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Quantum vortex reconnections mediated by trapped particles
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Reconnections between quantum vortex filaments in the presence of trapped particles are investigated using
numerical simulations of the Gross-Pitaevskii equation. Particles are described with classical degrees of freedom
and modeled as highly repulsive potentials which deplete the superfluid. First, the case of a vortex dipole with
a single particle trapped inside one of the vortices is studied. It is shown that the reconnection takes place at the
position of the particle as a consequence of the symmetry breaking induced by it. The separation rate between
the reconnecting points is compatible with the known dynamics of quantum vortex reconnections, and it is
independent of the particle mass and size. After the reconnection, the particle is pushed away with a constant
velocity, and its trajectory is deflected because of the transverse momentum exchange with the vortex filaments.
The momentum exchanges between the particle, the vortex, and a density pulse are characterized. Finally, the
reconnection of two linked rings, each of them with several initially randomly distributed particles, is studied.
It is observed that generically, reconnections take place at the location of trapped particles. It is shown that
reconnection dynamics is unaffected for light particles.
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I. INTRODUCTION

One of the most striking features of superfluids is the
presence of quantum vortices, thin tornadoes which arise as
topological defects and nodal lines of the complex order pa-
rameter describing the system [1]. Quantum vortices have
been observed in different kinds of superfluids, from atomic
Bose-Einstein condensates (BECs), where their core is mi-
crometer sized, to superfluid 4He, where the core size is a few
angstroms. The topological nature of quantum vortices con-
strains their circulation to be a discrete multiple of the quan-
tum of circulation � = h/m, where h is the Planck constant
and m is the mass of the bosons constituting the superfluid.

The dynamics of such vortex filaments is rich and still
not fully comprehended. In particular, a fundamental phe-
nomenon is the occurrence of reconnection events. In general,
in fluid mechanics a vortex reconnection is an event in which
the topology of the vorticity field is rearranged [2]. In the case
of classical fluids, the presence of viscosity breaks the Kelvin
circulation theorem, allowing the reconnection between
vortex tubes [3]. In the case of inviscid superfluids, the
vorticity is supported exclusively along the unidimensional
vortex filaments, and the reconnection between them is made
possible because of the vanishing density at the core of the
vortices [4]. Specifically, the process of superfluid vortex
reconnection consists in the local exchange of two strands of
different filaments after a fast approach, allowing the topology
to vary. In quantum turbulence, reconnections are also thought
to be a fundamental mechanism for the redistribution of
energy at scales smaller than the intervortex distance [5].

The separation δ(t ) between the two reconnecting points
is the simplest observable that characterizes a vortex recon-
nection. Given that a reconnection is an event localized in
space and time, sufficiently close to the reconnection event
it is expected to be fully driven by the interaction between

two filaments. Assuming that at this scale the only parameter
that determines the dynamics is the circulation � about each
filament, a simple dimensional analysis suggests the following
scaling for the separation rate:

δ(t ) = A±(�|t − trec|)1/2, (1)

where A± are dimensionless prefactors, trec is the reconnec-
tion time, and the labels − and + refer, respectively, to the
times before and after the reconnection event. Such scal-
ing has been demonstrated analytically in the context of the
Gross-Pitaevskii (GP) model for δ → 0 [6–8], and it has been
observed to be valid even at distances that go beyond several
healing lengths [7,9]. Note that previous studies reported dis-
parate exponents that still need to be explained [10–12]. The
scaling (1) has also been observed in Biot-Savart simulations
[9,13,14] and superfluid helium experiments [15]. If an exter-
nal driving mechanism is absent, the scaling (1) is considered
a universal feature of vortex reconnections, and the filaments
always approach slower than they separate, i.e., A+/A− > 1.
This last observation has been explained by a novel match-
ing theory as the consequence of an irreversible mechanism
related to the sound radiated during the event [8,16].

