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Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries
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We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions
for the development of potentially singular structures. The methodology consists in implementing the fourfold
symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory
savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times,
with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 61443

points and three different configurations on grids of 40963 points. At the highest resolution, two different current
and vorticity sheet systems are found to collide, producing two successive accelerations in the development of
small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is
probably leading locally to a strong bending and directional variability of such lines. A novel analytical method,
based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This
method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement
of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled
out, and the singularity time could be somewhere between t = 2.33 and t = 2.70. More robust conclusions will
require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.
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I. INTRODUCTION

The class of problems addressing the formation of sin-
gularities and the existence and structure of solutions of
nonlinear partial differential equations for all times forms an
important branch of mathematics, with wide application in
numerous fields, such as engineering, astro- and geophysics,
and laboratory studies of superfluids, and in meteorological
research on extreme events such as tornadoes and hurricanes.
The presence or absence of dissipation-viscosity, magnetic
resistivity in magnetohydrodynamics (MHD), or dispersion
plays an essential role as well. The significance of such
questions is recognized, for example, by the Clay Institute
Millennium Prize for a proof of the existence and smoothness
of finite-energy solutions of the Navier-Stokes equations and
by the numerous studies devoted to them: How fast do
(potentially) singular structures form? What is their temporal
evolution and geometry? What role do their interactions play
and how might they lead to a modification of transport
properties within complex flows, including in the presence
of magnetic fields? Progress on such problems will most
likely come from a combination of mathematics, laboratory
experiments, and direct numerical simulations (DNS), in the
latter case in particular using computer codes with high
accuracy and performing studies at the highest possible
resolutions.

There is a large body of analytical and numerical work
on singularities in fluids. As theoretical estimates are not
necessarily sharp, numerical data are invaluable in assess-
ing potential singularities, as discussed, e.g., in Ref. [1].

Unfortunately, in the case of the numerics, with regard
to existence the answer vacillates between yes and no
[2]. Singularities occur in simplified models, as derived in
Refs. [3,4], assuming an isotropic pressure Hessian. These
models have been generalized to MHD in the vicinity of
magnetic null points [5] and lead as well to a singularity, but
the question remains open in the general (and most physically
relevant) case.

One of the most useful criteria in the search for a singularity
comes from the Beale-Kato-Majda theorem (BKM) [6] which
states for incompressible ideal fluids that, if the flow presents
a finite-time singularity at T∗, then

∫ T∗

0
||ω(.,t)||∞dt = ∞, (1)

where we have used the usual notation for theL∞ or supremum
norm, ω = ∇ × v being the vorticity and v the velocity.
If a power-law divergence of vorticity at T∗ is assumed,
||ω(.,t)||∞ = C|T∗ − t |−β, for t → T∗, with β > 0 and C

a constant, then the BKM theorem can be reexpressed as
“The flow has a finite-time singularity at t = T∗ if and only if
β � 1.” As stressed in Ref. [7], enstrophy production D�/Dt ,
with � = ∫

ω2(x)d3x (the L2 norm), should also be monitored
to detect singularities, and care must be taken in assessing C,
β, and T∗ when fitting the data stemming from DNS.

Furthermore, the dynamics of the vorticity (and current in
MHD flows) should be monitored not only for their L2 and
L∞ norms but also for changes in the direction of their field
lines (or “swing” [8]). It was found in neutral flows that the
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rapid growth of ||ω|| can be countered by the straightening of
vortex lines (see Refs. [8–10] in the MHD case). Moreover, the
study of the evolution of the curvature and torsion of vortex
(or current) lines yields interesting insights into the dynamics
of ideal flows [1]. The rich variety in the observed behavior
has resulted in a plethora of initial conditions examined in
previous numerical studies.

Among the 3D flows that have been considered for their
potential singular behavior for ideal (nondissipative) fluids
are the Taylor-Green flow (TG hereafter) [11], the Kida-Pelz
flow (KP) [12,13], and two antiparallel vortices [14,15], all
displaying symmetries that can be implemented numerically
(see also Ref. [16]). These flows have been studied by several
teams, with a recent revival [7,17–20] (see, e.g., Ref. [2] for a
brief introduction to the literature).

In MHD when coupling to a magnetic field, the theorem
equivalent to BKM involves the sum of the maxima of
vorticity ω and current density [21]. Ideal MHD in two space
dimensions has been studied in the past (see Refs. [22–26] and,
more recently, using high-resolution runs, Ref. [27]), but in the
3D general case, ideal runs are scarce, except for the pioneering
work using symmetric configurations of linked flux tubes with
zero initial velocity [28], or with adaptive mesh refinement
(AMR) using finite differences [24,29,30].

One can also use the TG flow and generalize it to MHD
(hereafter, TG-MHD flows), as done in Ref. [31]. One of
the TG-MHD flows studied for its possible singular behavior
in Ref. [31] displays a feature not observed at the time
in the fluid case: After an initial phase of thinning of the
current and vortex sheets, the flow outside the structure
pushes together two current sheets with widely different
directions of the magnetic field embedded in them, leading to
a rotational quasidiscontinuity with a substantial acceleration
in the development of small scales. Once dissipation is
restored, this small-scale activity is diagnosed as intermittent
reconnection [32]. Rotational and tangential discontinuities,
identified as intermittent structures, have been observed in
the solar wind using a variety of in situ acquired data [33];
they have also been identified at the edge of reverse field
pinch plasma devices (see, e.g., Ref. [34] for review). Using
the Cluster ensemble of four satellites, all four spacecraft
indicate at times a directional (either rotational or tangential)
discontinuity, including with a small normal component of the
magnetic field. Such rotational discontinuities can stem from
nonlinear steepening or from reconnection of magnetic field
lines [35]. Their modeling leads to statistical properties akin to
that of so-called nanoflares observed in the solar corona [36],
and they provide tantalizing hints that singularities may exist
in MHD.

Only by performing substantially higher-resolution and
high-accuracy runs, allowed by high-performance computing
resources, will we be able to explore several configurations
leading to possible singular behavior in MHD. It is in this
context that we propose to search in this work for singularities
in MHD with different configurations and using the highest
known resolutions (and, hence, scale separation between the
size of the box and the size of the mesh); thus, a run is
performed on an equivalent grid of 61443 points in one
case, following the work done in Ref. [31] on grids of
20483 points.

II. NUMERICAL PROCEDURE

In this section we describe briefly the codes and methods
used and give details of the numerical simulations. We
present, first, the MHD equations and then introduce the initial
conditions. We then explain how the code is parallelized
for the simulations at the largest resolutions. The choice of
dealiasing method is crucial to conserve the total energy and
other quadratic invariants with good accuracy, and details
concerning our methodology are given and compared with
other choices for dealiasing. The procedure followed to
increase spatial resolution as structures become thinner then is
explained. Finally, we comment on the effect that imposing the
fourfold symmetries of the Taylor-Green vortex generalized to
MHD might have.

A. Equations, initial conditions, and the TYGRS code

The MHD equations for an incompressible and ideal fluid
with v and b, respectively the velocity and magnetic field, read

∂v
∂t

+ v · ∇v = − 1

ρ0
∇P + j × b, (2)

∂b
∂t

= ∇ × (v × b), (3)

where ρ0 = 1 is the (uniform) density and b is the Alfvén
velocity, P is the pressure, ∇ · v = 0 ,∇ · b = 0, and there
are no dissipative or forcing terms; finally, j = ∇ × b is the
current density. The total (kinetic plus magnetic) energy ET ,
the cross helicity HC , and the magnetic helicity HM , defined
as

ET = EV + EM = 〈v2 + b2〉/2 (4)

HC = 〈v · b〉 , HM = 〈A · b〉 , (5)

with A the magnetic potential (b = ∇ × A), are all conserved
by the nonlinear interactions [37].

