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We report an exact unique constant-flux power-law analytical solution of the wave kinetic equation for
the turbulent energy spectrum, EðkÞ ¼ C1

ffiffiffiffiffiffiffiffiffi
εacs

p
=k, of acoustic waves in 2D with almost linear dispersion

law, ωk ¼ csk½1þ ðakÞ2�, ak ≪ 1. Here, ε is the energy flux over scales, and C1 is the universal constant
which was found analytically. Our theory describes, for example, acoustic turbulence in 2D Bose-Einstein
condensates. The corresponding 3D counterpart of turbulent acoustic spectrum was found over half a
century ago, however, due to the singularity in 2D, no solution has been obtained until now. We show the
spectrum EðkÞ is realizable in direct numerical simulations of forced-dissipated Gross-Pitaevskii equation
in the presence of strong condensate.
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Waves in nonlinear systems interact and transfer energy
along scales in a cascade process with a constant flux,
creating an out-of-equilibrium state known as wave turbu-
lence. When nonlinearity is small, the weak-wave turbu-
lence (WWT) theory provides a mathematical description
of the system [1,2]. The most common applications of this
theory are capillary-gravity waves [3], Alfvén waves in
magnetohydrodynamics [4], Langmuir waves in plasmas
[5], inertial and internal waves in rotating stratified fluids
[6,7], Kelvin waves in vortices [8], elastic plates [9],
gravitational waves [10], and density waves in Bose-
Einstein condensates [11].
Note that acoustic waves in ideal compressible fluids,

one of the most common examples in nature, are non-
dispersive: their frequency ωk ¼ csk is linear in wave
number k≡ jkj. Accordingly, the resonance conditions

ωk ¼ ωk1 þ ωk2 ; k ¼ k1 þ k2; ð1Þ

allow for interaction of the waves with parallel wave
vectors only: kkk1kk2 and in the same direction [2].
Therefore, in the reference frame moving with the speed
of sound cs in the direction of k, k1, and k2 all wave packets
are at the rest and their overlapping time τovr goes to
infinity, allowing for wave steepening and breaking effects,
which requires finite shock creation time τsh. In other
words, the main assumption of the WWT theory, roughly
formulated as τovr ≪ τsh, fails for dispersionless acoustic
waves even even at small nonlinearity.
This has caused a long-standing debate whether

WWT theory is applicable for their description [12], or
alternatively, if acoustic waves should be viewed as a
random collection of weak shocks leading to the

Kadomtsev-Petviashvilli spectrum [13]. There is a hand
waving argument—yet unsupported by rigorous proof—
that the theory applies to 3D acoustic turbulence because
the divergence of wave packets in 3D space plays a role
similar to the wave dispersion in preventing wave breaking.
It was argued first in [14] and later in [15], that the WWT
description is indeed possible for 3D weak acoustic
turbulence. However, the respective kinetic equation for
the spectrum has to be modified so that interactions of
noncollinear waves are described correctly. Concerning the
2D case, it is evident that WWT theory is not applicable in
its classical form. Indeed, the main equation of the theory,
the wave-kinetic equation, is singular and meaningless in
the 2D case. The possibility of an alternative statistical
description of weak nondispersive acoustic 2D sound was
claimed in [14], but it remains an unfinished task.
Fortunately, in some important physical applications, 2D
sound is regularized by weak dispersion effects, and the use
of the classical WWT theory becomes again possible. One
such example, which we will use in the present Letter,
is the acoustic turbulence in 2D Bose-Einstein conden-
sates (BEC).
Recent experiments with 3D BECs have succeeded in

creating wave-turbulence states where measurements can
be explained using the WWT theory in the fully dispersive
limit [16,17]. On the other hand, much interest has been
devoted to studying the dynamics of vortices experimen-
tally in 2D BECs, as such states are close to hydrodynamic
2D classical turbulence [18,19]. Unfortunately, experi-
ments of acoustic 2D BECs are still lacking and no
theoretical predictions are available.
In this Letter, we develop the theory of weak wave