In recent years, vortex reconnections have been directly
observed in atomic BECs by means of destructive absorp-
tion imaging [17] and in superfluid helium experiments by
using solidified hydrogen particles as probes [15,18]. This
latter technique has become a standard tool for the investi-
gation of the properties of superfluid helium and quantum
vortices, following its first utilization in 2006 [19]. Indeed,
such particles get captured by quantum vortices thanks to
pressure gradients and are carried by them, unveiling in this
way the dynamics of the filaments. Besides the reconnections
between vortices and Kelvin waves (helicoidal displacements
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that propagate along the vortex filaments), solidified hydro-
gen particles succeeded in revealing important differences
between the statistics of classical and quantum turbulent states
[20,21]. However, given that the typical size of such particles
is four orders of magnitude larger than the vortex core size, it
is far from trivial that they actually behave as tracers. For this
reason, understanding the actual vortex-particle interactions
and how particles and fluids affect each other’s motions is a
crucial theoretical task.

Many models have been developed and studied in this
regard. The main difficulty is caused by the large extent
of the scales involved in the problem, so that different
phenomenological approaches need to be used. For what
concerns large scales, the dynamics of particles in classical
fluids has been phenomenologically adapted to the two-
fluid description of a superfluid [22], and the distribution
of inertial passive particles has been studied in the Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model [23]. In this
macroscopic approach, the vorticity is a coarse-grained field,
and there is no notion of quantized vortices. Instead, in the
vortex-filament model, the superfluid is modeled as a collec-
tion of filaments that evolve according to Biot-Savart integrals
[1]. This method involves nonlocal contributions and a sin-
gular integral for the computation of the vortex self-induced
velocity that needs to be regularized [24]. In this framework,
hard spherical particles can be modeled as moving boundary
conditions [25,26], although the reconnections both between
vortices and between a vortex and a particle surface need
to be implemented with an ad hoc procedure. These issues
are absent in the GP model, in which the evolution of the
order parameter of the superfluid is described with a nonlinear
Schrödinger equation. Indeed, although the GP equation is
formally derived for dilute Bose–Einstein condensates, it can
be considered as a general model for low temperature super-
fluids, including superfluid helium. Unlike the vortex-filament
method or the HVBK model, the full dynamics of vortices
emerges naturally, including the reconnection events. Particles
modeled as highly repulsive potentials have been successfully
implemented in the GP framework, allowing for an extensive
study of the capture process [27], the interaction between
trapped particles and Kelvin waves [28], and the Lagrangian
properties of quantum turbulence [29]. Recently, the dynamics
of particles trapped inside GP vortices was also addressed in
two dimensions [30].

Because the GP equation is a microscopic model, regular
at the vortex core, it is the natural setting in which quantum
vortex reconnections can be studied. In this work, we combine
such suitability with the simplicity of modeling particles in
the GP framework to study vortex reconnections in the pres-
ence of particles trapped by the filaments. We focus on two
different configurations. In Sec. III we study the evolution
of a dipole of two counterrotating straight vortices with a
particle trapped in one of them. In Sec. IV we characterize
the reconnection of two linked rings loaded with a number of
particles. In the first case the reconnection is induced by the
presence of the particle, and its simplicity allows for a system-
atic investigation of the mutual interaction between vortices
and particles during the process of the reconnection. In the
second case, the reconnection happens even in the absence
of particles, so that how the presence of particles effectively
affects the reconnection process can be addressed.

II. MODEL FOR PARTICLES AND QUANTUM VORTICES

We consider a quantum fluid with Np spherical particles of
mass Mp and radius ap immersed in it. We describe the system
by a self-consistent model based on the three-dimensional
Gross-Pitaevskii equation. The particles are modeled by
strong localized potentials Vp that completely deplete the
superfluid up to a distance ap from the position of their center
qi. The dynamics of the system is governed by the following
Hamiltonian:

