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Abstract We present the Fully cOUpled loCAl model of sUperfLuid Turbulence (FOU-
CAULT) that describes the dynamics of finite temperature superfluids. The superfluid com-
ponent is described by the vortex filament method while the normal fluid is governed by a
modified Navier–Stokes equation. The superfluid vortex lines and normal fluid components
are fully coupled in a self-consistent manner by the friction force, which induces local distur-
bances in the normal fluid in the vicinity of vortex lines. The main focus of this work is the
numerical scheme for distributing the friction force to the mesh points where the normal fluid
is defined (stemming from recent advances in the study of the interaction between a classical
viscous fluid and small active particles) and for evaluating the velocity of the normal fluid
on the Lagrangian discretisation points along the vortex lines. In particular, we show that if
this numerical scheme is not careful enough, spurious results may occur. The new scheme
which we propose to overcome these difficulties is based on physical principles. Finally, we
apply the new method to the problem of the motion of a superfluid vortex ring in a stationary
normal fluid and in a turbulent normal fluid.

1 Introduction

Quantum turbulence [1–3] is the disordered motion of quantum fluids—fluids which are
governed by the laws of quantum mechanics rather than classical physics. Examples of
quantum fluids are atomic Bose–Einstein condensates [4,5], the low temperature liquid phases
of helium isotopes 3He and 4He, polariton condensates, and the interior of neutron stars. The
underlying physics is the condensation of atoms which obey Bose–Einstein statistics. In this
work, we focus on the superfluid phase of 4He, frequently referred to as helium-II or He-II
for short. Helium II can be described as an intimate mixture of two fluid components [6,7]:
the viscous normal fluid, which is similar to ordinary viscous fluids obeying the classical
Navier–Stokes equation, and the inviscid superfluid, whose vorticity is confined to vortex
lines of atomic thickness and quantised circulation (also referred to as quantised vortices or
superfluid vortices). At nonzero temperatures, quantum turbulence thus manifests itself as a
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disordered tangle of vortex lines interacting with either a laminar or a turbulent normal fluid
depending on the circumstances.

Despite the two-fluid nature and the quantisation of superfluid vorticity, several surpris-
ing analogies between classical turbulence and quantum turbulence have been established in
helium II in the last years. One example is the same temporal decay of vorticity [8] in unforced
turbulence. Another example is the energy spectrum of forced homogeneous isotropic tur-
bulence, which, according to experiments [9–11], numerical simulations [12–15] and theory
[16,17], displays the same Kolmogorov energy spectrum (the distribution of kinetic energy
over the length scales) which is observed in classical turbulence. However, at sufficiently
small length scales (smaller than the average inter-vortex distance), or when superfluid and
normal fluid are driven thermally in opposite directions [18,19], fundamental differences
emerge between classical and quantum turbulence [20,21].

The comparison between quantum and classical turbulence is therefore a current topic of
lively discussions in low-temperature physics community. Essential progress in the under-
standing of the underlying physics is provided by the recent development of new experimental
techniques for the visualisation of superfluid helium flows, including micron-sized tracers,
polymer particles [22], solid hydrogen/deuterium flakes [23,24] and, more recently, smaller
(thus less intrusive) metastable helium molecules [25] which fluoresce when excited by a
laser.

Alongside experiments, numerical simulations have played an important role in under-
standing the physics of quantum turbulence, from interpreting experimental data to proposing
new experiments. However, most numerical simulations have determined the motion of vortex
lines as a function of prescribed normal fluid profiles without taking into account the back-
reaction of the vortex lines [26] onto the normal fluid. Only a small number of investigations
have addressed this back-reaction, but most efforts have suffered from some shortcomings:
They were restricted to two-dimensional channels [27,28], had too limited numerical resolu-
tion to address fully developed turbulence [29], considered only simple vortex configurations
[30,31], were limited to decaying turbulence [32]), or did not reach the statistically steady
state which is necessary to make direct comparison to classical turbulence.

This work presents a fully coupled, three-dimensional numerical model which tackles all
these shortcomings and contains innovative features concerning the numerical architecture
and the physical modelling of the interaction between normal fluid and vortex lines. We shall
refer to our model as FOUCAULT, Fully-cOUpled loCAl model of sUperfLuid Turbulence.
Compared to past studies, our model consists of an efficiently parallelised pseudo-spectral
code capable of distributing the calculation of the normal fluid velocity field and the temporal
evolution of the superfluid vortex tangle amongst distinct computational cluster nodes. This
feature allows the resolution of a wider range of flow length scales compared to the previous
literature, spanning large quasi-classical length scales as well as smaller quantum length
scales. This wide range is of fundamental importance for the numerical simulation of turbulent
flows of helium II with realistic experimental parameters. Clearly, the importance of the
dynamically self-consistent approach varies depending on the application. Our motivation is
that we need a computational tool like FOUCAULT to find the answer. In certain applications,
we expect our approach to be relevant, for example the recent experiments with micron-size,
hydrogen tracer particles. The particles are affected by the normal fluid (mainly via the Stokes
drag) and by the superfluid flow which is generated by the vortex lines (via inertial effects).
If the vortex lines perturb the normal fluid locally, the motion of the tracers will change (as
preliminary addressed very recently [33]), changing, for instance, the probability that they
are trapped or not in the vortex cores. The correct interpretation of experimental data depends
on having an appropriate model of this physics.
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From the physical point of view, FOUCAULT includes a new approach to determine the
friction force between superfluid vortices and the normal fluid, developed from progress
in the study of classical creeping flows [34], but modified in order to avoid the unphysical
dependence of the friction on the numerical discretisation on the vortex lines. In addition,
the force between the vortices and the normal fluid (ideally a Dirac delta function centred on
the vortex lines) is regularised exactly employing a method recently developed in classical
turbulence [35,36] for the consistent modelling of the two-way coupling between a viscous
fluid and small active particles. This method stems from the small-scale viscous diffusion
of the normal fluid disturbances generated by the vortex motion, thus regularising the fluid
response to vortex forcing in a physically consistent manner. Our fully coupled local model
is therefore a significant improvement with respect to previous algorithms which employed
arbitrary numerical procedures for the distribution of the vortex forcing on the Eulerian
computational grid of the normal fluid [37].

The organisation of the paper is the following. In Sect. 2, we describe the equations
of motion of the superfluid, the normal fluid and the vortex lines with emphasis on the
different existing models for the calculation of the friction force. In Sect. 3, we outline
our numerical method, including details on the Vortex Filament Method, the Navier–Stokes
solver, interpolation schemes and the procedure employed for regularising the friction force
consistently. Next, in Sect. 4, we show two applications of our model. Finally, in Sect. 5 we
summarise the main points and outline future work.

2 Equations of motions

2.1 Helium II

If the temperature of liquid helium is lowered below Tλ = 2.17 K at saturated vapour pressure,
a second order phase transition takes place to another liquid phase, known as helium II,
which exhibits quantum-mechanical effects (unlike the high-temperature phase above Tλ,
called helium I, which can be adequately described as an ordinary Newtonian fluid). In the
absence of vortex lines, the motion of helium II is well described by the two-fluid model
of Landau and Tisza. This model describes helium II as the intimate mixture of two co-
penetrating fluid components [6,7,38–40], which can be accelerated by temperature and/or
pressure gradients: the viscous normal fluid and the inviscid superfluid. Each component is
characterised by its own kinematic and thermodynamic fluid variables. In this description, the
total density of helium II, ρ, is the sum of the partial densities ρn and ρs of the normal fluid
and the superfluid: ρ = ρn+ρs (hereafter we use the subscripts ’n’ and ’s’ to refer to normal
fluid and superfluid components, respectively). While ρ is approximately independent of
temperature for T < Tλ, the superfluid and normal fluid densities are strongly temperature
dependent: in the limit T → Tλ, helium II becomes entirely normal (ρn/ρ → 1), whereas in
the limit T → 0 it becomes entirely superfluid (ρs/ρ → 1). In practice, as the normal fluid
density decreases quite rapidly with decreasing temperature, a helium sample at T ≤ 1 K is
effectively a pure superfluid (ρs/ρ ≥ 0.99).

