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Friction-enhanced lifetime of bundled quantum vortices
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We show that a toroidal bundle of quantized vortex rings in superfluid helium generates
a large-scale wake in the normal fluid which reduces the overall friction experienced by
the bundle, thus greatly enhancing its lifetime, as observed in experiments. This collective
effect is similar to the drag reduction observed in systems of active, hydrodynamically co-
operative agents such as bacteria in aqueous suspensions, fungal spores in the atmosphere,
and cyclists in pelotons.
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I. INTRODUCTION

Some physical systems consist of components which interact with each other not only directly but
also indirectly by changing the common background, leading to remarkable collective effects such
as drag reduction. Examples are aqueous suspensions of self-propelled bacteria [1–3], fungal spores
[4], road racing cyclists in the peloton [5,6], and particles trapped inside an optical vortex [7,8]. Here
we report a similar collective effect for quantized vortex rings, fundamental nonlinear excitations of
superfluid helium. Vortex rings are generated in the laboratory by injecting electrons [9–11], forcing
liquid helium through orifices [12], or moving a grid [13]. At sufficiently low temperatures, a single,
isolated superfluid vortex ring of radius R is an Hamiltonian object [14] traveling at constant energy
(proportional to R) and velocity (proportional to 1/R). At higher temperatures, liquid helium has
a two-fluid nature: Thermal excitations (phonons and rotons) form a viscous gas called the normal
fluid which interacts with quantized vortices via a mutual friction force. Because of this friction,
a superfluid vortex ring moving in a quiescent normal fluid loses energy, shrinks, speeds up, and
vanishes.

Here we show that the dynamics of a sufficiently compact toroidal bundle of many vortex rings is
remarkably different: Besides interacting directly with each other in a peculiar leapfrogging fashion,
the vortex rings also interplay indirectly by modifying the common normal fluid background. This
reduces drastically the total friction so that the bundle remains coherent as if the normal fluid were
almost absent, resulting in an enhanced lifetime. Such an unusual long life of superfluid vortex
bundles has been observed in experiments [15–17], but never explained until now.
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In experiments [15–17], large-scale vortex ring structures identified as vortex bundles were
generated by forcing liquid helium out of a cylindrical tube. The position and translational velocity
of the structures were measured acoustically, together with the spatial distributions of superfluid
and normal fluid circulations. It was found that over a wide temperature range (1.3 < T < 2.15 K,
corresponding to the superfluid fraction changing from 96% to 0.13%) the bundles remained
relatively compact, conserving their initial shape and moving at constant speed over distances of
the order of 7 times their initial diameter. The measured superfluid and normal fluid circulations
were both of the order of 103κ , where κ is the quantum of circulation of one single ring. This fact
suggests that such fluid structures consisted of a bundle of approximately 103 superfluid vortex rings
embedded in a normal fluid vortex structure of the same circulation, traveling together across the
apparatus.

II. MODEL AND NUMERICAL EXPERIMENT

Our model builds on the vortex filament (VF) theory of Schwarz [18], a widely used approach
[19,20] which describes vortex lines as space curves s(ξ, t ) of infinitesimal thickness moving
according to

ṡ(ξ, t ) = ∂s
∂t

= vs + αs′ × vns − α′s′ × (s′ × vns), (1)

where s′ = ∂s/∂ξ , vns = vn − vs at s, α and α′ are temperature-dependent friction coefficients [21],
vn is the normal fluid velocity at s, and vs is the superfluid velocity induced at s by the entire vortex
configuration L via

vs(s, t ) = κ

4π

∮
L

s′
1(ξ1, t ) × [s − s1(ξ1, t )]

|s − s1(ξ1, t )|3 dξ1. (2)

The original VF model consists of Eqs. (1) and (2) and an algorithm to perform vortex recon-
nections. Its limitation is that the normal fluid velocity vn is imposed a priori, neglecting the
backreaction of the superfluid vortex lines on vn. Recent experiments [22,23] suggest that normal
fluid wakes may form behind each individual vortex line. To account for this effect, which is
crucial to understand quantized vortex bundles, we couple Eqs. (1) and (2) self-consistently with
the Navier-Stokes equations for vn supplemented with a mutual friction force Fns:

∂vn

∂t
+ (vn · ∇)vn = − 1

ρ
∇pn + νn∇2vn + Fns

ρn
, (3)

Fns =
∮
L

fns(s)δ(x − s)dξ, ∇ · vn = 0. (4)

Here fns is the local friction per unit length, ρ = ρn + ρs is the total density of liquid helium, ρn and
ρs are the normal fluid and superfluid densities, respectively, pn is the effective pressure, and νn is the
kinematic viscosity of the normal fluid. We refer to Eqs. (1)–(4) as the coupled Navier-Stokes–vortex
filament (NS-VF) model [24]. Further details and comparisons with previous approaches [25–28]
are described in Appendixes B and C.

The initial condition of our numerical experiments consists of a concentric bundle of N = 169
circular vortex rings placed inside a torus of outer radius R0 = 1.2 × 10−2 cm and inner radius
a = 3.4 × 10−3 cm. These initial rings are distributed in a regular hexagonal lattice over the torus
cross section (top left panel of Fig. 1), corresponding to solid-body rotation within the torus. The
exact initial vortex configuration does not play a fundamental role, as we obtain the same numerical
results with vortices arranged randomly within the toroidal geometry. For comparison, we also study
a smaller bundle (R0 = 2.3 × 10−2 cm, a = 2.9 × 10−3 cm, and R/a = 8) with only N = 37 vortex
rings. Although for practical computational reasons we have about 10 times fewer rings than in
experiments, the radius ratio R0/a = 3.5 of the larger bundle is essentially the same as in [17].
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FIG. 1. Evolution of the vortex bundle with an initial central radius R0 = 1.2 × 10−2 cm traveling along the
x direction at t = 0 (left column), t = 0.009 s (middle column), and t = 0.051 s (right column). Vortex lines
are displayed in red and the normal fluid’s enstrophy in blueish colors. The inset in the top left panel displays
the initial cross section of the bundle. The top and middle rows show numerical simulations of Schwarz’s VF
model at T = 0 and 1.95 K, respectively. The distance traveled by the bundle (where it remains coherent) is
denoted by xpos. Results obtained using the coupled NS-VF model are shown in the bottom row.

III. RESULTS

First we perform simulations at temperature T = 0: The normal fluid and the friction are absent
[vortices hence move purely according to the Biot-Savart law (2)]. We find that the vortex bundle
preserves its shape for a long time as displayed in Fig. 1 (top). The radii R and a remain almost
constant during the computed evolution, while the bundle travels a distance D ≈ 14R0 in the x
direction; this is in quantitative agreement with experiments [17] in the low-temperature range (T =
1.3 K, corresponding to 96% superfluid fraction). In the initial stage, each vortex rings leapfrogs
around and inside the others until reconnections occur, triggering Kelvin waves, as illustrated in
Fig. 1 [29]. The presence of Kelvin waves implies a small increase of the total vortex length L =∮
L dξ [green dots in Fig. 2(a)]. Only at much later times (not shown), the bundle slowly starts losing

coherence.
Second, we study the bundle’s evolution at T = 1.95 K (corresponding to ρn ≈ ρs). Using

Schwarz’s VF model, we observe that, traveling in the normal fluid imposed at rest, the bundle
spreads spatially in the direction of motion, rapidly losing its coherence by leaving vortices behind
[see Fig. 1 (middle)]. The rapid decay of the total vortex length is clear in Fig. 2(a) (blue dashed
line): By t = 0.009 and 0.051 s, L has decreased to 60% and 10% of its original value, respectively,
in stark disagreement with experiments. Essentially, the bundle disassembles into isolated vortex
rings which shrink in a time interval comparable to the lifetime τ0 = 0.2444 s of a single vortex
ring of initial radius equal to R0 at the same temperature T = 1.95 K.
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FIG. 2. Temporal evolution of the vortex bundle’s (a) total length L(t ) and (b) energy dissipation ε(t ) at
T = 1.95 K of bundles with N = 169 (blue) and N = 37 (red) rings. Plots compare Schwarz’s VF model
(dashed lines) and the coupled NS-VF model with (solid lines) and without (dot-dashed lines) an initial normal
fluid vortex ring. The T = 0 temporal evolution is shown by green dots. The two vertical lines correspond to
times t = 0.009 and 0.051 s represented in Fig. 1. The timescale τ0 is the lifetime of a single quantum vortex
ring of initial radius equal to R0 at T = 1.95 K (τ0 = 0.2444 and 0.9041 s for the N = 169 and 37 bundles,
respectively).