H =
∫ (

h̄2

2m
|∇ψ |2 − μ|ψ |2

+ g

2
|ψ |4 +

Np∑
i=1

Vp(r − qi )|ψ |2
)

dr

+
Np∑

i=1

(
ppart

i

)2

2Mp
+

Np∑
i< j

V i j
rep, (2)

where ψ is the order parameter of the quantum and
ppart

i = Mpq̇i are the particles linear momenta. The chemical
potential is denoted by μ. The nonlinear self-interaction
coupling constant of the fluid is denoted by g, and m is the
mass of the condensed bosons. The potential V i j

rep is a repulsive
potential between particles, needed to avoid an unphysical
overlap, due to a short-range fluid-mediated interaction
[31,32]. The equations of motion for the superfluid field ψ

and the particle positions qi = (qi,x, qi,y, qi,z ) are

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ +

Np∑
i=1

Vp(|x − qi|)ψ,

(3)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (4)

We refer to [27–29,33] for further details about the model,
which was recently adopted to study extensively the
interaction between particles and quantum vortices.

In the absence of particles, the ground state of the system
is a homogeneous flat condensate ψ∞ = √

μ/g ≡ √
ρ∞/m,

with a constant mass density ρ∞. Linearizing around this
value, dispersive effects take place at scales smaller than
the healing length ξ =

√
h̄2/2gρ∞, while large-wavelength

excitations propagate with the phonon (sound) velocity c =√
gρ∞/m2. The close relation between the GP model and

hydrodynamics comes from the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), which maps the GP (3) into the

continuity and Bernoulli equations of a superfluid of density
ρ and velocity vs = ∇φ. Although the superfluid velocity is
described by a potential flow, vortices may appear as topo-
logical defects because the phase is not defined at the nodal
lines of ψ (x), and thus, vortices may appear to be topological
defects. Each superfluid vortex carries a quantum of circula-
tion � = h/m = 2π

√
2cξ , and vortices are characterized by a

vanishing density core size of the order of ξ .
In this work, we perform numerical simulations of the

coupled differential equations (3) and (4) in a periodic cubic
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box with sides L = 128ξ with Nc = 2563 collocation points.
We use a standard pseudospectral method with a fourth-order
Runge-Kutta scheme for the time step. In numerics, we mea-
sure distances in units of ξ , velocities in units of c, and times
in units of τ = ξ/c. As described in the Appendix and in
Ref. [34], dealiasing is applied to equations (3) and (4), in
such a way that they conserve the total energy H (2), the total
fluid mass N = ∫ |ψ |2 dx, and the total momentum

ptot = pGP +
Np∑

i=1

ppart, (5)

where pGP = ih̄/2
∫

(ψ∇ψ∗ − ψ∗∇ψ ) dx is the momentum
of the quantum fluid. If dealiasing is not carefully performed,
the discrete system does not conserve momentum. In the sim-
ulations presented here the total momentum is conserved up
to eight decimal digits.

We use two different particle potentials to model the par-
ticles. For the simulations with the dipole, a smoothed hat
function V 1

p (r) = V0
2 (1 − tanh [ r2−ζ 2

4�2
a

]) is used. The parame-
ters ζ and �a are set to model the particle attributes. In
particular, ζ fixes the width of the potential, and it is related
to the particle size, while �a controls the steepness of the
smoothed hat function. The latter needs to be adjusted in
order to avoid the Gibbs effect in the Fourier transform of
V 1

p . For the simulations of the Hopf link, we use a Gaussian
potential V 2

p (r) = V0 exp (−r2/2d2
eff ), where the width is fixed

using the Thomas-Fermi approximation to set an approximate
radius ζ of the particle as deff = ζ/

√
2 ln(V0/μ). Since the

particle boundaries are not sharp, the effective particle radius
is measured as ap = (3M0/4πρ∞)

1
3 , where M0 = ρ∞L3(1 −∫ |ψp|2 dx/

∫ |ψ∞|2 dx) is the fluid mass displaced by the
particle and ψp is the steady state with just one particle.
Practically, given the set of numerical parameters ζ and �a,
the state ψp is obtained numerically with imaginary time
evolution and the excluded mass M0 is measured directly.
We use the repulsive potential V i j

rep = γrep(2ap/|qi − q j |)12 in
order to avoid an overlap between them. The functional form
of V i j

rep is inspired by the repulsive term of the Lennard-Jones
potential and the prefactor γrep is adjusted numerically so that
the interparticle distance 2ap minimizes the sum of V i j

rep with
the fluid mediated attractive potential [31,32].