Loosely speaking, the superfluid component corresponds to the quantum ground state
of the system governed by a macroscopic complex wavefunction #, and the normal fluid
corresponds to thermal excitations (strictly speaking, this identification of the superfluid
component with the condensate is not correct: helium II is a liquid of interacting bosons,
not a weakly interacting gas). At temperatures of the most experimental interest, the mean
free path of the thermal excitations is short enough that the normal fluid behaves like an
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ordinary (classical) viscous fluid with non-vanishing dynamic viscosity and entropy per unit
mass, η and s respectively. In contrast, the superfluid component is inviscid and incapable
of carrying entropy (hence heat). Physically, the existence of two distinct velocity fields vn
and vs signifies that, locally, two simultaneous distinct movements are possible, even though
individual helium atoms cannot be separated into two components.

However, if helium II rotates, or if the relative speed vns = |vn − vs | between normal
fluid and superfluid exceeds a critical value, superfluid vortex lines nucleate, coupling the
two fluids [39,40] in a way that invalidates the model of Landau and Tisza. It is instructive
to write the superfluid wavefunction # in terms of its amplitude and phase, # = |#|eiφ , and
use the quantum mechanical prescription relating the velocity to the gradient of the phase:
vs = (h̄/m)∇φ. One finds [5] that a vortex line is a topological defect: a one-dimensional
region in three-dimensional space where the phase φ is undefined, and the magnitude |#|
vanishes exactly. Vortex lines are thus nodal lines of the wavefunction. The single valuedness
of the wavefunction implies that the circulation integral Γ following a closed path C is either
zero (if C does not encircle the vortex line), or takes the fixed value

Γ =
∮

C
vs · dl = κ, (1)

if C encircles the vortex line, where κ = h/m is the quantum of circulation. A multiply-
charged vortex line carrying more than one quantum of circulation is usually unstable, break-
ing into many singly charged vortex lines. Equation (1) also implies that the superfluid velocity
around a straight vortex line has the form vs = κ/(2πr), where r is the distance to the vortex
axis. Since the superfluid component has zero viscosity, this azimuthal velocity field persists
forever. Notice that the corresponding superfluid vorticity is a Dirac delta function defined
on the vortex axis.

Physically, we can think of a vortex line as a thin tubular hole (centred on the vortex axis)
around which the circulation has the fixed value κ . The radius of the hole is also fixed by
quantum mechanics and has the value a0 ≈ 10−10m, which is the characteristic distance
over which the amplitude of # drops from its bulk value (at infinity, away from the vortex)
to zero (on the vortex axis).

Vortex lines act as scattering centres for the thermal excitations (phonons and rotons)
constituting the normal fluid [41,42]. This interaction produces an exchange of momentum,
hence a mutual friction force Fns , between the superfluid component and the normal fluid
component. The quantisation of the superfluid circulation and the friction force between
superfluid and normal fluid make helium II a more complex, richer system than the original
two-fluid scenario of Landau and Tisza.

This aim of this work is to develop a suitable numerical framework to address simul-
taneously the coupled temporal evolution of (i) the normal fluid velocity field and (ii) the
superfluid vortex lines, taking the friction into account. In the following Sects. 2.2–2.5, we
outline the equations of motions of the fluid components, the superfluid vortex lines and the
expression of the friction force employed in our numerical algorithm.

2.2 The normal fluid

The normal fluid is a gas of elementary excitations called phonons and rotons. In the range
of temperatures which we are interested in, namely 1.5 K < T < Tλ, the normal fluid
density is mostly due to rotons [42]. The roton mean free path is [43] λm f p = 3η/(ρnvG),
where vG = √

2kBT/(πµ) is the roton group velocity, µ = 0.16m4 is the roton effective
mass [44] and m4 = 6.65 × 10−27kg is the helium mass; therefore, λm f p varies from 13 ×
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10−10m at T = 1.5K to 2.2 × 10−10m at T = 2.15 K. These values are much smaller
than the typical intervortex distance, ℓ ≈ 10−6m to 10−4m, at the flow’s small scales, and
the current experimental facilities at the flow’s large scales, which typically range from
10−3 m to 100 m [33,45]. The normal component can hence be effectively described as a
fluid with its own velocity vn , density ρn , entropy per unit mass s and dynamic viscosity
η. Given the small temperature gradients observed in experiments [46], ρn , s and η can be
treated as uniform and constant properties of the fluid. Furthermore, the normal fluid can
be adequately treated as a Newtonian fluid, i.e. the viscous stress tensor is linear in velocity
gradients. Stemming from these physical characteristics of the normal component, a long
series of studies have focused on the derivation of the equations of motion of helium II in
the presence of vortex lines, at length scales ∆ much larger than the average inter-vortex
spacing ℓ [42,47,48]: these equations of motion are nowadays referred to as the Hall–Vinen–
Bekarevich–Khalatnikov (HVBK) equations. In the cited circumstance where the normal fluid
undergoes incompressible isoentropic motion with constant and uniform dynamic viscosity,
the HVBK equations of motion for the normal component in presence of vortex lines coincide
with the Navier–Stokes equations for a classical incompressible viscous fluid with the addition
of an extra term Fns representing the friction force:

ρn

[
∂vn
∂t

+ (vn · ∇) vn

]
= −ρn

ρ
∇ p − ρss∇T + η∇2vn + Fns, (2)

∇ · vn = 0, (3)

where p is pressure. Considering hereafter only isothermal helium II and introducing char-
acteristic units of length and time, respectively λ and τ , Eqs. (2) and (3) can be made non-
dimensional as follows:

∂ ṽn
∂ t̃

+
(
ṽn · ∇̃

)
ṽn = −∇̃

(̃
p
ρ

)
+ νn

(λ2/τ )
∇̃ 2̃vn +

(
Fns

ρn

)
τ 2

λ
, (4)

∇̃ · ṽn = 0, (5)

where ·̃ indicates non-dimensional quantities and νn = η/ρn is the kinematic viscosity of the
normal fluid. The numerical schemes for the integration of Eqs. (4) and (5) and the numerical
handling of the friction force Fns are discussed in Sects. 3.2 and 3.4, respectively.