In practice, a pseudospectral code solves these equations in
Fourier space, truncated up to some maximum wave number.
The truncated MHD equations for the Fourier modes uk and bk,
with k ∈ [kmin,kmax) can be written easily, the Fourier modes
satisfying uk = 0, bk = 0 if |k| � kmax or if |k| < kmin. For
a computational box of length 2π , we have kmin = 1, and
with a dealiasing using the 2/3 rule, kmax = N/3, where N

is the number of modes per dimension (we assume a box
with unit aspect ratio). Other dealiasing methods can be used
successfully [17,18] and are discussed briefly below (see
Sec. II D). It is important to note here that dealiasing is
crucial in pseudospectral simulations to remove spurious
growth of modes with large wave numbers and to conserve
the total energy and other quadratic invariants. Indeed, a
pseudospectral code that is fully dealiased is equivalent to a
Galerkin truncation and, thus, preserves all quadratic invariants
in the system to round-off error.

The equations are solved starting from initial conditions
for the velocity and the magnetic field. If the initial conditions
have symmetries that are preserved by the equations, then
the symmetries can be used to save memory and computing
time. As already mentioned, in hydrodynamics (b ≡ 0) one of
the simplest velocity fields satisfying the symmetries of the
equations is the TG flow (note that the z component, initially

013110-2



IDEAL EVOLUTION OF MAGNETOHYDRODYNAMIC . . . PHYSICAL REVIEW E 87, 013110 (2013)

equal to zero, will grow with time) [11,38,39]:

u(x,y,z) = u0[(sin x cos y cos z)êx − (cos x sin y cos z)êy].

(6)

It is interesting to point out that the TG flow in a periodic
box shares similarities with the von Kàrmàn flow between
two counter-rotating disks as used in several laboratory
experiments, including those with liquid metals such as sodium
or gallium, to study the generation of magnetic fields.

To generalize the TG flow to MHD, we use the velocity
as prescribed by Eq. (6), and we will consider three possible
choices for the initial magnetic field b with the same overall
symmetries [31,32,40]. We refer to these three flows as the
insulating (I) defined by

bi = bi
0

⎛
⎜⎝

cos x sin y sin z

sin x cos y sin z

−2 sin x sin y cos z

⎞
⎟⎠, (7)

the alternative insulating flow (A),

ba = ba
0

⎛
⎜⎝

cos 2x sin 2y sin 2z

− sin 2x cos 2y sin 2z

0

⎞
⎟⎠, (8)

and the conducting flow (C),

bc = bc
0

⎛
⎜⎝

sin 2x cos 2y cos 2z

cos 2x sin 2y cos 2z

−2 cos 2x cos 2y sin 2z

⎞
⎟⎠. (9)

Note that the I, A, and C flows, with almost identical invariants,
have nevertheless three different developed energy spectra
in the nonideal case at the maximum of dissipation [32],
displaying a lack of universality in MHD turbulence in the
absence of an imposed magnetic field.

For all three configurations, EV = EM = 0.125 when u0 =
1 and b0 = √

1/3, 1,
√

2/3, respectively, for the helicities,
HM ≡ 0 and HC ∼ 0 because of the imposed symmetries;
note, however, that there can be strong local correlations
corresponding to local alignment of u and b, as can be shown
both analytically and numerically [41]. In the I case, the
current j i is everywhere parallel to the walls of the so-called
impermeable box [0,π ]3, which thus appears to be insulating.
For the C case, jc in the [0,π ]3 box is perpendicular to the
walls, which are, therefore, conducting. In this configuration,
HC is nonzero but small (less than 4% at its maximum over
time, in a dimensionless measure relative to the total energy).
Finally, ba is an alternative insulating MHD vortex.

The code TYGRS (Taylor-Green symmetric; see below)
enforces the symmetries of the TG vortex in 3D hydrody-
namics and of the TG-MHD vortices in 3D MHD within the
periodic cube of length 2π . These symmetries include mirror
symmetries about the planes x = 0 and π , y = 0 and π , and
z = 0 and π together with x = π, y = 0, y = π, z = 0, and
z = π [e.g., in the x direction: vx(−x,y,z) = −vx(x,y,z) and
vx(π − x,y,z) = −vx(π + x,y,z)], rotational symmetries of
angle nπ about the axes (x,y,z) = (π

2 ,y, π
2 ) and (x,π

2 , π
2 ), and

rotational symmetries of angle nπ/2 about the axis (π
2 , π

2 ,z) for
n ∈ Z. Because of these symmetries, the Fourier-transformed

fields are nonzero only for wave numbers (kx,ky,kz) with
jointly even or jointly odd components.

Thus, TYGRS computations at a given scale separation
(defined as the ratio kmax/kmin, which is proportional to
the Reynolds number in the dissipative case), or at a given
equivalent resolution, are performed on linear grids that are
one-fourth the size of those for a general code by exploiting
symmetries of the TG vortex: One obtains the flow in the full
periodic box of size [0,2π ]3 by applying these symmetries
to the impermeable box [0,π ]3. The nonlinear terms and
their temporal derivatives are computed from the even-odd
decomposition of the fields in the fundamental box [0,π/2]3.
Note that TYGRS performs a DNS, since no modeling of small
scales is done. For time integration, an explicit second-order
Runge-Kutta scheme is used. Because the time integration
truncation error at the proposed resolutions may exceed the
single floating point precision, we use double precision for the
computations.

No uniform external field B0 will be imposed in our
simulations. Such an external field is known to slow down
small-scale development and may quench the development
of singularities [22,42] because of the semidispersive nature
of the problem, with Alfvén waves propagating in opposite
directions along B0. This slowing down of nonlinear dynamics
due to waves has been modeled phenomenologically in several
ways, starting with Iroshnikov and Kraichnan in the mid-1960s
with a k−3/2 total isotropic energy spectrum, as opposed to the
classical Kolmogorov spectrum for fluid turbulence. It can
be evaluated analytically using weak turbulence theory for
large B0 [43,44], leading to a steeper and anisotropic spec-
trum ∼k−2

⊥ , with k⊥ referring to the direction perpendicular
to B0.

B. The role of symmetries

In Ref. [31], simulations with and without imposed sym-
metries with Taylor-Green initial conditions were compared.
No differences were observed except at the lowest mode
and at an energetic level close to round-off error. Moreover,
visualization analyses showed that the physical structures that
are present in the flow appear identical between the runs with
and without imposed symmetries (see, e.g., Ref. [40]). Of
course, at late times instabilities develop induced by noise due
to accumulated errors because, e.g., of insufficient numerical
accuracy [45]. These errors can break the symmetries in the
computation of the flow and field, when one does not impose
the symmetries of the initial conditions. In that case, magnetic
and cross-helicity grow and may lead the flow to another
final state. However, this bifurcation in behavior happens at a
significantly later time than the times considered in the present
study.