The initial conditions for the dipole and a single ring (with-
out particles) are obtained using the Newton-Raphson method
and a biconjugate-gradient technique in order to minimize the
sound emission [35]. The Hopf link of two rings is obtained
by multiplying two states containing a ring each.

III. RECONNECTION OF A VORTEX DIPOLE

We start by presenting a series of numerical simulations
of a dipole of two counterrotating superfluid vortices, with a
single particle initially trapped inside one of them. Such a set-
ting is useful to illustrate how a superfluid vortex reconnection
can be triggered by the symmetry breaking produced by the
presence of particles. Indeed, in the absence of trapped par-
ticles, the vortex dipole is a steady configuration, in which a
spontaneous self-reconnection does not happen unless a Crow
instability is induced [36]. At the same time, the simplicity

TABLE I. Simulation parameters for the vortex dipole reconnec-
tion experiment.

λ d/ξ ap/ξ ζ/ξ �a/ξ V0/μ

1 10 4.3 3.0 0.75 20
2 20 8.6 7.4 0.75 20

of the initial configuration allows for the systematic study of
the mutual effects between the particle and the reconnecting
filaments.

In the initial time of each simulation, the vortices are
straight and aligned along the z direction. The initial velocity
of the particle is set equal to the translational speed of the
dipole vd ∼ (�/2πd )ŷ, where d is the distance between the
two filaments and ŷ is the unit vector along the y direction
[30,37]. We performed the same experiment using particles of
two different sizes and for a wide range of mass densities.

It has been observed in Ref. [27] that the effective Hamil-
tonian describing the process of particle capture by a vortex
induces a dynamics which is invariant under the following
scaling transformation:

d → λd, ap → λap, t → λ2t ∀ λ ∈ R+, (6)

where d is the vortex-particle distance. In order to check if the
scaling invariance (6) is valid also in the present simulations,
we set the radius of the large particle exactly λ = 2 times
larger than the radius of the small one. Analogously, in the
case of the large particle, the vortex filaments are initially
placed λ = 2 times more distant than for the small particle.
If such invariance subsists, it would be an indication of the
analogy between the reconnection process and the trapping
mechanism. In addition, it would naturally extend the validity
of the results reported below in the case of particles with larger
sizes, comparable to the ones used in current experiments.
Note, however, that the scaling invariance (6) neglects the den-
sity profile of the vortex core, as well as other more complex
particle-vortex interactions which can become relevant when
a particle is trapped, like the Magnus effect.

The parameters used for these sets of simulations are sum-
marized in Table I [note that the repulsive potential V i j

rep in Eq.
(4) is absent because only one particle is present].

Snapshots of the typical evolution of the dipole configu-
ration under the GP dynamics (3) and (4) are displayed in
Fig. 1 for a neutral particle of size ap = 4.3ξ and initial vortex
separation d = 10ξ . During the motion of the dipole, the
particle starts to precede about the filament because of the
Magnus effect [28,30,38]. At the same time, the two vortices
start to bend, until the filament without a particle reconnects
with the surface of the sphere at time t−

rec. After the recon-
nection, the contact point of the free vortex separates into
two branches, which then slide on the particle surface toward
opposite directions. For a time window of about ∼20τ the
particle is pierced by both vortices, until the couple of pinning
points above and below the particles merge and the vortices
detach symmetrically. The reconnection changes the topology
of the flow, so that the dipole is eventually converted into a
single vortex ring (which in Fig. 1 appears to be folded on the
vertical direction because of spatial periodicity). At the time
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FIG. 1. Snapshots of the superfluid density and a neutral-mass particle of size ap = 4.3ξ during the dipole reconnection (time varies from
left to right). The initial distance between the vortices is d = 10ξ . Vortices are displayed as red isosurfaces at low density; particles are the
green spheres, and sound is rendered in blue.

of the detachment, a clear spherical sound pulse is generated at
the reconnection point. It expands and propagates along the y
direction, which is the dipole propagation direction and coin-
cides with the normal to the reconnection plane, in agreement
with Refs. [8,16]. Simultaneously, the particle is released and
abruptly accelerated. Eventually, it keeps on moving forward
with a constant speed larger than the dipole velocity.

