fatter tails when St increases. This is again a signature of
the intermittency of the scalar field sampled by inertial
particles.
The clustering of particles in the temperature fronts and

the resulting anomalous scaling laws that are found here
reveal that a dispersed phase participates in an active and
possibly controlled manner to the heat transport in a
turbulent flow. Depending on the values of their dynamical
and thermal response times, the particles can either act as
thermostats or accelerate the diffusion of temperature in the
fluid. This can partly explain why heat transfer can be either
enhanced or decreased in microdispersed turbulent channel
flow, depending on the size of the suspended particles [15].
Such properties can be used to ameliorate and optimize the
design of numerous industrial devices ranging from com-
bustion engines to chemical reactors. Furthermore, in
addition to thermal properties, the mass transfers between
the fluid and the particles are also ruled by the intermittent
effects unveiled here. Our results indicate that droplets in
turbulent clouds as well as dust particles in protoplanetary
disks concentrate at the boundaries between wet and dry,
dense and sparse regions. Their inertia allows them to travel
across such high-variability zones and thus to experience
very different growth histories by condensation or accre-
tion. We expect this effect to be responsible for a critical
broadening of the particle size distribution that is not
predicted by classical mean-field kinetic approaches.
This effect could partly explain the difficulties encountered
when estimating the time scales of both rain and planet
formation.
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FIG. 5 (color online). Variance of the heat flux h_θ2pi as a
function of the thermal Stokes number Stθ and various particle
inertia; the two lines represent the asymptotics h_θ2pi ∝ St−1θ for
Stθ ≪ 1 (dashed line) and h_θ2pi ∝ St−2θ for Stθ ≫ 1 (dotted-
dashed line). Inset: probability density function (PDF) of the
heat flux _θp normalized to unit variance for Stθ ¼ 1 and the
different Stokes numbers; the dashed curve shows a Gaussian
distribution.

PRL 112, 234503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
13 JUNE 2014

234503-4



[1] J. Fan and L. Wang, J. Heat Transfer 133, 040801 (2011).
[2] W.W. Grabowski and L.-P. Wang, Annu. Rev. Fluid Mech.

45, 293 (2013).
[3] K. Mann and J. Lazier, Dynamics of Marine Ecosystems:

Biological-Physical Interactions in the Oceans (John Wiley
& Sons, New York, 2009).

[4] A. Johansen, J. S. Oishi, M.-M. Mac Low, H. Klahr, T.
Henning, and A. Youdin, Nature (London) 448, 1022
(2007).

[5] B. I. Shraiman and E. D. Siggia, Nature (London) 405, 639
(2000).

[6] A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola,
Phys. Rev. Lett. 84, 2385 (2000).

[7] A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola,
Phys. Fluids 13, 1768 (2001).

[8] H. Homann, J. Dreher, and R. Grauer, Comput. Phys.
Commun. 177, 560 (2007).

[9] M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, and
H. L. Swinney, Phys. Rev. Lett. 98, 144502 (2007).

[10] S. Goto and J. C. Vassilicos, Phys. Rev. Lett. 100, 054503
(2008).

[11] M. Maxey, J. Fluid Mech. 174, 441 (1987).
[12] J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio,

and F. Toschi, Phys. Rev. Lett. 98, 084502 (2007).
[13] Y. Sato, E. Deutsch, and O. Simonin, Int. J. Heat Fluid Flow

19, 187 (1998).
[14] S. Wetchagarun and J. J. Riley, Phys. Fluids 22, 063301

(2010).
[15] F. Zonta, C. Marchioli, and A. Soldati, Acta Mech. 195, 305

(2008).

PRL 112, 234503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
13 JUNE 2014

234503-5

http://dx.doi.org/10.1115/1.4002633
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1146/annurev-fluid-011212-140750
http://dx.doi.org/10.1038/nature06086
http://dx.doi.org/10.1038/nature06086
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1103/PhysRevLett.84.2385
http://dx.doi.org/10.1063/1.1367325
http://dx.doi.org/10.1016/j.cpc.2007.05.019
http://dx.doi.org/10.1016/j.cpc.2007.05.019
http://dx.doi.org/10.1103/PhysRevLett.98.144502
http://dx.doi.org/10.1103/PhysRevLett.100.054503
http://dx.doi.org/10.1103/PhysRevLett.100.054503
http://dx.doi.org/10.1017/S0022112087000193
http://dx.doi.org/10.1103/PhysRevLett.98.084502
http://dx.doi.org/10.1016/S0142-727X(97)10023-6
http://dx.doi.org/10.1016/S0142-727X(97)10023-6
http://dx.doi.org/10.1063/1.3392772
http://dx.doi.org/10.1063/1.3392772
http://dx.doi.org/10.1007/s00707-007-0552-7
http://dx.doi.org/10.1007/s00707-007-0552-7