2.3 The superfluid

The complete set of HVBK equations consists of Eqs. (2) and (3) supplemented with the
equations of motion of the superfluid component which, in the incompressible approximation
and neglecting the tension force, are as follows:

ρs

[
∂vs
∂t

+ (vs · ∇) vs

]
= −ρs

ρ
∇ p + ρss∇T − Fns, (6)

∇ · vs = 0. (7)

As already said, the superfluid vorticity ωs = ∇ × vs is confined to the vortex lines which
can effectively be described as one-dimensional objects because the vortex core size a0 ≈
10−10 m is several orders of magnitude smaller than the flow length scales probed in the
present work (≈ 10−5 m to 10−6 m). The vortex lines can hence be treated as parametrised
space curves s(ξ, t) in a three-dimensional domain, where ξ is arc-length and t is time. Within
this mathematical description of vortex lines, the superfluid vorticity ωs can be expressed in
terms of δ-distributions, as follows
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ωs(x, t) = κ

∮

L
s′(ξ, t)δ(x − s(ξ, t))dξ, (8)

where

s′(ξ, t) = ∂s(ξ, t)
∂ξ

, (9)

is the unit tangent vector to the curve s(ξ, t) and L indicates the whole vortex configuration.
The superfluid velocity may hence be expressed in terms of the spatial distribution of

vortex lines s(ξ, t) via the Biot-Savart integral [49], i.e.

vs(x, t) = ∇φ(x, t)+ κ

4π

∮

L

s′(ξ, t) × (x − s(ξ, t))
|x − s(ξ, t)|3 dξ, (10)

where ∇φ(x, t) is the potential flow arising from the macroscopic boundary conditions. The
corresponding non-dimensional equation is straightforwardly obtained and reads as follows:

ṽs (̃x, t̃) = ∇̃φ̃(̃x, t̃)+ κ

4π(λ2/τ )

∮

L

s′(̃ξ , t̃) × (̃x − s̃(̃ξ , t̃))
|̃x − s̃(̃ξ , t̃)|3 d̃ξ . (11)

The numerical computation of Eq. (11) is addressed in Sect. 3.1.

2.4 The friction force

Historically, three distinct theoretical frameworks have been employed in the literature to
model the interaction between vortex lines and normal fluid: (i) the coarse-grained philos-
ophy, (ii) the local approach, and (iii) the fully-coupled local approach. The first approach
probes the flow at length scales ∆ much larger than the average inter-vortex spacing ℓ; it was
originally derived in the pioneering studies of Hall and Vinen [41,42] and successively led
to the HVBK theoretical formulation [47,48]. The advantages of such approach are that it
is dynamically self-consistent, and it makes possible to cover a wide range of length scales
as for classical DNS of turbulence; the drawbacks are that it does not give information at
length scales smaller than the inter-vortex distance, and, by relating the vortex line density
to the magnitude of the superfluid vorticity, assumes perfect polarisation of the vortex lines,
ignoring unpolarised vortex lines which contribute to the dissipation but not to the energy.
The second approach addresses helium II dynamics at the scale of individual vortex line
elements of length δ < ℓ; it was first employed by Schwarz [49–51] and later reformulated
by Kivotides, Barenghi and Samuels [30]. The benefits of this approach are that it models
both polarised and unpolarised vortex lines equally well, but the results strongly depend on
the imposed profile of the normal fluid, which is poorly determined even in the experiments.
The third approach is a modification of the second that includes the effects of the local back-
reaction of the vortex lines on the normal fluid. The main advantage of the third approach is
that it is dynamically self consistent (it does not require a priori information about the normal
fluid) but has the same computational disadvantage of the second model: the evaluation of
Biot-Savart integrals is computationally expensive. In addition, this third model also requires
the numerical integration of the Navier Stokes equations for the normal fluid.

(i) Coarse-grained friction
At length scales ∆ ≫ ℓ, the discrete, singular nature of the superfluid vorticity field is
lost. As a result, the averaged superfluid velocity and vorticity fields, indicated here-
after by ⟨vs⟩ and ⟨ωs⟩ respectively, are continuous fields, smoothly varying on the
macro-scale ∆. At these scales, Hall and Vinen deduced the following expression for
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the friction force ⟨Fns⟩ acting per unit volume on the normal fluid in a bucket of rotating
helium II:

⟨Fns⟩ = B
ρnρs

2ρ⟨ωs⟩
⟨ωs⟩ × [⟨ωs⟩ × (⟨vn⟩ − ⟨vs⟩)] + B ′ ρnρs

2ρ
⟨ωs⟩ × (⟨vn⟩ − ⟨vs⟩) ,

(12)

where ⟨vn⟩ is the coarse-grained normal fluid velocity and B and B ′ are friction coef-
ficients determined experimentally at scales ∆ via second sound attenuation measure-
ments in a rotating cryostat [41,42]. Equation (12) was generalised for non-straight
vortex configurations by Bekarevich and Khalatnikov [47]. In this form (which con-
tains a vortex tension term), the HVBK equations were applied to Couette flow [52–54],
predicting with success the transition from Couette flow to Taylor vortex flow and the
weakly nonlinear regime at higher velocities beyond the transition. Being laminar,
these flows satisfy the assumption behind the derivation of the HVBK equations that
the vortex lines are locally polarised. The application of the HVBK equations to turbu-
lent flows is less straightforward, as the vortex lines are polarised only partially (most
vortex lines are at random directions with respect to each other); hence, the relation
|⟨ωs⟩| = κL between the vortex line density L and the coarse-grained superfluid vor-
ticity is only approximate. Nevertheless, the HVBK equations have been used to model
the turbulent cascade in helium II [55].

(ii) Local friction
Developing the vortex filament method, Schwarz derived an expression for the force

per unit length ⟨fsn⟩ exerted by the normal fluid on a single vortex line element of
length δ < ℓ, position s(ξ, t) and unit tangent vector s′ [49]:

⟨fsn⟩ = −αρsκ s′ ×
[
s′ ×

(
V̂n − vs

)]
− α′ρsκ s′ ×

(
V̂n − vs

)
, (13)

where α = Bρn/(2ρ), α′ = B ′ρn/(2ρ), vs = vs(s(ξ, t), t) defined by the Biot–Savart
integral in Eq. (10) and V̂n = V̂n(s(ξ, t), t) is a prescribed normal fluid flow.
Eq. (13) is based on the following two important assumptions. Firstly, it neglects the
back reaction of the superfluid vortex motion on the flow of the normal fluid. It assumes
in fact, that each vortex line element feels the normal fluid flow ⟨vn⟩, i.e. a macroscopic
velocity field averaged over a region containing many vortex lines (∆ ≫ ℓ). The field
⟨vn⟩ is thus determined by the macroscopic boundary conditions of the flow which
is investigated and is entirely decoupled from the evolution of the superfluid vortex
tangle. As a consequence, in the framework elaborated by Schwarz, the normal fluid
velocity field may be prescribed a priori, depending on the fluid dynamic characteris-
tics of the system studied: the explicit presence of the prescribed flow V̂n in Eq. (13)
underlies this aspect. The second assumption, strongly linked to the previous, is the use
of macroscopic coefficients α and α′ for the calculation of the friction acting on a single
vortex element: α and α′ are in fact simply redefinitions of the friction coefficients B
and B ′ determined at large scales ∆ in a very particular vortex line configuration (a
lattice of straight vortex lines in a rotating bucket) [41,42]. Eq. (13), on the contrary,
is intended to describe the force experienced by a vortex line element in a turbulent
tangle. The measured values of α and α′ are displayed in Fig. 1.
This decoupling of the normal fluid flow from the vortex lines motion (and, hence, the
possibility of imposing arbitrarily a priori the normal fluid velocity field V̂n(x, t) felt
by the vortices) confers to the theoretical framework pioneered by Schwarz a kinematic
character: the evolution of the vortex tangle is determined for a given imposed normal
flow. This local kinematic approach has been extensively employed in past studies to
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shed light on fundamental aspects of superfluid turbulence. In particular, various mod-
els of imposed normal flow V̂n have been studied: uniform [51,56–58], parabolic [59–
63], Hagen–Poiseuille and tail–flattened flows [64], vortex tubes [65], ABC flows [66],
frozen normal fluid vortex tangles [67], random waves [58], time–frozen snapshots of
turbulent solutions of Navier–Stokes equations [58,60,63] and time–dependent homo-
geneous and isotropic turbulent solutions of linearly forced Navier–Stokes equations
[68].