Before exploring in more detail the origin of the particle
dynamics, we address the question of whether the observed
reconnections induced by the particle are compatible with
the standard picture of GP reconnections. In order to do so,
we compute the separation δ(t ) between the reconnecting
points as a function of time. When the circulation � is the
only relevant parameter driving the reconnection dynamics,
δ(t ) is expected to scale as Eq. (1). We operatively define
the separation before the reconnection δ− as the distance
between the reconnecting point on the free vortex and the
particle surface. After reconnection time t−

rec between the free
vortex and the sphere surface, the separation is not well de-
fined until the particle detachment, after which δ+ becomes
simply the distance between the two extremal points of the
outgoing vortex ring (see Fig. 1). The vortex filaments have
been tracked using the method based on the pseudovorticity
developed in [39]. Since the initial measurable value of δ+ is
of the order of the particle diameter 2ap, we extrapolate the
virtual original time t+

rec at which δ+(t+
rec) = 0, performing a

linear fit of [δ+(t )]2 and evaluating the point where it vanishes.
The same protocol was used with δ−(t ) to refine the value of
t−
rec. The evolution of δ(t ) is displayed in Fig. 2(a) for all the

types of particles analyzed. In Fig. 2(b), δ+(t ) and δ−(t ) are
plotted in a logarithmic scale, after rescaling the distances by
a factor of λ and times by a factor of λ2 (λ = 1 for the small
particle, and λ = 2 for the large one), according to Eq. (6).
It is apparent that the separation rate is independent of the
particle mass and always shows a scaling compatible with
t1/2. This evidence confirms that, although the reconnection
is triggered by the presence of the particle, the vortex dy-
namics is effectively fully governed only by the circulation.

Moreover, the scaling invariance (6) seems to be respected
for the separation rate. Finally, note that the observed positive
ratio between the prefactors of the separation rate (1) after and
before the reconnection (A+/A− ∼ 5.5) is consistent with the
irreversibility of the reconnection dynamics, which is related
to the conversion of energy into sound [7,8,16].

FIG. 2. (a) Distance δ(t ) between reconnecting points for par-
ticles of size ap = 4.3ξ and ap = 8.6ξ . Dashed lines correspond
to δ− before reconnection, and solid lines correspond to δ+ after
reconnection. (b) Log-Log plot of δ(t ), with the rescaling (6). λ = 1
for the particle of size ap = 4.3ξ , and λ = 2 for the particle of size
ap = 8.6ξ . Dotted lines indicate the scaling t1/2.
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FIG. 3. Trajectories of particles of size (a) ap = 4.3ξ and
(b) ap = 8.6ξ during the dipole reconnection. Different colors cor-
respond to different masses, and the shaded regions indicate the area
spanned by each particle. The dashed lines in corresponding colors
are the trajectories of the reconnecting point of the vortex without
particles at times t < t−

rec. (c) Angle of deflection of the particle
trajectory after the reconnection as a function of the particle mass
for both particle sizes (blue circles correspond to ap = 4.3ξ , and
red crosses correspond to ap = 8.6ξ ). The angle considered is with
respect to the dipole propagation direction.