We observe a totally different behavior if we use the more realistic coupled NS-VF model [24]
accounting for the evolving vn. As initial condition for vn we choose a large-scale toroidal vortex
ring of outer radius R0, inner radius a, and circulation Nκ (i.e., matching the superfluid bundle
circulation), with a Gaussian distribution of vorticity within the toroidal core [see Fig. 1 (bottom
left)]. This is probably a fair approximation to the physical reality of the experiment: As liquid
helium is pushed out of the nozzle, a normal fluid vortex ring with the same circulation of the
superfluid vortex bundle is indeed observed [17]. We find that the vortex bundle does not decay,
but remains coherent and travels a significant distance D compared to its diameter (D ≈ 15R0),
in agreement with experiments [17]. The coherence of the coupled normal fluid–superfluid vortex
structure can be appreciated in Fig. 1 (bottom), where the normal fluid enstrophy density |ωn|2 is
shown (bluish colors) alongside the superfluid quantized vortices (red lines). We observe that the
radial distribution of the vorticity is broader compared to the initial condition, also filling the central
region of the torus: This is consistent with the experimental report that large-scale helium vortex
rings have a less sharp vorticity distribution than vortex rings in classical fluids [16,17].

Remarkably, while under Schwarz’s VF evolution the total vortex length L rapidly decays, under
coupled NS-VF evolution L remains almost constant [see Fig. 2(a)], similarly to what happens for
T = 0. This effect is not simply the consequence of the initially imposed normal fluid ring. We have
indeed performed NS-VF simulations with an initially quiescent normal fluid (dot-dashed lines in
Fig. 2). We have found that during a short initial stage (t < 0.02τ0), the coupled NS-VF model
follows the rapid decay of the Schwarz’s VF model, but after this short transient, the superfluid
vortex bundle creates normal fluid vortex structures which prevent the rapid decay of the bundle.
The evolution of the smaller vortex bundle (N = 37 rings) is similar, as shown by the red curves in
Fig. 2. The larger and faster spatial spreading of the initial compact structure as the energy saving
mechanism is less efficient, reminiscent of the behavior observed in active matter systems [30].

Dissipation reduction via hydrodynamic cooperation

The normal fluid vortex structures generated by the backreaction of the superfluid vortex rings are
similar to vorticity injection in ordinary viscous fluids by pointlike active agents (e.g., solid particles
in classical turbulence [31]), suggesting that a superfluid can be seen as a peculiar type of active
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FIG. 3. (a) Temporal evolution of dissipation reduction χ for a superfluid vortex bundle with a number
of vortices N = 37, outer radius R0 = 2.3 × 10−2 cm, and inner radii a = 2.9 × 10−3 cm (green curve, /σ̄ =
1.7), a = 5.8 × 10−3 cm (blue curve, /σ̄ = 3.4), and a = 1.2 × 10−2 cm (red curve, /σ̄ = 6.8). Temperature
is T = 1.95 K. The horizontal dashed magenta line indicates 80% of dissipation reduction. The timescale τ0

is as in Fig. 2. (b) Temporal evolution of χ for an isolated vortex ring of initial radius R0 = 7.6 × 10−3 cm,
moving in an initially quiescent normal fluid at temperatures T = 1.7, 1.8, 1.95, 2.0, and 2.1 K (from yellow
to red); time t is normalized by the vortex ring lifetime τ .

fluid. The mutual friction force per unit length fns is a function of the local relative velocity ṡ − vn

between the vortex line and the local normal fluid velocity. If the coupling between superfluid and
normal fluid is sufficiently strong and the intervortex distance is sufficiently small (so that vortices
can benefit from the normal fluid stirring performed by other vortices), |ṡ − vn| → 0, reducing the
drag and slowing down (even halting) the decay of the combined normal fluid–superfluid vortex
structure.