C. Implementation of the hybrid scheme for the TYGRS code

Pseudospectral codes are known to be optimal on periodic
domains [46]. However, they require global spectral transforms
and, thus, are hard to implement in distributed memory
environments, a crucial limitation until one-dimensional
domain decomposition techniques (DDT) arose that allowed
computation of serial fast Fourier transforms (FFTs) in
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FIG. 1. Timings of the TYGRS code on Jaguar up to ∼104 cores
and up to an actual number of computational degrees of freedom of
N 3

cd = 20483 points.

different directions in space (local in memory) after per-
forming transpositions. However, distributed parallelization
using the message passing interface (MPI) in pseudospectral
codes is limited in the number of processors that can be used,
unless more transpositions are done per FFT (thus increasing
communication). The hybrid (MPI-OPENMP) scheme we have
implemented for a general code builds on a one-dimensional
(slab-based) domain decomposition that is effective for parallel
scaling using MPI alone [47]. In the scheme, each MPI task
creates multiple threads using OPENMP. This method has been
extended in TYGRS to the sine (cosine) with even (odd) wave-
number FFTs needed to implement the symmetries of TG
flows, using loop-level OPENMP directives and multithreaded
FFTs.

The resulting quasilinear scaling up to ∼104 cores for
TYGRS, particularly at high resolution, is displayed in Fig. 1.
The hybrid scheme implemented in TYGRS was derived from
the method developed [47] for a similar pseudospectral code—
Geophysical High-Order Suite for Turbulence (GHOST)—in
which no symmetries are enforced and which now shows linear
scaling up to more than 98 000 processors on grids of up to
81923 points.

We note that the hybrid scheme used here is not the
only way in which to decompose the pseudospectral grid.
An alternative is to retain a pure MPI model [48] in which
the domain decomposition takes the form of “pencils” and
yields a two-dimensional domain decomposition among MPI
tasks, where OPENMP is not required. This technique is also
found to scale well to large core counts, although large
fluctuations in performance are observed even within a given
processor-domain mapping. The hybrid method offers a two-
level parallelization that may be more effective in mapping the
domain to the hierarchical architectures that are now emerging
and better suited for environments with multiple cores per
socket. The hybrid scheme may also aid in MPI memory
problems in that fewer MPI tasks require less buffer memory.
This is related to the fact that, by reducing the number of MPI
processes using threads, we reduce not only the number of MPI

calls but also the amount of data that must be communicated
and, hence, the size of the MPI buffers required. Finally, this
also allows us to use parallel MPI I/O in environments with
tens of thousands of cores, as the number of MPI tasks is only
a fraction of the total number of cores used.

D. Choice of truncation at high wave number
and the issue of accuracy

As explained before, one issue to resolve is how best to
perform the removal of spurious modes with a high wave
number, either via a dealiasing technique using the standard
2/3 rule whereby modes are truncated at 2kmax/3, where kmax =
N/2 is the maximum wave number of the computation on a
cubic grid with N points on the side, or by multiplying the
right-hand side of the evolution equations with a high-order
exponential smoothing function ρ(k) = exp[−m1(2k/N)m2 ],
as proposed in Refs. [7,17–19] with m1 = m2 = 36. Using
the latter method, more Fourier modes are retained in the
computation, leading to an enhanced scale separation with
which smaller scales can be reached for a given grid in an
ideal flow, and, thus, the computations can, in principle, be
performed for a longer time.

However, when using the second method, the exact energy
conservation in the computations is lost, as can be observed
in Table I. Also note that the BKM criterion given in
Eq. (1) for a singularity to occur is based on the supremum
norm, which is more sensitive to global numerical accuracy
(truncation) [49,50] and numerical precision than the L2

measures. Furthermore, it is straightforward to check that
exponential smoothing spoils the Galilean invariance v(x,t) →
v(x + Ut,t) − U in the hydrodynamic case. Because of these
drawbacks, the 2/3 dealiasing rule is used in the following,
either in the form of the spherical rule (truncation for |k| �
N/3) or cubic rule (truncation for |kx | � N/3 or |ky | � N/3
or |kz| � N/3), as discussed below.

E. The concept of bootstrap regridding

Besides the constraints given by time-stepping errors, from
previous experience we know that to preserve accuracy in the
computation of spatial derivatives we also need to use double
precision arithmetic for a grid size at or above 40963 points. On
the other hand, we also know that the smallest grid size is only
reached slowly (exponentially in time as long as singularities

TABLE I. Time evolution of the relative error on energy con-
servation �E/E for the b = 0 (hydrodynamic) Taylor-Green initial
data at resolution 5123, for two types of spectral truncation. The
“exponential smoothing” method is described in the text, while the
“2/3 cubic” represents the 2/3 dealiasing rule using cubic truncation
of Fourier space.

Time Exponential smoothing 2/3 cubic

3 5.3905 × 10−8 3.802 16 × 10−9

3.2 6.798 87 × 10−8 4.263 27 × 10−9

3.4 7.540 79 × 10−8 4.914 63 × 10−9

3.6 5.798 98 × 10−8 5.818 61 × 10−9

3.8 −1.103 33 × 10−7 7.038 68 × 10−9

4 −1.460 95 × 10−6 8.636 71 × 10−9
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do not develop). So we propose the following question: Do we
need to compute from t = 0 to the final time at the maximum
resolution N that is eventually going to be needed? Indeed,
at a given linear resolution N1 < N , one can compute until
TN1 with sufficient accuracy, as measured, for example, by the
logarithmic decrement technique (see below). Then, one can
restart the run at TN1 and compute until TN2 with a grid of size
N2, with, say, N2 = 2N1 grid points (not necessarily a factor
of 2 of course), and this process can be reiterated (m times
altogether) until we reach the desired resolution N = 2mN1,
so only the last fraction of the run is done on the largest grid at
the highest computational cost (in terms of both memory and
CPU).

The implementation of the procedure described above
requires some care when restarts are performed, from the point
of view of code development because of parallelization of
FFTs on grids of different sizes, as well as careful checking
for accuracy for all norms, e.g., L2 but also L∞, as needed for
singularity tests. However, this “bootstrap regridding” scheme
allows one to save a significant fraction of compute time when
carrying out the time integration at the highest resolution. In
the simulations presented here, one can estimate a total cost of
1/3 compared to the full resolution run starting at t = 0.

It is worth pointing out that the regridding scheme can also
be used to study the dissipative case if one chooses to start the
run with the last reliable time of the ideal run. For forced runs,
the extension of the methodology is straightforward. But while
it may not bring about large savings, it might also be useful
in cases when the flow displays strong signs of intermittent
bursts followed by long quiescent periods, as, for example, in
the case of the stable (nocturnal) planetary boundary layer [51],
with the turbulence being related to the presence of jets at low
altitude.

In practice, the regridding scheme takes a restart data set
in physical space, converts it to wave space and then either
truncates it to reduce resolution (downsizing, useful when
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FIG. 2. Energy spectrum for a hydrodynamic run on a grid of
30723 points, together with a N = 7683 truncation of that data set
using the bootstrap regridding downsizing tool. The two spectra are
identical (to within machine round-off) up to the truncated grid’s
maximum wavelength, kmax = 256.

performing comparisons with large eddy simulation runs)
or pads (with zeros) in wave space to increase the spatial
resolution. The final step requires an inverse multidimensional
transform at the new spectral resolution in order to convert
back to physical space at the new resolution, so the data can
be used to “restart” at the next resolution. The end result of the
equivalent downsizing operation is illustrated in Fig. 2.