In Figs. 3(a) and 3(b) we show the trajectories of the par-
ticles on the plane orthogonal to the dipole for the small and
large particles, respectively, and for all the different masses
used. The shaded regions indicate the actual area spanned by
each particle. In Figs. 3(a) and 3(b), the dashed lines show the
trajectories of the reconnecting point on the vortex without
the particle (initially placed at x = 0, y = 0) until it touches
the particle surface at time t−

rec. For the large particle one
can appreciate the different Magnus precession frequencies,
which are inversely proportional to the mass. We observe
that the ballistic motion of the particle after the reconnection
is deflected with respect to the propagation direction of the
dipole, and a correlation between the particle mass and the
deflection angle is apparent. In particular, the heaviest par-
ticles show a smooth trajectory and a deflection concordant
with the velocity orientation at the reconnection point. Con-
versely, light particles slightly bounce back in the opposite
direction. In Fig. 3(c) the deflection angle θ of the particle
trajectory with respect to the dipole propagation direction
is displayed as a function of the particle mass. As already
qualitatively observed in Figs. 3(a) and 3(b), both the small
and large particles (indicated, respectively, by blue circles and
red crosses) deviate in a similar manner, with a deflection
angle that saturates at sin θ ∼ −0.2 for the largest masses. The
origin of such behavior can be understood as the consequence

FIG. 4. (a) x component and (b) y component of the particle
momentum increment with the rescaling (6) as a function of time.
Different colors correspond to different particle species, with the
same convention as in Fig. 2.

of a transverse momentum transfer between the vortices and
the particle, which we analyze in the remainder of this section.

The x component and y component particle momentum
increments �ppart (t ) = ppart (t ) − ppart (t = 0) are plotted as
a function of the rescaled time, respectively, in Figs. 4(a)
and 4(b). The data associated with all the species of par-
ticles analyzed are displayed using the same convention as
in Fig. 3, and also the particle momentum has been rescaled
as ppart → ppart/λ, according to the transformation (6). Note
that at the initial time of the simulations the particle is placed
in the reference frame comoving with the dipole, so that
its momentum is aligned with the propagation direction of
the dipole (the y direction) and reads ppart (t = 0) = Mpvd =
(Mp�/2πd )ŷ. We can clearly observe the abrupt acceleration
felt by the particle in both the transverse and longitudinal
directions during the reconnection event, followed after the
detachment by a relaxation to a ballistic motion with constant
speed. The ballistic motion is due to the absence of Stokes
drag in the superfluid, and a negligible interaction with sound
or with the outgoing vortex ring. The shaded area represents
the time window after t−

rec in which the particle is pierced by
both the filaments and the vortex separation δ is undefined.
Remarkably, such a window turns out to be the same in the
rescaled units regardless of the particle size. Note how before
the reconnection the momentum of the trapped particle oscil-
lates weakly about a constant average because of the Magnus
precession induced by the vortex [28]. If the invariance (6)
really holds, the net particle momentum increment after the
detachment in the rescaled units is expected to coincide for
particles of different radii but the same relative mass M. How-
ever, a small mismatch can be observed, which is probably due
to the interaction between the particle and the vortex by which
it is trapped before the reconnection. Such interaction indeed
produces Magnus oscillations of greater amplitude for the
large particle, as well as the generation of Kelvin waves along
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FIG. 5. (a) x component and (b) y component of the net momen-
tum increment as a function of the particle mass for different particle
sizes. Dotted lines are the particle momentum, dashed lines are the
vortex ring momentum, and solid lines show the sum of the two.
Blue lines refer to the small particle (ap = 4.3ξ ), and red lines refer
to the large one (ap = 8.6ξ ).

the filament and sound radiation, which certainly corrupt the
scaling invariance (6).

We eventually analyze the momentum exchange between
the vortices and particle. Parametrizing the vortex ring after
the reconnection as R(s, t ), where s is a spatial parametriza-
tion variable, the linear momentum of the vortex can be
expressed within the Biot-Savart framework as [40]

pvort = ρ0�

2

∮
R(s, t ) × dR(s, t ), (7)

where the contour integral is evaluated along the ring. Note
that the vortex linear momentum (7) is de facto a purely
geometrical quantity, determined by the spatial configuration
of the ring. In fact, each component of the vortex momentum
can be related to the projection of the oriented area enclosed
by the filament onto the corresponding direction [41]. The
momentum contribution of the superfluid pGP to the total
momentum in Eq. (5) contains the vortex momentum (7) and
compressible waves.