To characterize the dissipation reduction arising from the interaction between vortices and normal
fluid, we compute the dissipation of superfluid kinetic energy

ε(t ) =
∮
L

fns(s) · ṡ(ξ, t )dξ, (5)

normalized by ρnκ
2N2L(t ), and report it in Fig. 2(b). Schwarz’s VF model (dashed lines) is

compared to the coupled NS-VF model with and without an initial normal fluid ring (solid and
dot-dashed lines, respectively). It is clear that in the coupled model the dissipation is substantially
reduced compared to Schwarz’s VF model (note that in the VF model, the decrease of friction at
large times is related to the small number of distant vortices remaining in the system leading to
ṡ → 0).

Two concurring mechanisms are likely to be responsible for this observed reduced dissipation
in the coupled model: the coupling itself, which reduces the velocity difference ṡ − vn between
a single vortex ring and the normal fluid, and the collective hydrodynamic cooperation, where
vortices benefit from the normal fluid stirring performed by other vortices. To determine the
relevance of collective effects, we study the impact of the average intervortex distance on the
dissipation reduction, by numerically simulating the dynamics of bundles with different initial inner
radii a and computing the dissipation reduction χ with respect to the initial condition, defined as
χ (t ) = [ε(0) − ε(t )]/ε(0). The initial condition of the normal fluid is quiescent, as this allows
one to better appreciate the stirring of the normal fluid performed by superfluid vortices and the
consequent dissipation reduction. The temporal evolution of χ is illustrated in Fig. 3(a), where it
clearly emerges that the dissipation reduction is more efficient when a is smaller. The time interval
which the system requires to reduce the initial dissipation ε(0) by 80% [magenta dashed line in
Fig. 3(a)] is almost proportional to a. This observed less efficient dissipation reduction as a increases
is determined by the following factors: The stirring of the normal fluid is weaker, given that the
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FIG. 4. Coupled NS-VF model. Normal fluid flow disturbances at T = 1.95 K are generated by a single
superfluid vortex ring of initial radius R0 = 7.6 × 10−3 cm traveling from left to right. (a) Normal fluid’s
enstrophy |ωn|2 (in s−2, top) and speed |vn| (in cm/s, bottom) plotted on the horizontal plane z = 0 at time
t = 0.16 s; the superfluid vortex ring is the red tube. (b) Temporal evolution of the radius R (in cm) of an
isolated vortex ring of initial radius R0 = 7.6 × 10−3 cm, moving in an initially quiescent normal fluid at
temperatures T = 1.7, 1.8, 1.95, 2.0, and 2.1 K (from yellow to red). (c) Temporal evolution of the size σ̄

of the normal fluid flow disturbances generated by the shrinking vortex ring; colors are as in (b); time t is
normalized by the vortex ring lifetime τ .

vortex velocity is smaller (ṡ ∼ 1/a), and the hydrodynamic interactions are less intense as vortices
are further apart. This last feature is characteristic of active fluid systems, as observed for drafting
particles in optical vortices [7], for cyclists facing a steep hill where drafting is negligible [30], and
in the role played by ejection delay in the dispersion of fungal spores [4].

To assess the role played by the coupling on its own, we study, employing the coupled NS-VF
model, the dynamics of a single, isolated vortex ring of initial radius R0 = 7.6 × 10−3 cm, in
an initially quiescent normal fluid. Figure 4(a) shows the isolated superfluid vortex ring (in red)
traveling from left to right at t = 0.16 s when the temperature T = 1.95 K. The normal fluid
enstrophy density |ωn|2 and the magnitude of the normal fluid velocity |vn| are displayed in the upper
and lower halves of the horizontal plane z = 0, respectively (perpendicular to the plane containing
the superfluid vortex ring). We observe two enstrophy structures which can be thought of as two
vortex rings in the normal fluid [25]. Similar normal fluid enstrophy structures are also visible near
all vortex lines in a bundle [see Fig. 1 (bottom row)].