III. THE I CONFIGURATION AT HIGH RESOLUTION

A. Implementation of bootstrapping up to an equivalent grid
of 61443 points for ideal MHD

The bootstrapping procedure just described can, in prin-
ciple, introduce errors in the computational procedure that
breaks the spectral accuracy of the code; hence, we show now
that this is not the case, provided one is careful enough in
choosing the time at which the grid resolution is increased.
Figure 3 (top) shows the normalized total energy difference
(i.e., with respect to initial energy) as a function of time,
with most of the error occurring at early times since the time
step is adapted to the grid spacing, which is larger earlier
in the computation; the different colors (line types) indicate
different grid resolutions. The energy difference remains lower
than 10−9 at all times but shows a rapid increase at the latest
times, indicative of a buildup of errors. When examining the
total energy spectra for different times, computed on different
grid resolutions, one can observe a smooth transition from
one grid to the next (not shown). It is important to note that
the regridding is performed when the energy spectrum at the
largest wave number in the simulation with the grid Ni reaches
the machine round-off level, with a cutoff conservatively
chosen to be 10−30 in order to preserve a high level of accuracy
throughout the run.

Apart from following the numerical conservation of the
invariants of Eqs. (2) and (3), with special focus on the total
energy, one diagnostic has been traditionally to monitor the
logarithmic decrement δ, when fitting the Fourier spectrum as

EX(k,t) = cX(t)k−nX(t)e−[2δX(t)k], (10)

where X stands for the kinetic (X = V ), magnetic (X = M), or
total (X = T ) energy or the energies of the Elsässer variables
E± for the fields z± = v ± b. As long as δX �= 0 the fields
remain regular, and when δX becomes comparable to the mesh
the computation of the behavior of the partial differential
equations (2) and (3) stops, since at later times one enters the
regime of statistical equilibrium. The logarithmic decrement
δX refers to the width of the analyticity strip in the complex
plane: As long as the complex singularities do not reach the
real axis, the computation remains regular [42,52]. Figure 3
also gives the temporal evolution of the logarithmic decrement
δT (middle) and of the spectral index nT (bottom) for the total
energy spectrum; grid resolution is indicated by the horizontal
line of crosses. The fit to the spectrum [see Eq. (10) above]
is done in the Fourier interval [10,1000]. The acceleration in
the decrease of the logarithmic decrement found in [31] is
confirmed by the present computation; it is accompanied by
a sharp increase in the inertial index nT , with both changes
occurring simultaneously at t ≈ 2.5.
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colors (colors online) are used for different grid sizes, Ni points per
direction with Ni taking the values 1536 (blue, solid), 3072 (green,
dashed), 4096 (red, crosses), and 6144 (black, dash-dotted). Middle
and bottom: Temporal evolution of the logarithmic decrement δ and
spectral index n [bottom; see Eq. (10)] for the total energy spectrum
(wave-number fit interval: [10, 1000]). The horizontal line of crosses
indicate the grid resolution limit 4/Ni for a given computation on a
given grid Gi at an equivalent resolution of Ni . The color and line
types are the same as in the top figure.

However, when comparing the fit using Eq. (10) to the
actual spectrum in the simulations, one sees that errors are
introduced as the spectrum is not always well represented by
Eq. (10). This is associated with the fact that the simple form
(10) needs to be true only in the k → ∞ asymptotic. We now
examine this point further. In simple flows such as the 1D
Burgers solution corresponding to sin(x) initial data, or the
purely hydrodynamic Taylor-Green vortex (see Ref. [20]), the
energy spectrum of the flow can be globally well fitted with
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FIG. 4. (Color online) (a) Fits (dark or blue lines) from k = 3 to
k = kmax using Eq. (10) to the total energy spectra (light or red points),
in lin-log scale, as a function of wave number and for different times:
t = 1.975, 2.201, 2.425, and t = 2.651. Note the good quality of the
fit at early times and the poor quality at t = 2.425. (b) Same plot in
log-log scale.

the simple form (10), but this is not always the case. For
instance, in the Kida-Pelz flow, oscillations were found
and attributed to interferences of complex singularities, see
Ref. [53]. In our simulation, the insulating TG-MHD total
energy spectrum can be well fitted globally only up to t = 2.2.
After this time the energy spectrum displays a complicated
behavior (see Fig. 4).

To study if this is an effect associated with insufficient
spatial resolution, in Fig. 5 we show the kinetic and magnetic
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FIG. 5. (Color online) Lin-log (a) and log-log (b) energy spec-
tra as a function of wave number and for different times, t =
1.975, 2.201, 2.425, and 2.651, for the kinetic (light or red) and mag-
netic (dark or green) energy of the run at 61443 resolution (the curves
for this run go up to kmax = 2048). Superimposed are the same for the
ideal run in Ref. [32] at a resolution of 20483 points in single precision
(dark or blue for kinetic, light or brown for magnetic; the curves for
this run go to kmax = 682). The same dominance of magnetic energy
at small scales is observed in both runs; this implies extremely strong
currents, compared to the vorticity, at small scales, as also observed
when examining the temporal behavior of extrema (see Table II).
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FIG. 6. (Color online) Ratio of magnetic to kinetic energy spectra
for the I flow at three different times: t = 2.49 (a), t = 2.55 (b), and
t = 2.69 (c) for the run on a grid of 20483 points (circles, red) [32]
and on a grid of 61443 (crosses, blue). The strong burst of excess
magnetic energy at large wave numbers subsides at later times.

energy spectra for the run performed on 61443 points, as well
as for a run with the same initial conditions computed on a grid
of 20483 points without bootstrap regridding and as analyzed in
Ref. [32]; we use both lin-log and log-log scales, for different
times t = 1.975, 2.201, 2.425, and 2.651. The implementation
of the numerical procedure for the two runs in fact differs
in several ways as follows: (i) the resolution; (ii) single or
double precision, the latter for the highest resolution; (iii) the
truncation at high wave number (cubic for the latter, spherical
for the former); and (iv) bootstrap regridding performed for
the former, progressively in time. Yet, the two runs are seen
to be equivalent. As time progresses in these flows, the
magnetic energy gains from its kinetic counterpart [remember
that EV (t = 0) = EM (t = 0)], particularly so at high wave
numbers, as is also shown in Fig. 6, which gives the variation
with wave number of the ratio EM (k)/EV (k) for three different
times and for both the 20483 and the 61443 runs. At t ≈ 2.48,
there is a surge of magnetic energy at small scales (large wave
numbers) compared to its kinetic counterpart, a surge which
finally resolves itself at the final time of the computation.
This behavior is likely linked to the evolution of structures in
physical space (see Sec. III C).

When investigating the temporal evolution of the vorticity
and current maxima, as shown in Fig. 7 (and also given in
Table II), we observe that there is a sudden change in the slopes
at t ≈ 2.5 and again at t ≈ 2.65, the latter clearly discernible
in the current density. These changes are associated with a
shift of the maximum from one structure to another one. The
first phase of evolution, up to t ≈ 2.5, is clearly exponential for
both the maxima of current and the vorticity, followed by faster
growth on new structures that appear at later times. However,
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FIG. 7. (Color online) Maxima of vorticity (lower line) and of
current (upper line) as a function of time for the I flow at high
resolution. Note the jumps of the slopes (see also Fig. 9 below)
corresponding to the emergence of different leading structures.

because the strongest peaks in current and vorticity appear on
a different structure at quite a late time in this run, when the
grid resolution is almost reached, it is difficult to ascertain
whether a singularity would happen in this flow if it were
pursued to yet higher resolutions and, thus, longer times. In
other words, due to the physical structures that develop in this
flow, the traditional tests of singularity (BKM and logarithmic
decrement) cannot be applied in the latest evolutionary phase
because it is too short. From that point of view, computations
on yet-higher-resolution grids will be necessary. In the next
subsection, we present a new analytical method that allows us
to assess the plausibility of singularity scenarios.