The net momentum increment for the vortex is defined as
〈�pvort〉 = 〈pvort (t > trec)〉 − pvort (t = 0), which is analogous
to the net momentum increment for the particle. In practice,
the vortex momentum is computed from the filaments tracked
during the GP simulation. Then it is averaged over a time win-
dow of ∼20τ after the particle detachment, during which it
remains steady. The x and y components of the net momentum
increments as a function of the mass are displayed Fig. 5. The
dotted lines are the particle net momentum increments, the
dashed lines are the corresponding vortex net momentum in-
crements, and the solid lines are the sum of the two. Blue lines
refer to the small particle, and red lines refer to the large one.

In the x direction (perpendicular to the dipole velocity)
the momentum acquired by the particle compensates almost
exactly the momentum increment of the vortex, and thus,

the transfer to sound modes is negligible. On the contrary, in
the y direction and, in particular, for the small particle (solid
blue line with circles), we observe a net momentum transfer
from the particle and the vortices to other degrees of freedom.
This transfer is independent of the particle mass, and it is
consistent with the observation of a sound pulse after the
reconnection in Fig. 1.

IV. RECONNECTION OF TWO LINKED RINGS

In this section we study a different setting in which vortices
reconnect regardless of the presence of particles. In particular,
we consider as the initial configuration a Hopf link consisting
of two vortex rings with radius R = 18ξ , which is known to
spontaneously undergo reconnection. We place Np = 8 parti-
cles of size ap = 3.7ξ randomly distributed along each ring.
The initial condition is shown in the first snapshot on the left
in Fig. 6. The numerical parameters for the particle potential
are V0 = 20μ and ζ = 3ξ .

We set as the initial velocity of each particle the velocity
of the ring by which it is trapped vring. In order to study
how the presence of particles modifies the reconnection we
consider three different particle masses, light (M = 0.51),
neutral (M = 1), and heavy (M = 3.14 and M = 12.56).
The evolution of the system for light particles (M = 0.51)
according to the GP dynamics is displayed in Fig. 6. Analo-
gous to what was observed for the dipole, as a result of the
particle-vortex interaction [27], the reconnection takes place
between one trapped particle and the other filament. In the
particular case of light particles, two unlinked vortex rings
emerge after the reconnection: a large ring which contains the
majority of the particles and a small ring with two particles
still attached. Moreover, because of the violence of the event,
a couple of particles get detached from the vortices.

In order to give a quantitative description, we measured the
separation rate δ(t ) for the different masses. They are reported
in Fig. 7(a) as solid lines with markers. For comparison,
Fig. 7(a) also includes the distance δ for the vortices without
particles (dashed red line). Overall, if the particles are not too
heavy, the reconnection remains almost unaffected by their
presence. However, at very close distances a speedup takes
place due to particle-vortex interactions. Conversely, in the
case of heavy particles, their inertia is so large that vortices
are driven by them. To illustrate this fact, we consider the
fictitious case in which free heavy particles (without vortices)
are set in the same positions as and with the initial velocity
of the trapped ones. The distance in this case is computed
as the minimal distance between the two groups of particles.
Comparing this separation with that of heavy trapped particles
M = 12.56 (light green triangles), it is clear that in the latter
case the ballistic motion of particles governs the dynamics.

Finally, in Figs. 7(b) and 7(c) a reconstruction of the
event displayed in Fig. 6 using the tracked vortex filaments
(rendered as blue solid lines) is also shown from a different
perspective. For comparison, the tracked vortices correspond-
ing to a simulation with the same initial configuration but
without particles are shown as red lines. It is evident that the
dynamics in the two cases are rather similar, especially before
the reconnection. However, in the moments immediately prior
to the reconnection one of the vortices decorated with parti-
cles shows a clear bending toward a particle set on the other
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FIG. 6. Snapshots of the superfluid density and light particles (M = 0.51) during the Hopf link reconnection (time varies from left to
right). Vortices are displayed as red isosurfaces at low density; particles are the green spheres, and sound is rendered in blue.

filament. This is a clear indication of a fast acceleration, which
is induced by the fluid depletion generated by the presence of
the particle.