(iii) Self-consistent local friction
The self-consistent local approach was formulated in order to take into account the
back reaction of the vortex lines onto the normal fluid [30,31,69], by modelling the
dragging of the roton gas of excitations constituting the normal fluid by the vortex
lines moving relative to it. Here the velocity field varies at length scales smaller than
the average inter-vortex spacing ℓ and depends on the evolution of the vortex tangle: it
cannot be prescribed, but has to be determined via the integration of the incompressible
Navier–Stokes equations (2) and (3). This mismatch between the local normal fluid
velocity vn perturbed by superfluid vortices and the macroscopic flow V̂n implies the
necessity of re-determining the friction coefficients at these scales, now related to the
local cross sections between the roton gas and the vortex lines [69].
This self-consistent local approach was first employed to investigate the normal fluid
velocity field induced by simple vortex configurations, namely vortex rings [30] and
vortex lines [31]; later, it was also used to study both the forcing of the normal fluid
flow by decaying superfluid vortex tangles [70,71] and, vice versa, the stretching of
an initially small superfluid vortex tangles by either a decaying turbulent normal fluid
[32,37,72] or decaying normal fluid structures such as rings [73] and Hopf links [34].

The present work employs the most recent formulation of the third approach [34], slightly
revisited. We model each vortex line element as a cylinder of radiusa0 and length δ (coinciding
with the spatial discretisation of vortex lines, see Sect. 3.1 for details), where δ ≫ a0. The
very small vortex core size a0 implies that when a superfluid vortex is in relative motion
with respect to the normal fluid, it generates a low Reynolds number normal flow around
itself. Typical values of the Reynolds number associated to this vortex-generated normal flow
in helium experiments are 10−5 to 10−4. From the theory of low Reynolds number flows
[74–77], the force per unit length fD which the normal fluid exerts on the vortex line is

fD = −D s′ ×
[
s′ × (vn − ṡ)

]
, (14)

where the coefficient D (not to be confused with the friction coefficient discussed in Ref.
[43]) is

D = 4πρnνn[
1
2 − γ − ln

( |vn⊥−ṡ|a0
4νn

)] , (15)

and γ = 0.5772 is the Euler-Mascheroni constant.
Furthermore, ṡ = ∂s(ξ, t)/∂t is the velocity of the vortex line (see next paragraph 2.5), vn

is evaluated on the vortex line element, that is to say vn = vn(s(ξ, t), t) using the interpolation
schemes described and tested in Sect. 3.3, and the quantity vn⊥ indicates the component of
the normal fluid velocity lying on a plane orthogonal to s′.

The expression (14) for the viscous force fD acting on the vortex line differs from the
most recent approach [34] as it is independent of the discretisation δ on the lines. Including
further the Iordanskii force fI = − ρnκ s′ × (vn − ṡ) [78,79], the total force per unit length
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fsn acting on the superfluid vortices stemming from the interaction with the normal fluid is
as follows

fsn(s) = fD + fI = −D s′ ×
[
s′ × (vn − ṡ)

]
− ρnκ s′ × (vn − ṡ) . (16)

In conclusion of this section, for the sake of completeness, it is important to mention that also
Eq. (13) has been employed to take into account the back reaction of the superfluid vortices
on the normal fluid, by averaging ⟨fsn⟩ on a normal fluid grid cell containing many vortex
line elements [27–29].

2.5 The motion of vortex lines

The derivation of the equations of motion of the vortex lines is straightforward once Eq.
(16) is taken into account. Since the vortex core is much smaller then any other scales of the
flow, the vortex inertia can be neglected. As a consequence, the sum of all the forces acting
on a vortex vanishes. Since the vortex line is effectively like a small cylinder in an inviscid
fluid (the superfluid) surrounded by a circulation and in relative motion with respect to a
background flow, it suffers a Magnus force per unit length which is

fM = ρsκ s′ × (ṡ − vs) , (17)

where vs is evaluated on the vortex, vs = vs(s(ξ, t), t). Setting the sum of all forces acting
on the vortex line equal to zero, fsn + fM = 0, and employing Eqs. (16) and (17), we have

s′ ×
[
−D s′ × (vn − ṡ) − ρnκ (vn − ṡ)+ ρsκ (ṡ − vs)

]
= 0. (18)

Assuming that each vortex line element moves orthogonally to its unit tangent vector, i.e.
ṡ · s′ = 0, Eq. (18) leads [34,69] to the following equation of motion for ṡ(ξ, t)

ṡ = −s′ ×
{
s′ × [(1 + α) vs − αvn]

}
+ βs′ × (vn − vs)

= vs⊥ + βs′ × (vn − vs)+ β ′s′ ×
[
s′ × (vn − vs)

]
, (19)

where

β = a
(1 + b)2 + a2 > 0, (20)

β ′ = −b(1 + b)+ a2

(1 + b)2 + a2 < 0, (21)

a = D
ρsκ

= 4π

(
ρn

ρs

) (νn

κ

) 1[
1
2 − γ − ln

( |vn⊥−ṡ|a0
4νn

)] (22)

and

b = ρn

ρs
. (23)

From the physical point of view, the motion of the vortices is hence governed only by
temperature, which determines ρn/ρs and νn/κ .

2.6 The self-consistent model

Our model of fully self-consistent motion of helium II at finite temperature comes from
gathering the dimensionless equations (4), (5), (11), (16) and (19). The dimensional scaling
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Fig. 1 Dimensionless friction parameters α and β (left), α′ and β ′ (centre) and Γ (right) as a function of
temperature T and, for β and β ′, typical vortex Reynolds numbers, defined as Revortex = |vn⊥ − ṡ|a0/4νn

factors τ and λ can be chosen such that the integral time and length scales of the normal fluid
are of order one. In particular we set

ν0
n = νnτ

λ2 , Γ = κ

νn
. (24)

The dimensionless viscosity ν0
n is set to properly resolve the small scales of the normal

fluid. Note that Γ is dimensionless and depends on temperature. When comparing the simula-
tions to experiments, physical time and length scales are recovered from Eq. (24) by choosing
the unit of length of the system, λ. With this notation, our self-consistent model, written in
dimensionless form (after dropping tildes), reads:

∂vn
∂t

+ (vn · ∇) vn = −∇
(

p
ρn

)
+ ν0

n∇2vn +
1
ρn

∮

L
δ(x − s)fns(s)dξ + 1

ρn
Fext (25)

∇ · vn = 0 (26)
1
ρn

fns(s) = − 1
ρn

fsn(s) = −ν0
nΓ s′ × (ṡ − vn) − ν0

n D
0s′ ×

[
s′ × (ṡ − vn)

]
(27)

ṡ = vs⊥(s)+ β s′ × (vn(s) − vs(s))+ β ′ s′ ×
[
s′ × (vn(s) − vs(s))

]
(28)

vs(x, t) = ∇φ(x, t)+ Γ ν0
n

4π

∮

L

s′(ξ, t) × (x − s(ξ, t))
|x − s(ξ, t)|3 dξ (29)

with

D0 = 4π[
1
2 − γ − ln

( |vn⊥−ṡ|a0
4νn

)] (30)

In Eq. (25), we also added the external force Fext in order to sustain turbulence in the normal
fluid. We recall that the physical parameters β,β ′ and Γ depend only on temperature. Their
behaviour is displayed on Fig. 1 using the tabulated values of ρn, ρs and νn from reference
[80]. For the sake of completeness, in Fig. 1 we also report the temperature dependence of
the mutual friction coefficients α and α′ introduced by Schwarz [49] while modelling locally
the mutual friction force in presence of a prescribed normal fluid flow (cfr. Eq. (13)).