B. The link between the two known criteria for singularity

It is known that several diagnostics for singularity can be
used and, in fact, that they are linked. The first method is to
follow the temporal evolution of the maximum of both vorticity
and current and apply the BKM criterion given by Eq. (1) for
fluids and generalized to the MHD case [21] (see Ref. [26]
for the two-dimensional case in MHD); for smoothness on
the [0,T ] temporal interval, one must have convergence of the
following integral:

∫ T

0
(||ω(.,t)||∞ + ||j(.,t)||∞) dt < ∞. (11)

Using the Elsässer variables z± = v ± b and defining the
associated vorticities, ω± = ω ± j, the above relation can also

TABLE II. Time, maxima of current, and their (iJ ,jJ ,kJ ) location
in the fundamental [0,π/2] box in grid units, as well as maxima of
vorticity and their location, for the high-resolution I flow on a grid
of 61443 points. The indices (i,j,k) refer to the grid points in (x,y,z)
where the maxima take place. Note the sudden jumps in the position
of the maxima; the first jump in coordinates and in values of maxima
occur for t ≈ 2.48 and the second one at t ≈ 2.62.

Time 10−3Jmax iJ jJ kJ 10−3ωmax iω jω kω

2.40 15.2 1 1 1231 0.58 336 7 1275
2.45 21.3 1 1 1266 0.79 342 6 1303

2.50 75.9 1 72 1522 2.3 40 93 1518
2.55 508 1 95 1520 30.7 40 107 1519
2.60 972 1 153 1508 135 70 140 1519

2.65 1312 62 62 1537 294 128 172 1525
2.70 20 886 81 81 1537 456 197 226 1528
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be written in characteristic form:∫ T

0
(||ω+(.,t)||∞ + ||ω−(.,t)||∞) dt < ∞.

Consider the formulation (11) for the BKM condition for
regularity. If the numerical solution for the fields leads to a
power-law behavior of the integrand, of the form ||ω(.,t)||∞ +
||j(.,t)||∞ ≈ C[T∗ − t]−β , then the exponent β must be greater
than or equal to 1 in order to be consistent with the existence
of a singularity at time T∗.

The second tool for singularity diagnostic is to follow the
logarithmic decrement δ(t) of the fields mentioned above in the
context of the analyticity-strip method. In particular, one can
look at the total energy spectrum (i.e., the spectrum of the sum
of kinetic and magnetic energies) and calculate the decrement
δ(t) for this spectrum. The logarithmic decrement δ(t) should
go to zero in a finite time in order to be consistent with the
existence of a singularity of the fields at time T∗. In contrast,
if δ(t) decays exponentially in time then there is no evidence
for a finite-time singularity. Finally, a third method consists
of monitoring the evolution of the total production of small
scales through the enstrophy (integrated square vorticity) and
the integrated square current.

It may appear a bit odd to have different criteria to
determine the evolution or not towards a singularity, but this
is not redundant; quite the contrary. The link, at the level
of heuristics, between the enstrophy divergence and that of
vorticity was shown in Refs. [7,19]. More recently, a rigorous
proof that bridges the two other criteria for singularity (BKM
theorem and analyticity-strip method) was shown in Ref. [20]
along with an application to a numerical simulation of a 3D
Euler fluid. The advantage of this bridge is that it leads to a
new criterion when monitoring of the temporal evolution of
small scales, giving an inequality between the power-law index
of the energy spectrum and the temporal index of evolution
for the logarithmic decrement, provided they can be assessed
reliably.

To this end, one needs to use known inequalities. For
our purposes, we recall the result in Ref. [20] that links
the maximum vorticity modulus with the 3D Euler energy
spectrum:

||ω(.,t)||∞ � c

∞∑
k=1

k2
√

E(k,t), ∀t ∈ [0,T ), (12)

where c is a constant of O(1).
The key concept in this new bridge is a hypothetical bound

for the energy spectrum of the form

E(k,t) � Mk−n0(t)e−2kδ0(t) , ∀ t ∈ [0,T ) , ∀ k ∈ N, (13)

for certain positive functions n0(t) and δ0(t) and some positive
constant M . The functions n0,δ0 are closely related to the
analyticity-strip fit parameters nX, δX considered above,
but they are not the same. In fact, the above hypothetical
bound is global (in k space), whereas, as already mentioned,
the logarithmic decrement δX(t) gives information on the
asymptotic (large-k) behavior of the energy spectrum.

It was demonstrated in Ref. [20] that combining this
hypothetical bound with the rigorous inequality (12) leads to
a relation between the BKM theorem and the analyticity-strip

method. To simplify matters, one considers the consequences
of the following finite-time singularity scenario: Suppose for
simplicity that the exponent n0 in the hypothetical bound (13)
remains constant as t approaches the singularity time T∗ and
that δ0(t) ∝ (T∗ − t)γ , where γ > 0. The following necessary
condition then is found,

γ � 2

6 − n0
,

in order that the blowup be consistent with the BKM
theorem. The formal argument is given in Ref. [20] and is
immediately generalizable to MHD. The result for MHD is as
follows:

||ω(.,t)||∞ + ||j(.,t)||∞ � c

∞∑
k=1

k2
√

2ET(k,t), ∀t ∈ [0,T ),

(14)
where now ET(k,t) represents the total energy spectrum,
i.e., the sum of kinetic and magnetic energy spectra. The
corresponding hypothesis for energy bound (13) is unchanged
and, similarly, the hypothesis of blowup for δT(t). The result
is again a necessary condition, of the form

γT � 2

6 − nT

. (15)

Note that, since in the Euler case, the observed n0 appears to be
(at least for some initial conditions) larger than the exponent
nT in the MHD case, one sees that the eventual realization
of a singularity in MHD might be a different process than
for the Euler equation. This is not necessarily surprising for
at least three reasons: (i) MHD is thought to be smoother
than hydrodynamics, insofar as Alfvén waves may slow down
the dynamics of propagation to small scales, leading possibly
to a different energy spectrum, the so-called Iroshnikov-
Kraichnan law; (ii) the Onsager principle concerning energy
dissipation can likely be replaced in MHD by magnetic helicity
conservation, following the so-called Taylor conjecture [21],
thereby changing the dimensionality of the system; and
(iii) the degree of smoothness required to ensure total energy
conservation (technically, the index of the Besov space needed)
for the velocity and the magnetic field may differ in a way
that is compatible with the Iroshnikov and Kraichnan spectra
[21]. In particular, with n0 ≈ 4 for Euler, one obtains γ � 1,
whereas for nT ≈ 3 in ideal MHD (see Ref. [31]), one has
γT � 2/3: The decay of the logarithmic decrement would be
slower in MHD, as expected because of the slow-down of the
dynamics by (Alfvén) waves.