V. DISCUSSION

In this work we studied how particles trapped inside quan-
tum vortices modify the process of vortex reconnections. We

FIG. 7. (a) Separation between the reconnecting rings for dif-
ferent masses of the trapped particles (solid lines with markers).
The red dashed line is the vortex separation in the absence of par-
ticles, and the green solid line is the separation between ballistic
particles without vortices. A reconstruction of the event for light
particles (M = 0.51) using the tracked filaments (b) before and
(c) at the reconnection. The filaments of the simulation with particles
are displayed as blue solid lines. The filaments corresponding to a
simulation with the same initial conditions but without particles are
shown as red dashed lines.

have investigated two different settings: a vortex dipole with
one trapped particle and a Hopf link with a number of particles
randomly positioned within the vortex. Whereas in the first
case the reconnection is triggered by the symmetry breaking
induced by the particle, in the second one vortices recon-
nect regardless of the presence of particles. In the case of
the dipoles, we observed that the t1/2 temporal reconnection
scaling is preserved independently of the particle mass and
size. During the reconnection process, we observe a net mo-
mentum transfer from vortices to particles in both directions
perpendicular to the axis of the vortex dipole. In the transverse
direction with respect to the dipole initial velocity, the transfer
is proportional to the mass of the particles, and it is almost
exactly compensated by an equal change in the vortex momen-
tum. In the direction of the dipole displacement, the particle
speedup after reconnection is not fully compensated by the
vortices. The net momentum difference is roughly indepen-
dent of the mass, and it could be associated with the emission
of a sound pulse, such as the one studied in [16]. In the case
of the Hopf link vortex, it was observed that the reconnection
process at large distances is almost unaffected by neutral or
light particles. On the contrary, if particles are heavy, it is
driven by the particle ballistic motion. At very close distances,
the reconnection is speeded up because of the interaction
between the particles and the reconnecting vortex. In general,
it was also observed that reconnection takes place generically
between a trapped particle and an approaching filament.

In conclusion, besides providing further insights into the
current knowledge of the vortex reconnection process, our
findings constitute theoretical support and a benchmark for the
superfluid 4He experiments at very low temperature, in which
the vortices are sampled by solid particles [15,18]. In partic-
ular, as has been proved in the case of Kelvin wave tracking
[28], we stress that the use of light particles is recommended
for reproducing the bare vortex dynamics, provided, of course,
that buoyancy effects remain negligible.
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APPENDIX: DEALIASING OF THE EQUATIONS OF
MOTIONS AND CONSERVATION OF THE INVARIANTS

The set of equations of motion (3) and (4) needs to be
dealiased in order to conserve the total momentum (5). The
equations are dealiased by performing a Galerkin truncation,
which consists in keeping only the Fourier modes with wave
numbers smaller than a UV cutoff kmax. The truncated equa-
tions of motion are

ih̄
∂ψ

∂t
= PG

⎡
⎣− h̄2

2m
∇2ψ − μψ + gPG

[|ψ |2]ψ +
Np∑

i=1

V i
pψ

⎤
⎦,

(A1)

Mpq̈i = −
∫

V i
pPG

[∇|ψ |2] dx +
Np∑
j �=i

∂

∂qi
V i j

rep, (A2)

where V i
p = Vp(|x − qi|) and PG is a Galerkin truncation

operator. PG acts on the function f (x) as PG[ f (x)] =∑
k f̂ (k)eik·xθH(kmax − |k|), where f̂ (k) is the Fourier trans-

form of f (x) and θH is a Heaviside theta function. It is
also assumed that the particle potential is always truncated:
V i

p = PG[V i
p ]. Equations (A1) and (A2) exactly conserve all

the invariants (Hamiltonian, fluid mass, and total momentum)
if the 2/3 rule is used, namely, if kmax = 2

3
Nres

2 , with Nres being
the number of uniform grid points per direction [34]. For a
pseudospectral code, this technique implies an extra compu-
tational cost of one extra back and forth fast Fourier transform.
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