Finally note that for a given temperature, there are two more dimensionless parameters

Re = vrms
n L
νn

and Iturb = vrms
n

|⟨vn − vs⟩|
, (31)

where vrms
n is the root-mean-square or the characteristic normal fluid velocity fluctuation

and L is its integral scale. The Reynolds number Re tells how turbulent is the normal fluid
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and the turbulent intensity Iturb measures the strength of thermal counterflows with respect
to normal fluid turbulent fluctuations. Note that, alternatively, we can also use a Reynolds

number Reλ = vrms
n λT

νn
based on the Taylor microscale of the flow λT , which provides a

precise definition in terms of velocity gradients and fluctuations [81] (the relation between
the Taylor micro scale λT and the turbulent kinetic energy dissipation ϵ in homogeneous and
isotropic turbulence is as follows ϵ = 15νn(v

rms
n /λT )

2 leading to Reλ ∼
√

15 Re1/2).

3 Numerical method

The numerical integration of the self-consistent model Eqs. (25)–(29) demands special care.
In particular, the coupling between the vortex filament method and the Navier–Stokes equa-
tion requires interpolations to determine the values of the normal fluid at the filament positions
and a redistribution of the force fns onto the mesh where the normal fluid is defined. As we
shall see at the end of this section, a careless treatment of the coupling may lead to spurious
numerical artefacts.

In this section, we describe the numerical method used to solve Eqs. (25)–(29) and provide
physical and numerical justifications for the choice of the numerical scheme used to couple
superfluid and normal fluid. We start by briefly describing the standard numerical schemes
employed for the Vortex Filament Method and for the Navier–Stokes equations and then
proceed to illustrate the novel friction coupling based on the method recently developed for
the modelling of the two-way coupling between a classical viscous fluid and small active
particles.

3.1 Vortex filament method

Here we briefly describe the Vortex Filament Method (VFM) to determine the time evolution
of vortex lines. For a more in-depth overview of the VFM, we point the reader to a recent
review article [26] and references within. The underlying assumption of the VFM is that
vortex lines in the superfluid component can be considered one-dimensional space curves
around which the circulation is one quantum of circulation κ . This is a reasonable assumption
in helium II as the vortex core size a0 is much smaller than any other characteristic length
scale of the flow. However, during the time evolution of a turbulent vortex tangle, there are
important events such as vortex reconnections, during which this assumption breaks down.
We shall discuss how these events can be accounted for in the VFM at the end of the section.

(i) Lagrangian discretisation
At each time, we discretise the vortex tangle L in Np Lagrangian vortex points
{si (t)}i=1,...,Np the distance between neighbouring points is kept in the range [δ/2, δ]
by removing or inserting additional points [82]. As the vortex configuration evolves, so
does this Lagrangian discretisation - Np depends on the total length of the tangle. The
vortex points evolve in time according to Eq. (19) written in dimensionless form, namely

ṡi (t) = vs⊥(si , t)+ β s′i (t) × (vn(si , t) − vs(si , t))

+β ′ s′i (t)
{
s′i (t) ×

[
vn(si , t) − vs(si , t)

]}
, (32)

where spatial derivatives along the vortex lines are performed employing fourth-order
finite difference schemes which account for the varying mesh size along the vortex lines
[83], and time integration is performed using the third-order Adams–Bashforth method.
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For a detailed description of the standard numerical schemes employed and the illustration
of the corresponding discretised equations, we refer to previous work in literature [82].
The interpolation of the normal fluid velocity vn on each vortex point si presents some
numerical issues; the different schemes which we have tested are outlined and discussed
in Sect. 3.3. The evaluation of the superfluid velocity vs on the vortex points si via Eq.
(11) must be dealt with caution as the Biot-Savart integral diverges when x → si in
Eq. (11). This singularity is removed in a standard fashion by splitting the Biot-Savart
integral into local and nonlocal contributions [50], that is (omitting time dependency to
ease notation) by writing

vs(si ) = ∇φ(si )+
κ

4π
ln

(√
δiδi+1

a0

)
s′i × s′′i +

κ

4π

∮

L′

s′(ξ) × (si − s(ξ))
|si − s(ξ)|3 dξ, (33)

where δi and δi+1 are the lengths of the segments [si−1 , si ] and [si , si+1], respectively,
s′′i = ∂2s(ξ, t)/∂ξ2 evaluated at si is the normal vector to the curve in s(ξ, t) = si , and
L′ is the vortex configuration without the section between si−1 and si+1. To match the
periodic boundaries used in the integration of the Navier–Stokes equations for the normal
fluid (Sect. 3.2), we introduce periodic wrapping into the VFM. This involves creating
copies of the vortex configuration around the original configuration; the contributions of
these copies are included in the Biot-Savart integrals, Eq. (33). In order to speed-up the
calculation of Biot Savart integrals for dense tangles of vortices, Eq. (33) is approximated
using a tree algorithm [84] which scales as Np log Np rather than N 2

p .
(ii) Vortex reconnections

In the limit of zero temperature, Eq. (10) expresses the superfluid’s underlying incom-
pressible, inviscid Euler dynamics in integral form [85]. Hence, on the basis of Helmholtz
theorem, the topology of the superflow ought to be frozen, i.e. reconnections of vortex
lines are not envisaged. We know however from experiments [86,87] and from more
microscopic models [88–93] that when vortex lines come sufficiently close to each other,
they reconnect, exchanging strands, as envisaged by Feynman [94].
In order to model vortex reconnections within the VFM, we supplement Eq. (32) with
an ad-hoc algorithmical reconnection procedure. This strategy was originally proposed
by Schwarz [49], and since then a number of alternative algorithms have been proposed.
Whilst this procedure is essentially arbitrary, a number of different implementations have
been extensively tested and compared [95], finding no significant physical difference
between these implementations.

3.2 Navier Stokes solver

We solve Eq. (25) using a standard pseudo-spectral code in a three dimensional periodic
domain of size Lx × Ly × Lz with nx , ny and nz collocation points in each direction.
Derivatives of the fields are directly computed in spectral space, whereas nonlinear terms
are evaluated in physical space. The code is de-aliased using the standard 2/3-rule [96], and
therefore, the maximum wavenumber is kmax = 2π min [nx/Lx , ny/Ly, nz/Lz]/3. The main
advantage of pseudo-spectral codes is that nonlinear partial differential equations are solved
with spectral accuracy; this means that spatial approximation errors decrease exponentially
with the number of collocation points. The drawbacks of pseudo-spectral codes are that the
computational box must be periodic and Fourier transforms are intensively used.
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The external forcing in Eq. (25) consists of a superposition of random Fourier modes:

Fext(x) =
f0
N f

∑

kinf ≤|k|≤ksup

Fkeik·x, (34)

where Fk is a Gaussian vector of zero mean and unit variance satisfying Fk · k = 0
(incompressibility condition), and F∗

k = F−k. N f is a normalisation constant to impose
that ⟨|Fext(x)|2⟩ = f 2

0 . A second choice of forcing is the so-called frozen forcing. It is simply
obtained (after each time step) by setting the velocity field equal to a prescribed field for
wave-vectors in a predefined range. This second forcing mimics a physical forcing working
at constant velocity.