As the isolated superfluid vortex ring moves in the normal fluid and perturbs it, it loses energy;
its radius R therefore shrinks with time, as shown in Fig. 4(b), with corresponding lifetimes τ

decreasing for increasing temperatures [32]. Lifetimes of vortex rings predicted by the coupled
NS-VF model are roughly twice the lifetimes predicted by Schwarz’s VF model [indicated by
vertical dashed lines in Fig. 4(b)]; the inclusion of the coupling in the model indeed reduces the
dissipation with respect to Schwarz’s VF model. However, if we compute the dissipation reduction
χ (t ) during the shrinking of the rings [Fig. 3(b)], we observe that the dissipation actually increases
with respect to its initial value (χ < 0). Hence, the dissipation reduction (χ → 1) observed in
the dynamics of bundles, responsible for their significantly enhanced lifetime [larger than τ0; see
Fig. 2(a)], consistent with experimental measurements, uniquely stems from collective hydrody-
namic cooperation.

By employing an enstrophy-weighed average approach (see Appendix A), we calculate the
typical size σ̄ of the normal fluid enstrophy structures generated by vortex rings and report its
temporal behavior in Fig. 4(c). Subsequently, we compute the dimensionless ratio /σ̄ ,  = a

√
π/N

being the initial average intervortex spacing, obtaining 0.93 � /σ̄ � 1.7 (simulations in Fig. 2)
and 1.7 � /σ̄ � 6.8 [simulations in Fig. 3(a)]; this range of values assumed by /σ̄ implies that
the normal fluid perturbations indeed play a role in the vortex bundle dynamics, confirming the
hydrodynamic cooperative nature of the dissipation reduction observed. Interestingly, the values
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of σ̄ are comparable to the size of solid hydrogen tracking particles used in current experiments,
reinforcing recent suggestions ascribing the observed statistics of particle velocities also to the
indirect interaction between particle and vortices, i.e., via the disturbances generated in the normal
fluid by superfluid vortices [23,33].

IV. CONCLUSION

Using our coupled NS-VF model, which fully takes into account [24] the reciprocal interaction
of the superfluid and the normal fluid, we have found that a compact bundle of superfluid vortex
rings creates a disturbance in the normal fluid that is sufficiently strong to reduce the overall velocity
difference between the two fluids and hence reduce the friction on the superfluid vortex rings. While
isolated superfluid vortex rings quickly lose energy, shrink, and vanish, we observed that bundled
vortex rings remain coherent and travel a significant distance compared to their size, as observed in
the experiments [15–17]. We have also found that the bundle remains coherent in the limit of zero
temperature (no normal fluid), again in agreement with experiments and previous works [29].

We showed that the observed dissipation reduction in bundles is a collective effect stemming from
the hydrodynamic cooperation of vortices. This cooperation is similar to what has been observed
in systems of active particles such as swimming bacteria [1–3], fungal spores [4], racing cyclists
[5,6], and particle pairs trapped in an optical vortex [7,8], in which self-organized structures emerge
from energy-saving mechanisms [30]. The system that we have investigated, superfluid helium, is
however richer: Whereas in fact in the cited active matter systems the agents, besides modifying
the common background fluid, may interact with each other directly only via short-range two-body
collisions, in our case vortex lines also experience a significant collective long-range Biot-Savart
interaction which, for instance, induces them to collectively rotate around each other (leapfrogging).
Superfluid helium can hence be considered as a peculiar kind of active fluid, distinguished by a four-
way coupled dynamics which potentially determines characteristics of turbulence in both superfluid
and normal fluid components.

The effect of coupling and drag reduction on the statistics of superfluid turbulence and on other
integral quantities (such as helicity [34] if, for instance, the initial bundle is twisted) is a topic left for
future research, as well as the implications for vortex dynamics in the more viscous helium isotope
3He.
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APPENDIX A: CALCULATION OF σ̄(t )

The center xω(t ) of the normal fluid enstrophy distribution |ωn(x, t )|2 on the z = 0 plane is
calculated as

xω(t ) =
∫∫

x|ωn(x, t )|2dx∫∫ |ωn(x, t )|2dx
, (A1)

where xω(t ) = (xω(t ), yω(t ), 0 ) and x = (x, y, 0) as the calculation is performed on the z = 0 plane.
The normal fluid vortex size σ̄ whose temporal evolution is reported in Fig. 4(b) is given by
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σ̄ (t ) = √
Rn(t )Rt (t ), where Rn and Rt are computed as