turbulence of weakly dispersive 2D sound and obtain a
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modified wave kinetic equation. We derive a new stationary
power-law flux spectrum of Kolmogorov-Zakharov type,
which corresponds to a cascade of energy from large to
small spatial scales. We then determine the flux spectrum
exponent and the value of the prefactor constant analyti-
cally. This prediction cannot be naively guessed by dimen-
sional arguments, unlike the existing 3D results. Our theory
is then tested and validated with numerical simulations of
weakly nonlinear sound in the 2D forced-dissipated Gross-
Pitaevskii (GP) equation (17) which is a dynamical model
for BEC.
Let us consider the classical wave-kinetic equation

describing the evolution of the wave action spectrum nk ¼
nðk; tÞ (with k and t being the wave number and time)
driven by three-wave resonant interactions [1,2],

∂nk
∂t ¼ Stk ð2Þ

with the wave-collision integral

Stk ¼ 2π

Z
ðRk

12 −R1
k2 −R2

k1Þdk1dk2;

Rk
12 ¼ N k

12δ
k
12δðωk

12Þ; ð3aÞ

N k
12 ¼ jVk

12j2½nk1nk2 − nknk1 − nknk2 �;
δk12 ¼ δðk − k1 − k2Þ; δðωk

12Þ ¼ δðωk − ωk1 − ωk2Þ;
ð3bÞ

ωk ¼ ωðkÞ and Vk
12 ≡ Vðk; k1; k2Þ is a three-wave inter-

action amplitude, that depends on the particular type
of waves.
The central object in turbulence is the 1D energy

spectrum defined as the distribution of energy in k ¼ jkj,
so that the energy (per unit of mass) is defined as
E ¼ R

EðkÞdk. It is related to the wave action spectrum
as EðkÞ ¼ 4πωkk2nk in 3D and EðkÞ ¼ 2πωkknk in 2D.
In this Letter, we consider turbulence of weakly dis-

persive acoustic waves for which

ωk ¼ csk½1þ ðakÞ2�: ð4Þ

Here, a ¼ const is a dispersion length such that ak ≪ 1.
The interaction amplitude Vk

12 in the case of acoustic
hydrodynamics [2,11,12,20] is given by

Vk
12 ¼ V0

ffiffiffiffiffiffiffiffiffiffiffi
kk1k2

p
; V0 ¼ const: ð5Þ

To find the energy spectra, note that Eq. (3) conserves the
total energy of the system and, therefore, it can be rewritten
as the following continuity equation for EðkÞ,

∂EðkÞ
∂t þ ∂εk

∂k ¼ 0; where εk ¼ −
Z
k1<k

Stk1ωk1dk1: ð6Þ

Dimensionally, the energy flux εðkÞ ∝ Stk ∝ n2k, so that nk
and EðkÞ ∝ ffiffiffi

ε
p

. Assuming full self-similarity (i.e., no other
dimensional parameters enter into the game), and that εk is
independent of k in an inertial range of scales, one can
reconstruct EðkÞ from the dimensional reasoning up to a
dimensionless constant C,

EðkÞ ¼ C
ffiffiffiffiffiffiffiffi
εωk

p
=k2: ð7aÞ

For example, for nondispersive 3D acoustic waves with
ωk ¼ csk we recover the Zakharov-Sagdeev spectrum [12],

EðkÞ ∝ k−3=2; ð7bÞ
which is a flux spectrum describing an energy cascade from
large to small scales. It can also be obtained as an exact
solution of Eq. (3) [12].
Recall that nondispersive acoustic waves admit triad

wave number and frequency resonances for colinear wave
vectors only, i.e., kkk1kk2. In this case, the arguments of δk12
and δðωk

12Þ in Eq. (3) for Stk coincide which creates a
singularity. Fortunately, in 3D, this singularity is integrable
and Stk remains finite. Therefore, spectrum Eq. (7b) in 3D
is a valid solution (see Refs. [14,15,20] for further
discussions). In 2D, the singularity is NOT integrable
and Eq. (3) for the nondispersive case is therefore invalid.
Furthermore, the energy spectrum (7b) obtained dimen-
sionally is wrong in 2D because the additional dimensional
parameter a becomes essential (unlike in 3D).
To solve the problem of acoustic turbulence in 2D, we

take into account the dispersion correction in the frequency
(4). We choose a reference system with kkx̂. Integrating in
Eq. (3) Rk