1. Analysis of the total energy spectrum

At time t ≈ 2.33, we observe a change in the behavior
of the total energy spectrum, probably due to the imminent,
accelerated collision between two current sheets (confirmed
by inspection of the structures in real space), and the
corresponding fast generation of a second length scale, related
to the distance between the two sheets. The original length
scale of the problem, interpreted as the decreasing width of
the current sheets, decreases slower than this new length scale
so eventually the two length scales become comparable. It is
known that when two or more sharp physical structures of
similar length scales are present, the traditional fit (10) of the
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energy spectrum fails. For example, in the Kida-Pelz 3D Euler
flow, the departure of the measured energy spectrum from
the traditional form (10) was modeled with good accuracy
by attributing it to interferences of two complex singularities
situated at equal distances from the real axis [53]. However, the
extra complexity (spatial and temporal) of the MHD flow under
current study makes it difficult for us to find a good model
for this new behavior. This imposes a practical limitation on
the analyticity-strip method as a means for finding a good
estimate of the actual logarithmic decrement δT(t) of the
spectrum (where “actual” is used in contrast to the measured
one). In fact, depending on the fit interval we get vastly
different estimates for the width δT(t) for times t > 2.33, so our
knowledge of the width δT(t) as in the large-k asymptotic ex-
pansion ln ET(k,t) ∼ −2 k δT(t) has significant errors that grow
in time.

In conclusion, we cannot tell by using the analyticity-strip
method alone whether there is a finite-time singularity in
the MHD flow under study at times t > 2.33. Of course,
we know from continuity arguments that the width δ(t)
should remain nonzero at least for a short time after t =
2.33. But that is all we know, so there are two possible
scenarios:

Scenario 1: There is no finite-time singularity up to time
t = 2.7, so the simulation is well resolved, perhaps marginally.
The implications of Scenario 1 will be exploited in Sec. III C.

Scenario 2: There is a finite-time singularity at a time
between t = 2.33 and t = 2.7, but this cannot be assessed
using the analyticity-strip method alone.

Let us consider the implications of Scenario 2. Although
we do not know the logarithmic decrement δT(t), we can still
have an estimate for the positive exponent nT(t) appearing in
the bound (13) for the total energy spectrum. In fact, what is
needed in inequality (15) is a lower bound for nT(t) rather than
nT(t) itself. This lower bound can be estimated by looking at the
low-wave-number fits of the total energy spectrum (from k = 4
to k = 500), as shown in Fig. 8. Running estimates for nT(t)
obtained in this way turn out to be consistently smaller than
the estimates obtained by using fit intervals including larger

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
0

5

10

15

t

n(
t)

Fit interval [4,2048]
Fit interval [4,500]
Fit interval [500,2048]

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
10

−4

10
−2

t

δ(
t)

Fit interval [4,2048]
Fit interval [4,500]
Fit interval [500,2048]

(b)

(a)

FIG. 8. (Color online) Running estimates of the analyticity-strip
method exponents nT(t) (a) and δT(t) (b) for the total energy spectrum.
The dashed (blue) line denotes the fit interval [4,2048]; the thick solid
(magenta) line denotes the fit interval [4,500]; the thin (brown) line
with dots denotes the fit interval [500,2048]. In (b), the horizontal
line represents the reliability threshold δTkmax = 2.
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FIG. 9. (Color online) (a) Sum of maxima of vorticity and current
as a function of time. There is a clear jump at t = 2.476 corresponding
to an emergent near-singular structure taking over a previous one.
(b) Multiplicative inverse of the logarithmic derivative of the previous
curve. If this has a negative slope, it is an indication for a possible
finite-time singularity.

values of k. The result for the lower bound is n− = 2.385.

With this number, the inequality (15) gives a bound for the
unknown exponent γT in δT(t) ∝ (T∗ − t)γT :

γT � 2

6 − n−
≈ 0.553 , (16)

so even though we do not know whether the logarithmic
decrement is going to zero or not in a finite time, we have
been able to estimate how fast it should go to zero in the
hypothetical case of a finite-time singularity.

2. Analysis of the sum of supremum norms of vorticity
and current

To further comment on the feasibility of Scenario 2, let us
consider the method of running estimates for singularity of
fast-growing quantities introduced in Ref. [19]. We apply this
method to the growth of the BKM field ||ω(.,t)||∞ + ||j(.,t)||∞
with the ansatz ||ω(.,t)||∞ + ||j(.,t)||∞ ≈ C[T∗ − t]−β. The
method gives running estimates of the exponent β and of
the singular time T∗. In Fig. 9(a) we observe that there is
a jump at t = 2.476 in the growth rate of the BKM quantity;
however, this is not due to a dynamical effect. It is rather
due to an independently emergent physical structure that is
more singular than the previous one. Figure 9(b) shows the
multiplicative inverse of the logarithmic derivative of the BKM
quantity. If this curve has negative slope, then the intersection
of the slope with the t axis gives a running estimate of the
potential singularity time. We see two instances of negative
slope. We discard the instance at about t = 2.476 because this
is due to the transient emergence of the new structure. How-
ever, near t = 2.5 we observe more robust evidence of
potential singularity, although the data are quite noisy and,
thus, the tangent is oscillating too much, so we cannot have
precise estimates of the singularity time and the exponent β.
Naked-eye prediction of singularity time, obtained by finding
the intersection of the smoothed tangent at t = 2.5 with
the t axis, would give T∗ ≈ 2.56–2.58 and β ≈ 1.44–1.75.

013110-9



M. E. BRACHET et al. PHYSICAL REVIEW E 87, 013110 (2013)

These values for the estimates of T∗ and β were obtained
by estimating two tangents in Fig. 9(b), each tangent being
defined as the linear interpolation of six contiguous data
points taken out of the seven data points highlighted in the
figure.

It is interesting that near t = 2.5 the estimated logarithmic
decrement δT(t) (using the full fit range [4,2048]) indeed
has a change in behavior, first a deceleration and then an
acceleration, although this occurs near the reliability threshold;
see Fig. 8(b). A computation of the running estimate of
decay exponent γT as in δT(t) ∝ (T∗ − t)γT gives γT = 0.94
at t = 2.501 but only that data point agrees with the rig-
orous bound in (16), γT � 0.553. At slightly later times,
the estimated value of γT becomes 10 times smaller, thus
violating the rigorous inequality. The corresponding predicted
singular time, using this method, gives a running estimate
T∗ ≈ 2.516–2.522.

To summarize, Scenario 2 is plausible but some of its
aspects occur in the limit of the reliability threshold. This
point is aggravated by the fact that the sampling of current
and vorticity maxima at the grid points induces spurious
oscillations in the data (a way to suppress these oscillations is
discussed in Sec. IV). Therefore, no robust conclusion can be
drawn at the moment. A future higher-resolution numerical
simulation should shed more light on the feasibility of
Scenario 2.

C. Structures in physical space

Visualization plays an important role in the discovery
process, and many of the arguments considered above used
information from the evolution of the structures in physical
space, based on previous runs [31] and the present high-
resolution computation. In order to visualize the velocity and
magnetic field and their gradients, one needs to reconstruct the
three-dimensional data using the fourfold symmetries of the
TG-MHD configuration, a daunting task at such resolutions.
In that context, note that the VAPOR visualization system
developed at NCAR [54,55] allows one to analyze the data
using wavelet compression in order to explore rapidly at

coarser resolutions and then to increase the resolution as
needed where needed.