The pressure in the Navier–Stokes equation ensures the incompressible condition. The
condition is easily satisfied by inverting the Poisson equation

− 1
ρn

∇2 p = ∇ · ((vn · ∇) vn) − 1
ρn

∇ ·
(∮

L
δ(x − s)fns(s)dξ

)
. (35)

Let us denote by P the projector into the subspace of divergence-free functions, and define
Pi j = δi j − ∂i ∂ j

∇2 where ∂i = ∂/∂xi . The equation of motion for the normal fluid simplifies
to

∂vn
∂t

+ P (vn · ∇) vn = ν0
n∇2vn +

1
ρn

P
∮

L
δ(x − s)fns(s)dξ + 1

ρn
Fext. (36)

In practice, since the projector P takes a trivial form in Fourier space, we directly solve Eq.
(36). In addition, we employ a second-order Runge–Kutta time-advancement scheme. Note
that the force acting on the normal fluid due to the interaction with the vortex lines also needs
to be projected. Finally, we remark that the mean normal fluid velocity evolves in time due
to the friction force as a consequence of momentum transfer between components:

∂⟨vn⟩
∂t

= 1
Lx L y Lz

1
ρn

∮

L
fns(s)dξ . (37)

We refer to established literature for further details concerning the standard pseudo-spectral
algorithm employed for the numerical integration of the Navier Stokes equations [96].

3.3 Interpolation

The equation of motion of the vortex lines, Eq. (28), needs the values of the normal fluid
velocity at the Lagrangian discretisation points along the vortex lines, where vn is not known.
In principle, as the normal fluid is periodic, any inter-mesh value can be computed exactly
(within spectral accuracy) by using a Fourier transform. We call this interpolation scheme
Fourier interpolation and use it as benchmark for comparisons. The Fourier interpolation
is extremely costly and prohibitive for practical applications, as it requires nxnynz evalua-
tions of complex exponentials for each Lagrangian point along the vortex lines. Affordable
interpolation schemes are typically defined on physical space, and their accuracy depends
on the order of the method and on the regularity of the field. In three dimensions, the most
commonly used schemes are Nearest neighbours, where the value of the closest grid point is
taken, and Tri-Linear or Tri-Cubic interpolation, performed in each direction by a line or a
cubic polynomial. More recently, a new approach based on fourth-order B-splines has been
proved to be specially well adapted to pseudo-spectral codes and found to be non-expensive
and highly accurate [97].
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Fig. 2 Temporal evolution of the average radius of a vortex ring for different interpolation schemes and
normal fluid grid resolutions (arbitrary units). The right figure displays an enlargement of the left figure at late
times to better judge the interpolation schemes

In order to study the effect of different interpolation schemes, we study how a superfluid
vortex ring moves in a static spatially dependent flow. We do not take into account yet the
retroaction of the vortex filament on the normal fluid which we keep fixed. We consider
a domain of size Lx = Ly = Lz = 2π ; for the normal fluid we choose the following
superposition of ABC flows at different scales:

vn(x, y, z) =
nmax∑

n=1

(B cos ny + C sin nz, A sin x + C cos nz, A cos nx + B sin ny), (38)

with A = 1, B = −1,C = 5 and nmax = 10. We evaluate the field on a mesh with N = 128
and 256 collocation points in each direction. As the largest wavevector is

√
3 nmax, the Fourier

interpolation is exact (up to round-up errors).
We initialise a vortex ring of size R = 0.2387 (in non-dimensional units) and set the

temperature at T = 1.95 K. We let the ring evolve with the static normal fluid in the
background. As the ring evolves, it deforms in the presence of the highly non-homogeneous
normal fluid. In order to obtain a quantitative comparison between different schemes, we
measure the average radius of the vortex ring as a function of time R(t) = ⟨|s(ξ) − scenter|⟩
where scenter = ⟨s⟩ and the average is performed over vortex points. The temporal evolution
of R(t) is displayed in Fig. 2 for two different resolutions and different interpolation schemes.
As expected, it is apparent that the error decreases when the number of collocation points of
the normal fluid grid increases. It is also clear that tri-linear interpolation gives poor results.

To better quantify the accuracy of the interpolation methods, we compute the relative
error of the radius with respect to the reference radius obtained by Fourier interpolation
|R(t) − Rref (t)|/Rref (t). The time evolution of this relative error is displayed in Fig. 3.
Remarkably, the B-spline interpolation reduces the interpolating errors considerably. The
extra cost of the B-spline scheme is just one single fast Fourier transform independently
of the number of points to be interpolated, and this is why we choose it for our local self-
consistent approach, FOUCAULT.

3.4 Friction distribution

We now discuss the back-reaction force of the vortex lines on the normal fluid. This force,
seen from the normal fluid, is δ-supported on the Np Lagrangian points along the vortex lines
{si (t)}i=1,...,Np and needs to be distributed on the grid points where the normal fluid is com-
puted. More precisely, we denote by (ζ, µ,χ), with ζ, µ,χ ∈ [0, 1), the neighbouring grid
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Fig. 3 Temporal evolution of the relative error |R(t) − Rref (t)|/Rref (t), where the reference evolution is
obtained with Fourier interpolation (arbitrary units)

Fig. 4 Sketch of the force
distribution and weights
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points of si (t). The force fns(si (t)) exerted by the vortex line on the normal fluid has to be dis-
tributed among neighbouring points using weights wζ,µ,χ , as shown schematically in Fig. 4.

By definition, the weights satisfy
∑1

ζ,µ,χ=0
wζ,µ,χ = 1. In principle, extra smoothing

of the force field can be applied after the force has been distributed. This numerical problem
is often faced in active matter systems, where small point-like particles (i.e. swimmers,
plankton, bacteria) retro-act on a classical turbulent flow. Let us rewrite the normal fluid
equation considering the discretisation of the vortex lines discussed in Sect. 3.1:
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Fig. 5 Temporal evolution of the radius of a vortex ring with in an initially uniform, quiescent normal fluid.
The force acting on the normal fluid is distributed to the nearest neighbour point of the mesh. Different filtering
procedures are tested

∂vn
∂t

+ P (vn · ∇) vn = ν0
n∇2vn +

1
ρn

Np∑

i=1

Pδ(x − si (t))f ins(t)δi , (39)

where f ins(t) := fns(si (t)), δi is the length of the i-th vortex line element and the dependence
on time of the friction force is explicitly showed, as it will play an important role in the
subsequent part of the discussion. For the sake of simplicity, the external force has been
omitted in Eq. (39) and a simple Riemann sum has been used to approximate the line integral.
Note that a trapezoidal rule, which is a better approximation, may be numerically used by
the simple replacement δi → (δi + δi+1)/2 and readjusting the indices of the sum. It is thus
evident that our problem is formally identical to coupling discrete, point-like, active particles
to the turbulent flow of a classical viscous fluid.

It is well known that in problems of active matter properties such as e.g. aggregation
and condensation, mixing or/and growing of species may strongly depend on the choice
of the force distribution method and the filtering scale [35,36]. The same issues appear in
our self-consistent local model FOUCAULT. In order to illustrate this problem, we consider
the simple case of a vortex ring moving in a initially quiescent normal fluid, similar to the
setting studied in [30]. We consider a ring of radius R = 0.2387 and set the temperature at
T = 1.95◦K. Because of friction, we expect the ring to shrink. We compare the temporal
evolution of its radius employing different filtering methods. We distribute the force to the
nearest neighbour grid points, i.e. wζ,µ,χ = 0 for all grid points except the nearest one to si .
The resulting force field is then filtered by using either a moving average over Nfilter points or
a Gaussian kernel of width Nfilter∆x , where ∆x = Lx/Nx is the mesh size. Figure 5 displays
the temporal evolution of the vortex ring radius for the different schemes. It is clear that the
shrinking rate of the radius of the ring depends strongly on the filtering procedure which is
employed.