12 over k2 with the help of δk12 and over k1y using
δðωk

12Þ. We get

Δk
12¼def

Z
k2;k1y

δðωk
12Þδk12dk1dk2

¼ j∂k1yðωk − ωk1 − ωk−k1Þj−1dk1x ≈
k1k2dk1x
cskjk1yj

; ð8aÞ

where we retained the leading order in ak ≪ 1 only.
Analyzing resonance conditions (1) with the dispersion
law (4), for small ak we find k1y ≈

ffiffiffi
6

p
ak1k2 (see

Supplemental Material [21]). Substituting this into
Eq. (8a), we have

Δk
12 ≈ dk1x=ð

ffiffiffi
6

p
csakÞ: ð8bÞ

We can use this expression to modify the dimensional
analysis, which now involves an additional dimensional
quantity a. For this, it is only important to observe that
Δk

12 ∝ 1=a. Therefore, Stk ∝ n2k=a which, together with
Stk ∝ ε [arising from Eq. (6)], gives nk ∝

ffiffiffiffiffi
εa

p
. This leads

to the following energy spectrum of weakly dispersive 2D
acoustic turbulence,
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EðkÞ ¼ C1

ffiffiffiffiffiffiffiffiffiffi
εaωk

p
=k3=2 ¼ C1

ffiffiffiffiffiffiffiffiffi
εacs

p
=k; ð9Þ

where C1 is a dimensionless constant. Note that the
spectrum EðkÞ ∝ 1=k was suggested in [11] without
proving that it is a solution of the kinetic equation.
Below, we will prove that (9) is the unique stationary
power-law flux solution of Eq. (3) and find C1 analytically.
To do this, we compute Δ1

k2 and Δ2
k1, similarly to Eqs. (8a)

[see the Eqs. (27) in Supplemental Material [21] ] and
present the collision term in (3) in simpler form,

Stk ¼
2πffiffiffi
6

p
csak

Z
dk1dk2½N k

12δðk − k1 − k2Þ

−N 1
k2δðk1 − k − k2Þ −N 2

k1δðk2 − k − k1Þ�: ð10Þ
Let us seek a stationary solution of Eq. (3) in the form

nk ¼ Ak−x; x ¼ const: ð11Þ
There is, of course, a trivial solution with x ¼ 1 corre-
sponding to the thermodynamic energy equipartition, but
we will be interested in nonzero flux states only. Assuming
that the integrals in Eq. (10) converge (which is to be
checked a posteriori), let us apply the Kraichnan-Zakharov
transform

k1 ¼
k2

k̃1
; k2 ¼

kk̃2
k̃1

and k2 ¼
k2

k̃1
; k1 ¼

kk̃2
k̃1

ð12Þ

to the second and the third terms in Eq. (10), respectively.
This gives (after dropping tildes on the integration variables
for uniformity of notations)

Stk ¼
2πffiffiffi
6

p
csak

Z
dk1dk2N k

12

×
�
1 −

�
k1
k

�
−y

−
�
k2
k

�
−y
�
δðk − k1 − k2Þ; ð13Þ

with y ¼ 5 − 2x. Thus, Stk ¼ 0 if y ¼ −1, so that x ¼ 3
and thus

nk ∝
1

k3
; so EðkÞ ¼ 2πkωknk≈ 2πk2csnk ∝

1

k
: ð14Þ

This is an exact stationary solution of the Eqs. (3) and (10)
coinciding with the dimensional prediction (9).
To demonstrate the existence and uniqueness of solution

(14), let us nondimensionalize the collision integral for
arbitrary x:

Stk ¼
2πA2V2

0ffiffiffi
6

p
acs

IðxÞk3−2x; ð15aÞ

IðxÞ ¼
Z

1

0

qð1 − qÞ½q−xð1 − qÞ−x − q−x − ð1 − qÞ−x�

× ½1 − q−y − ð1 − qÞ−y�dq: ð15bÞ

This integral converges if and only if 2 < x < 4 or x ¼ 1,
as we prove in the Supplemental Material [21]. In Fig. 1 we
show the plot IðxÞ obtained numerically for the conver-
gence range 2 < x < 4. As we see, x ¼ 3 is the only point
at which IðxÞ ¼ 0, which proves the uniqueness of the
stationary power-law flux solution (9). The existence of the
solution amounts to the finiteness of the constant C1. We
compute C1 in Sec. III. C of Supplemental Material [21] by
substituting (13) into the definition of the flux (6). The
result is as follows:

εk ¼
4π4A2V2

0ffiffiffi
6

p
a

; C1 ¼
61=4

ffiffiffiffiffi
cs

p
πV0

: ð16Þ

Notice that Eq. (3) is valid for sufficiently small non-
linearities and stochasticity of the phases [1,2]. Let us
define the interaction frequency γk as a frequency with
which the wave packets are destroyed by the nonlinear
interactions. It will also correspond to the nonlinear
frequency broadening: a characteristic width of the time-
Fourier spectrum at a fixed k. Applicability of Eq. (3)
requires frequency γk to be smaller than the characteristic
frequency of interacting waves δωk. For the 3D waves, we
roughly (and definitely not rigorously) may take δωk ¼ ωk.
However, due to the nonintegrable singularity of the
nondispersive 2D system, in 2D we should take only the
dispersive part of the frequency, δωk ¼ csa2k3, ignoring its
linear part csk, disappearing in the reference system,
comoving with velocity cs in the k direction. On the other
hand, for the wave turbulence to be considered acoustic, the
dispersion must remain a small correction, i.e., ak ≪ 1.
To test our theoretical predictions, we perform direct

numerical simulations of the 2D GP equation for the
complex wave function ψ . Written in terms of the healing
length ξ, the speed of sound cs and the bulk density ρ0, this
equation reads

i
∂ψ
∂t ¼ csffiffiffi

2
p

ξ

�
−ξ2∇2 þ 1

ρ0
jψ j2 − 1

�
ψ þ iDc∇6ψ þ Fðr; tÞ;

ð17Þ

2 2.5 3 3.5 4
-100

-50

0

50

100

FIG. 1. Integral (13) in the window of convergence.
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where we have also included a large-scale forcing F and a
hyperviscous dissipation term. The healing length and the
speed of sound both depend on the physical properties of
the superfluid and on ρ0, and they can be chosen arbitrarily
in the dimensionless GP equation.
The GP equation is a well established model for BEC

and it can be mapped to an effective compressible irrota-
tional fluid flow via the Madelung transformation,
ψðr; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρðr; tÞp
exp½iϕðr; tÞ= ffiffiffi

2
p

csξ�, with ρðr; tÞ and
ϕðr; tÞ being the fluid density and the velocity potential,
respectively. Perturbations about a still fluid with uniform
density ρðr; tÞ≡ ρ0 behave as a dispersive sound with
frequency given by the Bogoliubov dispersion relation,
ωk ¼ csk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2k2=2

p
. In the weakly dispersive limit

ξk ≪ 1, it becomes ωk ¼ cskð1þ ξ2k2=4Þ, i.e., the
dispersion relation (4) with a ¼ ξ=2. In this limit, the
three-wave interaction coefficient of Eq. (17) is of the form
(5), although some ambiguities and discrepancies in the
value of the coefficient V0 can be found in the previous
works [2,11,12,20]. In Sec. I. B of the Supplemental
Material [21], we provide the corrected derivation which
leads to V0 ¼ 3

ffiffiffiffiffi
cs

p
=4

ffiffiffi
2

p
. Substituting this into Eq. (16)

we have the following prediction for the prefactor constant,

C1 ¼
211=4

33=4π
≈ 0.94: ð18Þ

We simulate Eq. (17) using the standard pseudospectral
code FROST [22] in a periodic domain of size L using N2