R2
n(t ) =

∫∫ {[x − xω(t )] · n̂(t )}2|ωn(x, t )|2dx∫∫ |ωn(x, t )|2dx
, (A2)

R2
t (t ) =

∫∫ {[x − xω(t )] · t̂(t )}2|ωn(x, t )|2dx∫∫ |ωn(x, t )|2dx
, (A3)

where t̂(t ) is the unit vector indicating the direction of the mutual friction force fns(t ) exerted by
the vortex ring onto the normal fluid on the z = 0 plane and n̂(t ) is the orthogonal direction to t̂(t )
lying on the z = 0 plane.

APPENDIX B: THE NS-VF MODEL

The numerical methods used to implement Schwarz’s VF model and the coupled NS-VF model
are described in detail in Ref. [24]. Here we summarize the main characteristics of the coupled
NS-VF model.

1. Superfluid vortex tangle and normal fluid velocity field evolution

The temporal evolution of the superfluid vortex tangle L is performed by employing the well-
established Lagrangian VF method elaborated by Schwarz [18,35] which discretizes vortex lines in
a finite number of line elements whose equation of motion is given by Eq. (1). The singularity of
the Biot-Savart integral (2) is regularized by taking into account the finite size of the vortex core
[18]. We compute the full Biot-Savart integral (no tree approximation). As reconnections are not
intrinsically predicted by the VF method, an additional algorithm has to be employed, changing the
topology of the vortex configuration when two vortex lines become closer than a set threshold.

The evolution of the normal fluid velocity field vn is computed by integrating the Navier-Stokes
Eqs. (3) and (4) using a standard pseudospectral code dealiased by employing the 2/3 rule. We
refer to established literature for further details concerning the standard algorithm employed for the
numerical integration of the Navier-Stokes equations [36].

2. Mutual friction force

The distinguishing features of our coupled NS-VF algorithm actually concern the modeling of
the mutual friction force per unit length fns in Eq. (4). We describe the interaction between superfluid
vortices and the normal fluid employing a classical low-Reynolds-number approach [37] revisiting a
recent framework used in superfluid turbulence [27]. According to this approach, the mutual friction
force which the superfluid vortices exert on the normal fluid reads

fns[s] = −Ds′ × [s′ × (ṡ − vn)] − ρnκs′ × (ṡ − vn), (B1)

where the drag coefficient D = D[s] is

D = 4πρnνn[
1
2 − γ − ln

( |vn⊥−ṡ|a0

4νn

)] , (B2)

γ = 0.5772 being the Euler-Mascheroni constant, vn is evaluated on the vortex lines, that is to say,
vn = vn[s] (the interpolation being performed using fourth-order B splines), and the quantity vn⊥
indicates the component of the normal fluid velocity lying on a plane orthogonal to s′. The use of
the expression (B1) for fns leads to a recalculation of friction coefficients α and α′ in Eq. (1), as
reported in the next section.

As the mutual friction force fns is δ supported on the vortex lines, its numerical distribution on the
Eulerian computational grid where we compute the normal fluid velocity vn must be handled with
care in order to avoid spurious numerical artifacts. To address this issue, we adopt the same rigorous
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regularization approach which has been used to take into account the strongly localized response
of active pointlike particles in classical turbulence [31]. The advantage of adopting this method is
that the regularization of the exchange of momentum between pointlike active agents and viscous
flows is based on the physics of the generation of vorticity and its viscous diffusion at very small
scales. In our case, the justification for the use of this model arises from the very small Reynolds
numbers characterizing the normal fluid disturbances generated by the moving superfluid vortices
(Re ≈ 10−5–10−4).