This dependence is clearly spurious. A numerical method based on physics principles is
hence needed. Since our context is turbulence, it makes sense to adopt the same rigorous
regularisation approach which has been used to take into account the strongly localised
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response of point-like particles in classical turbulence [35,36]. The advantage of adopting
this method is that the regularisation of the exchange of momentum between point-like
particles and viscous flows is based on the physics of the generation of vorticity and its
viscous diffusion at very small scales. In our case, the justification of this method arises from
the very small Reynolds numbers of the flow based on the vortex core radius and the small
velocity of the vortex lines with respect to the normal fluid.

We refer the reader to the original papers [35,36] for further details; in brief, this approach
which we borrow from classical turbulence is based on the solution of the delta-forced, linear
unsteady Stokes equation. Accordingly to the classical formulation, we introduce the time-
delay ϵR coinciding with the time interval during which the localised vorticity (generated by
the relative motion between the vortex line and the normal fluid) is diffused to the relevant
hydrodynamic scale of the flow, the spacing ∆x of the computational grid which the normal
fluid velocity field is calculated on. This finite time delay, ϵR , regularises the delta-shaped
nature of the friction force f ins(t)δ(x − si (t)) in a natural way via the fundamental solution
of the diffusion equation:

g[x − si (t − ϵR), ϵR] =
1

(4πνϵR)3/2 exp
[
− ||x − si (t − ϵR)||2

4νϵR

]
, (40)

This solution, Eq. (40), is a Gaussian with standard deviation σR = √
2νϵR . The resulting

expression for the friction force exerted by the i-th vortex line element on the normal fluid at
the time t at the point x is f ins(t − ϵR)g[x− si (t − ϵR), ϵR]δi [35,36], yielding the following
modified Navier–Stokes equation for the normal fluid velocity field:

∂vn
∂t

+ P (vn · ∇) vn = ν0
n∇2vn +

1
ρn

Np∑

i=1

P f ins(t − ϵR)g[x − si (t − ϵR), ϵR]δi . (41)

From the physical point of view, Eq. (41) implies that the strongly localised vorticity
injected in the normal flow by the relative motion of the vortices is neglected until it has
been diffused by viscosity to a characteristic length scale σR = √

2νϵR . To be consistent,
and in order to take into account the vortex induced disturbances as soon as the relevant
hydrodynamic scales are affected, we choose the finite time delay ϵR so that σR/∆x = 1.
Extensive tests performed in the original paper [35] ensure that σR/∆x = 1 is a suitable
choice.

In theory, for each i-th vortex line element, it is possible to compute the corresponding
weight for each point of the numerical grid: it would be sufficient to integrate the Gaussian
kernel g[x− si (t − ϵR), ϵR] over the volume ∆V = ∆x∆y∆z centred on the grid point. For
instance, as displayed in the schematic two-dimensional Fig. 6, the force generated by the
i-th vortex element at si contributes to the force computed on mesh point x, but also on mesh
point z, the weights being the integral of g(x− si , ϵR) over their respective cells, represented
by black dashed squares in the Fig. 6. This procedure would have to be repeated on each grid
point for each vortex element. Although exact, this approach would be extremely costly. In
addition, referring again to Fig. 6, the weight corresponding to mesh point z is very small as
we choose σR/∆x = 1; the diffusion-based regularisation which we employ localises in fact
the force in a sphere of radius σR centred at si . As a consequence, instead of distributing the
force on each grid point by computing Nx Ny Nz Np integrals g(x− si , ϵR) all over the grid,
we distribute the force only to neighbouring mesh points of si , taking care of including the
weights of far grid points. Proceeding in this fashion, the total force is preserved, as the integral

of
∫

R3
g[x−si (t−ϵR), ϵR]dx = 1. As matter of example, in the sketch outlined in Fig. 6, the
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Fig. 6 Schematic two-dimensional distribution of the friction force

fns(si ) of point si will be distributed among only the four neighbouring points. In order to use
a conservative scheme, for each of the neighbouring points the Gaussian kernel g(x− si , ϵR)
will be integrated on the corresponding full quadrant (octant in three dimensions): in the
two-dimensional simplified sketch in Fig. 6, this corresponds to integrating g over the region
coloured in green for point x and over the yellow region for point y. The generalisation to
three dimension is straightforward. The advantage of this approach is that the space integrals
of g may actually be computed analytically.

The computation of the integrals leads to the weights wζ,µ,χ that will be used to distribute
the force among the neighbouring grid points of si , as illustrated in Fig. 4. Note that because

the Gaussian kernel g is normalised to one, the requirement that
∑1

ζ,µ,χ=0
wζ,µ,χ = 1 is

satisfied by construction. To compute the weights wζ,µ,χ , we first note that the integrals of
g(x−si , ϵR) can be factorised in each Cartesian direction: we will therefore only compute the
contribution in the x direction, the computation of the contributions of the other directions
is formally identical. The weight for the grid point of the left of sxi (indicated with ⌊sxi ⌋,
corresponding to ζ = 0) results from the one-dimensional integral over (−∞, ⌊sxi ⌋ + ∆x

2 ),
whereas the weight for the grid point on the right (⌊sxi ⌋+∆x , ζ = 1), stems from the integral
over (⌊sxi ⌋+ ∆x

2 ,∞). The calculation of the one-dimensional weight is straightforward; we
have:

wζ [sxi ] = ζ + (1 − 2ζ )
1
2

(

1 + Er f

[

− s̃ xi − 1
2√

2(σR/∆x)

])

(42)

s̃ xi = sxi − ⌊sxi ⌋
∆x

∈ [0, 1]. (43)

The integrals wµ[syi ] and wχ [szi ] over the two remaining directions are performed in the
same fashion. The diffusion-based weights for the three dimensional grid are finally given
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Fig. 7 A superfluid vortex ring moving in the normal fluid initially at rest. Half of the superfluid vortex ring
is visible as a green line intersecting the xy plane; the superfluid vortex ring moves to the right along the
x direction. The normal fluid enstrophy is displayed by the orange–reddish–black rendering: two concentric
normal fluid vortex rings are visible, slightly ahead and slightly behind the superfluid vortex ring, travelling in
the same direction. The normal fluid velocity magnitude is also displayed using a black-blue-white rendering
on the xy plane

by

wζ,µ,χ = wζ [sxi ]wµ[syi ]wχ [szi ] (44)

3.5 Numerical strategy and parallelisation

We have implemented the numerical integration of the fully-coupled local model taking
advantage of modern parallel computing. The solvers of the VFM and the Navier–Stokes
equations are of very different nature, but they need to interact only through the evaluation
of the friction force. In this first version of the solver, we have opted for an hybrid OpenMP-
MPI parallelisation scheme. The two solvers are handled by different MPI processes. Each
MPI process contains many OpenMP threads, so that each solver is also independently
parallelised by using this shared memory library. The evaluation of the friction force requires
communication between the two solvers that do not have access to each other fields and
variables. This communication is managed through the Message Passing Interface (MPI)
library at the end of each time step. This scheme is naturally adapted to modern clusters that
contain many nodes, with each node having a large number of CPUs with shared memory.
In order to clarify this numerical strategy, in Appendix A we report a chart illustrating
schematically the steps performed by each MPI process and the communication between the
latter at the end of each time-step.

Finally, we remark that the values of the time step for the Navier–Stokes equations and
for the VFM solver need not be the same; typically, the VFM requires a smaller time step.
In order to speed up the code, depending on the physical problem, each solver can perform
sub-loops (in time) to ensure numerical stability and an efficient integration of the full model.
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Fig. 8 Evolution of a superfluid vortex ring in turbulent normal fluid. The superfluid vortex ring is visualised
by the green line. The normal fluid enstrophy is displayed by the yellow-orange-black rendering. The top row
displays the full box at the initial (left) and the final (right) time of the simulation. The bottom row, show
zoom close to the vortex ring at two early times. The figures are taken at t = 0 (top left), t = 2.31TL (top
right), t = 0.11TL (bottom left), and t = 0.83TL (bottom right), where TL is the large eddy-turnover time of
the normal fluid. The solid white lines indicate the size, expressed in units of the Kolmogorov length η ,of the
structures in the flow

4 Applications

In this section, we show two physical applications of our fully-coupled local model FOU-
CAULT : a superfluid vortex ring moving (i) in an initially stationary normal fluid and (ii) in
a turbulent normal fluid. Our aim is not to introduce any new physical phenomena but simply
validate our approach and show its computational capabilities.