The acceleration in the formation of small scales was
first identified in Ref. [31] with the collision of two current
sheets leading to a quasirotational discontinuity. The present
computations at higher resolution confirm these results and
allow us to go further in time. We have given in Table II the
values close to the end of the computation of the maximum
of the vorticity and of the current as well as their location
in the fundamental [0,π/2] computational box. Concentrating
on the current, which is known in two dimensions to have a
simpler geometric structure (a dipole instead of a quadrupole
for the vorticity), we observe two jumps, near t1 = 2.48 and
t2 = 2.62, both in the value of the current maximum and in its
location.

The collision of two current sheets leading to a quasiro-
tational discontinuity was clearly observed in Ref. [31] at a
resolution of 20483 points; this phenomenon is confirmed in
the present computation with 3 times the linear resolution and,
thus, any numerical effect can be ruled out for it. The second
acceleration in the development of small scales, which occurs
at a later time, seems to be related to the near colocation of these
two sheets and this is now what we examine by considering
structures in physical space. We also note that such current
sheets are known to roll up at sufficiently high resolution in
the dissipative case, and similar rolled-up structures have been
observed in the solar wind in a much more complex physical
environment [56,57]. But they are only a recent finding in
DNS of MHD turbulence on grids of 15363 points using
the GHOST code [58–60] and 20483 (equivalent) points using
TYGRS [40].

The maximum of the current first moves along the vertical
axis (index k), and then at t = 2.5 it has moved in the y

direction (index j ): It is traveling along the lower sheet as the
two sheets seem to join with each other to follow the curvature.
Finally, around t = 2.65, the current density maximum now
moves along the diagonal in the horizontal plane.

A rendering of the current is given in Fig. 10 at t = 2.54 (left
and middle for the vorticity and the current). It is the merging
of two current sheets that causes the maximum to go radially

FIG. 10. (Color online) Perspective volume rendering using the VAPOR software [54,55] of the vorticity (left) and of the current density
(middle) at t = 2.54. Note the occurrence of a double layer structure due to the collision and subsequent joining of two sheets. At a later time
(t = 2.65; right), the magnetic field lines taken on these two colliding sheets all go to the same location, which coincides with the maximum
of the current (coordinates given in the table), implying sharp localized bending (and possibly torsion) of magnetic field lines in the vicinity of
that maximum.
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FIG. 11. (Color online) Alternative views of the same structures
at the same time as in Fig. 10: Two-dimensional cuts of vorticity
(left) and of current (right) in the region of the current sheet collision,
displayed down to the grid resolution.

(in a cylindrical sense) from the corner of the fundamental box
([i,j,k] = [1,1,1537]) along a polar angle of π/2 on the top
plane. The two sheets (seen at both ends of the box because of
symmetries) are clearly almost touching each other (a zoom
indicates that they are two to three grid points apart). Finally,
on the right is given a suite of six magnetic field lines at
the latest time of the computation that appear to all converge
to one point, indicative of a potential singularity, that point
being the location of the current maximum at that time. The
two current sheets are barely visible (purple and blue below).
Alternative views are given in Fig. 11, with in particular two-
dimensional cuts at the highest (grid) resolution, indicating
that the two current and vorticity sheets are still individually
resolved.

Such features correspond to a strong bending of magnetic
field lines in the vicinity of the current and vorticity maxima,
implying strong directional variations. It may also imply
magnetic field line stretching in this strong curvature region,
a stretching that would be consistent with the sudden increase
in magnetic energy (relative to its kinetic counterpart), as
observed clearly (see Fig. 6). This is also reminiscent of the
necessity, in the Euler case, of a blowup of both the magnitude
of the small-scale field but also of the curvature of its field
lines, as shown in Refs. [61,62], for a singularity to occur.

D. The case of other Taylor-Green configurations in ideal MHD

Finally, let us mention briefly how the two other initial
conditions satisfying the TG symmetries behave, with ideal
runs computed on grids of up to 40963 points. Similar temporal
evolutions seem to occur for both flows, as shown in Figs. 12
and 13. The spectral indices seem to reach values smaller than
in the Euler (ideal fluid) case for all configurations examined
in this paper, systematically below a value ≈3, with some
oscillations in the conducting case (C flow, Fig. 12, two lower
panels).

The maxima of current and vorticity are displayed in Fig. 13
for the A and C configurations. The C flow current maximum
(Fig. 13, center) undergoes, first, a jump from structure to
structure at relatively early times, followed by a traditional
exponential phase corresponding to the thinning of current.
This is followed again by a short and rapid further increase in
the maximum which appears difficult to analyze in more detail,
due to the fact that the temporal interval during which this latest
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FIG. 12. (Color online) Analysis of the fit to the total energy
spectra for the A flow (two upper panels) and C flow (two lower
panels) on grids of up to 40963 points; note that early times are
not shown. First and third panels: logarithmic decrement; the dashed
line indicates the resolution limit for the 40963 grid. The smallest grid
resolution is reached at t ≈ 1.85 for the A flow and at t ≈ 2.35 for the
C flow. Second and fourth panels: Spectral index of the total energy,
with values that seem to settle below n = 3 for both configurations.

acceleration occurs is again too short, as for the insulating
configuration analyzed in the previous sections. The vorticity
maximum in the A flow shows a rather monotonic increase
until the final acceleration in current. For the A flow (Fig. 13,
top) the monotonicity of the current and vorticity maxima are
reversed compared to the C flow. We note that the temporal
evolution of the integrated square vorticity and current for
the A and C runs indicate that they become nearly equal for
late times (not shown). This is due to the fact that, after the
grid resolution is reached by the velocity and magnetic field
structures, the evolution is that of a truncated system of Fourier
modes which evolve, in the simplest case, to equipartition due
to statistical equilibrium, as analyzed in Ref. [63]; this begins
to occur at late times in these computations, at a faster rate the
smaller the scale.
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FIG. 13. (Color online) Top and center panels: Maxima of current
(dashed, red) and vorticity (solid, black) over time for the A
configuration (top), and for the C configuration (center). The abrupt
changes at intermediate times are linked to the fact that the maxima
jump from structure to structure. Note the rapid increase at t > 1.85
in the C flow and at t > 2.35 for the A flow, and the noise at late times
due to the fact that small scales have become insufficiently resolved.
Bottom: Ratio of the magnetic to kinetic energy spectra for the C
configuration at different times, with dark blue (0.43 � t < 0.79),
green to t = 1.15, red to t = 1.51, black to t = 1.87, magenta to
t = 2.23, and cyan to t = 2.48. Note the quasiequipartition in the
inertial range all the way to the cutoff, as well as the excess magnetic
energy at large scales.

Another instance of quasiequipartition between kinetic
and magnetic energy is occurring at earlier times and is
reminiscent of what is observed in the dissipative case for many
configurations (see, e.g., Refs. [32,45]). Indeed, we see that
the ratio of the spectra of magnetic and kinetic energy given in
Fig. 13 (bottom) for the C configuration is close to (and slightly
above) unity from k ≈ 4 up to the maximum wave number.
This is also observed for the other two configurations examined
in this paper and is consistent with the expression for the
spectra obtained for ideal dynamics of a truncated system with
zero (or negligible) helicity [63], in which case equipartition
obtains. This appears to be another example where the ideal
dynamics is consistent (and can be viewed as predictive of)
dissipative (and/or forced) inertial range dynamics, as first
clearly showed using direct numerical simulations in the fluid
case in Ref. [39]. We also note that such a quasiequipartition
of kinetic and magnetic energy, with, in most cases, a slight
excess of the latter, long has been observed in solar wind
data [64] and confirmed later by more detailed observations as
well.