3. Calculation of friction coefficients in the coupled NS-VF model

Here we briefly describe the derivation of the expression of the mutual friction coefficients in
the coupled NS-VF model (for further details, the reader is referred to Ref. [24]). The starting point
is the classical, low-Reynolds-number theoretical approach which we employ to model the mutual
friction force. This framework leads to Eq. (4) accounting for the force per unit length −fns which
the normal fluid exerts onto the superfluid vortices. The superfluid vortices also suffer a Magnus
force fM as they are immersed in an inviscid fluid (the superfluid) surrounded by a circulation and
in relative motion with respect to the superfluid itself. The expression of the Magnus force per unit
length exerted onto the superfluid vortices is

fM = ρsκs′ × (ṡ − vs). (B3)

Since the vortex core is much smaller then any other scales of the flow, the vortex inertia can be
neglected and as a consequence the sum of all forces acting on the vortices vanishes, i.e., fM −
fns = 0. Assuming that each vortex line element moves orthogonally to its unit tangent vector, i.e.,
ṡ · s′ = 0, the balance of forces leads to the equation of motion

ṡ = vs⊥ + βs′ × (vn − vs) + β ′s′ × [s′ × (vn − vs)], (B4)

where vs⊥ indicates the component of the superfluid velocity lying on a plane orthogonal to s′ and
β and β ′ are the redetermined mutual friction coefficients for the coupled model.

The expressions for β and β ′ are

β = a

(1 + b)2 + a2
> 0, β ′ = −b(1 + b) + a2

(1 + b)2 + a2
< 0,

where

a = D

ρsκ
= 4π

(
ρn

ρs

)(νn

κ

) 1[
1
2 − γ − ln

( |vn⊥−ṡ|a0

4νn

)]
and b = ρn

ρs
. Thus, from the physical point of view, the motion of the vortices is governed only

by temperature and pressure, determining ρn/ρs and νn/κ , and the normal fluid Reynolds number
Re = |vn⊥ − ṡ|a0/νn. In the numerical simulations, we employ values of the densities ρn and ρs

and of the normal fluid kinematic viscosity νn consistent with temperature T = 1.95 K at saturated
vapor pressure [21]. Correspondingly, also the values of the friction coefficients α and α′ employed
in the Schwarz VF model are consistent with experimental values [21].

APPENDIX C: PHYSICAL AND NUMERICAL PARAMETERS

1. Superfluid vortex tangle simulations

Following the VF model elaborated by Schwarz [18,35], we discretize the vortex tangle L in
a set of Np vortex line elements centered in si(t ) = s(ξi, t ), i = 1, . . . , Np, where ξi = i�ξ is the
discretized arclength with discretization �ξ ∈ [δ, 2δ], where δ = 4.0 × 10−4 cm. The normal fluid
is solved on a three-dimensional computational grid with {Nx, Ny, Nz} = {512, 512, 512} collocation
points in each Cartesian direction. The computational domain is a periodic box of size Lx × Ly × Lz
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with Lx = Ly = Lz = 10−1 cm, which leads to grid spacings �x = �y = �z = 1.95 × 10−4 cm.
The size of the computational box is identical for the calculation of the vortex filaments (Lx =
Ly = Lz = 10−1 cm) and also in this calculation we use periodic boundary conditions. The time
step �t employed in the computation of the temporal evolution of the “large” bundle (N = 169;
cf. the main text) is �t = 5.0 × 10−6 s, while the time step used for the “thin” bundle (N = 37) is
�t = 6.25 × 10−6 s. In order to distribute the mutual friction force Fns over the computational grid
where the normal fluid velocity is resolved, before employing the regularization adopted in classical
turbulence [31], we interpolate the vortex filaments with a cubic kernel over an arclength subscale
�ξ/4. We validated this interpolation method on the motion of individual vortex rings.

2. Single-superfluid-vortex-ring simulations

In this set of simulations whose results are summarized in Figs. 3(b) and 4, we use a finer
discretization of the vortex lines, δ being equal to 8.0 × 10−5 cm. This results in a smaller time
step �tVF = 6.25 × 10−7 s. For the normal fluid velocity computation we use {Nx, Ny, Nz} =
{256, 256, 256} collocation points in each Cartesian direction leading to �x = �y = �z = 3.90 ×
10−4 cm, as the computational periodic box is Lx × Ly × Lz with Lx = Ly = Lz = 10−1 cm. The
time step employed for the calculation of the normal fluid velocity field is �tNS = 2.50 × 10−5 s.
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