(i) Vortex ring in initially quiescent normal fluid
We first study the vortex configuration investigated in the pioneer work of Kivotides
et al. [30]: a vortex ring moving in a initially quiescent normal fluid. It was observed
that, due to the interaction between superfluid and normal fluid, two concentric vortex
rings are created in the normal fluid, accompanying the superfluid vortex ring, forming a
triple vortex structure. We integrate our fully coupled model using as initial condition a
superfluid vortex ring of radius R = 0.2387 in a box of size 2π and set the temperature
to T = 1.95 K.
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Fig. 9 Left panel: Temporal evolution of the total vortex length L resulting from a (initially perfect) vortex
ring of length L0 = 2πR ≈ 1.5 in a turbulent normal fluid background. Right panel: relative increase of the
vortex length during the initial stage

As the superfluid vortex ring travels, it sets in motion the surrounding normal fluid, thus
losing energy and shrinking. A visualisation of the resulting flow is displayed in Fig. 7.
The superfluid vortex ring is displayed in green and the two normal fluid vortex rings
which are generated are rendered in orange-reddish colours, forming the same triple
vortex structure discovered by Kivotides et al. [30]. On the plane perpendicular to the
vortex rings, we also show the normal fluid translational velocity in the direction of
propagation of the three vortex rings, rendered in blue-white colours: a wake (or jet)
behind the superfluid ring, recently identified [33], is apparent. In this case study, the
number of vortex discretisation points is equal to 200 and the normal fluid resolution is
2563. The complete shrinking of the vortex ring took 2 hours of computational time.

(ii) Vortex ring in turbulent normal fluid.
Our second application is the effect of turbulence in the normal fluid component on
the dynamics of a superfluid vortex ring. As discussed in Sect. 3.2, we can easily add
an external forcing Fext to the Navier–Stokes equations in order to sustain the normal
fluid turbulence. We first produce a turbulent state using a volumetric external forcing at
large scales (ksup = 1). We use a resolution of 2563 points, which allows us to obtain a
Reynolds number based on the Taylor microscale equal to Reλ = 127. Once the turbulent
state is prepared, we study the evolution at temperature T = 1.95 K of a superfluid vortex
ring of radius R = 35η, where η is the Kolmogorov length scale of the flow. The initial
condition used in our self-consistent local model is displayed in Fig. 8 (top left panel).
We clearly observe the turbulent fluctuations of the normal fluid displayed by the red-
dish rendering of the normal fluid enstrophy. As time evolves, the turbulent fluctuations
destabilise the superfluid vortex ring, inducing large amplitude Kelvin waves (bottom
left panel); After a couple of large-eddy-turnover times, the vortex ring self-reconnects,
forming vortex loops which undergo further reconnections, creating a turbulent superfluid
vortex tangle in equilibrium with the turbulent normal fluid. It is apparent from Fig. 8
that normal fluid fluctuations are responsible for an increase of the total vortex length. In
Fig. 9, we display the temporal dependence of the total superfluid vortex length: the large
amount of stretching is evident. The right panel shows that initially the vortex length does
not increase exponentially, as predicted for the Donnelly-Glaberson instability [98] for a
uniform normal flow, but with approximate power-law character. The figure also shows
that, remarkably, there is a change of behaviour at times of the order of one TL , suggesting
that normal fluid fluctuations may play an important role in quantum turbulence. This
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is an interesting question with important implications for current quantum turbulence
experiments. It is natural to expect that the evolution of the vortex length should depend
on temperature, but be independent [51] of the initial vortex configuration. Clearly, an
accurate and physically sound solver of the fully coupled dynamics of normal fluid and
superfluid like the solver that we have presented here is an important tool for the next
studies of quantum turbulence. Concerning the details of the computation performed,
the total computational time was 72 hours with a final number of vortex points equal to
131290. It is worth noting that in this circumstance of a very dense tangle, the heaviest
calculation regards the computation of the evolution of the vortex tangle. Despite in fact
the employment of the tree approximation [84] included in the code, the computational
node advancing in time the vortex positions is absorbing most of the computational
resources compared to the Navier–Stokes solver and the handling of the coupling.

5 Conclusions

We have presented a novel algorithm, named FOUCAULT, for the numerical simulations of
quantum turbulence in helium II at nonzero temperatures. The main features of our approach
are (i) the parallelised, efficient, pseudo-spectral code, capable of distributing the calculation
amongst distinct computational cluster codes, and (ii) the forcing scheme employed for the
normal fluid. These features allow the resolution a wider range of length scales compared to
previous studies, from large quasi-classical scales to small quantum length scales smaller than
the average inter-vortex distance. This is of fundamental importance in order to investigate the
character of quantum turbulence shared with its classical counterpart, as well as the features
which are specific to turbulent superfluid flows.

From the point of view of the physical modelling, a novel feature of our approach is
the local computation of the friction force, stemming from classical creeping flow analysis,
which (unlike previous work) is independent of the numerical discretisation on the vortex
lines. In addition, our approach implements an exact regularisation of the friction force based
on the small-scale viscous diffusion of the disturbances generated by vortex lines moving
with respect to the normal fluid.

After a detailed description of the distinct features of our algorithm, we have applied it
to two problems: the motion of a superfluid vortex ring in an initially quiescent normal fluid
and in a turbulent normal fluid. In the first problem, we have recovered the same qualitative
features (the double normal ring structure and wake) observed in previous work; in the second
we have demonstrated a new effect—the vortex stretching induced by turbulent fluctuations.

In conclusion, our novel algorithm paves the way for a new series of investigations of
quantum turbulence in helium II at finite temperatures, particularly at length scales smaller
than the average inter-vortex spacing in problems where the singular and quantised nature of
the superfluid vortices is expected to play a fundamental role.
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Appendix A. Schematic illustration of numerical strategy and parallelisation

In this appendix, we include a chart (Fig. 10) describing schematically the parallelisation
strategy. As reported in the main text, we have two distinct solvers (the VFM and the
Navier–Stokes (NS)) each corresponding to an MPI process. Each MPI process has access to
OMP_NUM_THREADS OpenMP threads that share memory. The two MPI processes only
need to communicate when exchanging the normal fluid velocity field vn(x, t) (NS → VFM)
and the mutual friction force Fns(x, t) (VFM → NS).
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Fig. 10 Schematic illustration of the numerical strategy and parallelisation. Process 0 and Process 1 are the
two distinct MPI processes corresponding to the Navier–Stokes and the VFM solvers, respectively. Each solver
is independently parallelised using the OpenMP library . The communication only takes place at the end of
each time step and involves the three-dimensional arrays containing vn(x, t) and Fns (x, t). The latter is the
friction force exerted by the vortex lines onto the normal fluid distributed on the grid points where the normal
velocity is computed via the regularisation performed with the fundamental solution of the diffusion equation
g. With {si (tn)} we indicate the whole set of vortex points describing the tangle of vortex lines at discrete time
instant tn , while ‘RK’ and ‘AB’ indicate the Runge–Kutta and Adams–Bashforth time advancement schemes,
respectively
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