IV. SUMMARY OF RESULTS AND CONCLUSIONS

We have shown in this paper several results concerning the
ideal dynamics of MHD configurations, namely that (i) by
increasing the resolution by a factor of 3 from our previous
study, we still reproduce the results obtained in a 20483

simulation up to the last time computed in that run, including
an acceleration in the maximum of current and vorticity and
in the decrease of the logarithmic decrement; (ii) in the new
high-resolution simulation, we see yet a second acceleration
of the formation of small scales at a later time in a situation
that is as well resolved as the previous acceleration was in
the 20483 simulation; (iii) these two accelerations are clearly
associated with changes in the structures in physical space
of the current and vorticity; (iv) these changes also pollute
the small-scale spectrum, creating a limitation in practice to
the applicability of the analyticity-strip method; (v) a method
bridging the analyticity-strip method and the so-called BKM
criteria by means of sharp analysis inequalities is extended
to MHD and allows us to rule out spurious singularities;
(vi) this method cannot completely rule out the existence
of a finite-time singularity at a time between t = 2.33 and
t = 2.7; (vii) the structures that seem to create this acceleration
in the formation of small scales are related to the near
collision and further spatial colocation of two current sheets
and similarly for the vorticity; (viii) these results do not seem
to be occurring only for one flow but seem to take place as
well in the other two configurations studied in this paper, up
to equivalent resolutions of 40963 points; and, finally, (ix) a
simple regridding technique, which allows for substantial
savings in computer time, is shown to be entirely reliable
provided a conservative threshold for applying the method
is utilized. We should note that in one case (that of the I
configuration), the scale separation reached in the computation
is unprecedented up to this point in time.

In summary, we have found that at high resolution, the most
intense structures that develop in ideal MHD come from the
near collision and later from the near juxtaposition of two
current and vorticity sheets. The maxima of these small-scale
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fields undergo abrupt jumps twice, and it will be necessary
to pursue this computation at yet-higher resolutions to see
whether the criteria for a singularity to develop or not are
satisfied, by monitoring the maxima of current and vorticity
for a time that is sufficiently long, and to compute other
diagnostics as well.

We remark that our pursuit is not just a brute-force increase
in resolution. In fact, we have made use of an analytical
tool that bridges two known singularity criteria (BKM-type
theorem for MHD and analyticity-strip method), leading to a
method for ruling out spurious indications of singularity. We
have applied this method to the current configuration under
study at the highest resolution achieved in this paper and
concluded that the existence of a finite-time singularity at a
time between t = 2.33 and t = 2.7 cannot be completely ruled
out. While it would be desirable to produce a more specific
statement in this regard, there is one fact that makes it difficult
to advance further: the values of ‖ω(·,t)‖∞ and ‖j(·,t)‖∞,
needed for testing singular behavior in the framework of the
BKM theorem, are currently measured using collocation-point
data, a standard procedure that leads to “noise” or error in the
data. This noise is evident as tiny oscillations in Fig. 9(b) which
add an uncertainty to the computation of slopes. The source of
this noise was discovered recently in Ref. [65], in the context of
the more controllable inviscid Burgers one-dimensional flow.
There, as in our MHD case, the systematic periodic sampling of
collocation-point maxima introduces an error in the precision
of the measurement with respect to the true value of maxima.
The error oscillates in time; its frequency grows with the
numerical resolution used if the time step is determined
by a fixed-ratio Courant-Friedrich-Lewy (CFL) condition.
Moreover, the amplitude of the error depends on the spatial
profile of the maximum computed, so the error increases as the
structures become more peaked. In Ref. [65] the solution to this
problem was proposed and has two levels of complexity: At the
simplest level, a postprocessing computation of extrapolated
values of the maxima of vorticity and current can eliminate
partially the oscillatory part of the error. At the deepest level,
the application of an adaptive time stepping beyond CFL, so
the product �t × (‖ω(·,t)‖∞ + ‖j(·,t)‖∞) remains constant,
can improve the precision in the computation of vorticity
and current maxima by a factor of 102, at no extra cost in
computational time and memory [65]. In our future work we
will implement these procedures so we can have more robust
evidence regarding the hypothesis of finite-time singularity in
MHD.

One dynamical effect that can play a role in stopping a
putative singularity is the phenomenon of dynamic alignment
that is rather ubiquitous in turbulent flows. For example, it
was shown in Ref. [41] that the alignment of vorticity with
shear or pressure gradients, and, equivalently, of magnetic
field and shear, enhances pointwise helicity (kinetic helicity
in the former case, cross helicity in the second case), although
the global norms are conserved, and it does so in a time of the
order of the eddy turnover time. In fact, an alignment between
all variables involved in the nonlinear terms of MHD, namely
velocity and magnetic field in Ohm’s law [66], velocity and
vorticity in the Lamb vector, and current and magnetic field
in the Lorentz force, occurs rather systematically, in particular
the latter [67]. It is not clear what the effect of dissipation

is in these alignment properties or whether such alignment
tendencies would be sufficient to prevent singularities to occur
in the ideal case. In that light, a more detailed analysis of
the local properties of the flow in the vicinity of the current
and vorticity maxima will be undertaken in a follow-up
paper. Furthermore, ideal and dissipative flows have common
properties because of their nonlinear multiscale interactions.
The lack of universality, found in decaying flows with imposed
Taylor-Green symmetries [32] is also found in the forced
case [68], and, thus, it is an open problem to see whether it
will occur in the ideal case, although the differences between
inertial indices is small and, thus, requires high resolutions and
long-time integration.

A theory of turbulent flows is still lacking, and yet such
flows are ubiquitous in nature and are an integral part
of the problem of weather prediction, climate assessment,
and understanding the formation and prediction of extreme
events such as tornadoes and hurricanes and of reconnection
events in space physics such as solar flares and coronal
mass ejections, plasmoids, and in disruptive plasmas. Such
flows develop intense small-scale structures in the form
of vortex and current sheets and filaments with power-law
scaling properties and departure from Gaussianity attributed to
intermittency. Similarly, in the ideal case at intermediate times
and intermediate scales, a classical turbulent spectrum has been
observed recently for fluids [39,69], with at smaller scales the
statistical equilibrium that can be derived analytically using the
quadratic invariants preserved by the truncation (see Ref. [63]
for 3D MHD), the whole flow evolving progressively towards
flux-less Gaussian equilibrium solutions. What is lacking,
among other things, is a statistical description of the small
scales and a prediction of long-time large-scale dynamics with
ensuing modified transport properties. By combining this study
with a well-resolved high Reynolds number dissipative run,
one may be able to establish in 3D-MHD the link between
the role of ideal nonlinear dynamics and dissipative-induced
reconnection (see, e.g., Ref. [14]), leading to finite dissipation
in the limit of zero viscosity and magnetic resistivity as shown
in both two-dimensional [70,71] and three-dimensional cases
[60]. This may shed light on dissipation processes in turbulent
conducting flows and on the role of nonlocal interactions
between disparate scales [72,73] in MHD when compared
to the Euler (fluid) case (see also Ref. [74]), thus leading to
better estimations of the energy dissipation rate controlled by
turbulence in astrophysics and space physics.
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