c ¼
10242 and N2

c ¼ 5122 collocation points, denoted by Run 1
and Run 2, respectively. The nonlinear term is dealiased
twice with the 2=3 rule following the scheme introduced in
[23] in order to conserve momentum (in addition to the
energy and the number of particles) in the ideal case (with
F ¼ Dc ¼ 0Þ. The Fourier transform of the forcing F obeys
the Ornstein-Uhlenbeck process dFk ¼−αFkdtþf0dWk,
where Wk is the Wiener process. The forcing acts only on
wave numbers such that 2π ≤ kL ≤ 3 × 2π. In addition, the
condensate amplitude is kept constant during the evolution.
We set the initial data with uniform condensate with
jψ0j2 ¼ ρ0, the forcing then adds the acoustic disturbances,
and we evolve the system until it reaches a steady state. We
then perform averages over time. In numerics, we have set
cs ¼ 1, ρ0 ¼ 1, and ξ ¼ 2L=Nc. For forcing and dissipa-
tion we set α ¼ 1, f0 ¼ 1.25 × 10−4; 5 × 10−4, and Dc ¼
4.1 × 10−15; 2.1 × 10−11 for Runs 1 and 2, respectively.
In the absence of forcing and dissipation, Eq. (17)

conserves the total energy (Hamiltonian) of the system.
The energy per unit of mass, written in terms of the
hydrodynamic variables, consists of the kinetic, internal,
and quantum energies [24]:

E ¼ 1

L2ρ0

Z �
ρ

2
ð∇ϕÞ2 þ c2s

2ρ0
ðρ − ρ0Þ2 þ c2sξ2ð∇ρÞ2

�
d2r:

ð19Þ

In the dispersiveless limit (ξ → 0), we retrieve the standard
energy for a for a compressible, isentropic, irrotational fluid
[25]. The total energy spectrum is computed writing the
energy as usual in quantum turbulence [24]. We also
calculate the k-space energy flux ϵðkÞ directly using
Eq. (17) [see the Eq. (31) of Supplemental Material [21]
for exact definitions].
In Fig. 2 we show the fluxes and spectra for Run 1 and

Run 2. We see that the fluxes have a pronounced plateau
which indicates the presence of an inertial range (free of
forcing and dissipation effects). Both runs display a sta-
tionary power-law spectrum. Remarkably, both, the power-
law exponent and the prefactor C1 (calculated based on the
averaged flux in the inertial range), closely agree with the
theoretical predictions (9) and (16).
In Fig. 3 we show the spatiotemporal spectrum for Run

1. We see that this spectrum follows closely the Bogoliubov
dispersion law, which indicates that the nonlinearity is
sufficiently weak. The ω width of the spectrum at
each fixed k represents the nonlinear frequency broade-
ning; we define it as γk ¼ ½R∞

0 ðω − ωkÞ2jψ̂ðω; kÞj2dω=R
∞
0 jψ̂ðω; kÞj2dω�1=2. In Fig. 4 we show the ratios
γk=δωk, where δω ¼ csa2k3 is the dispersive correction.
Recall that the WT theory is applicable when γk=δωk ≪ 1.
We see that this quantity is indeed small in the scaling range
in Run 1, and only marginally small in a rather narrow
range in Run 2. This indicates that the WT theory has a

10-1 100

10-10

10-8

10-1 100

10-6

10-4

10-2

(a)

(b)

FIG. 2. (a) Energy flux. (b) Energy spectra. Dashed lines
correspond to theoretical predictions (9) and (18) using the
corresponding flux values in the inertial range.
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good predictive power even when the formal applicability
condition is on the borderline of validity.
The main result of our Letter is the 1D energy spectrum

of 2D weakly dispersive acoustic waves, Eq. (9), found as
the unique stationary constant-flux solution of the kinetic
equation (3) with convergent collision integral. From the
physical view point such a convergence means that the
main contribution to the energy balance of waves with
wave number k comes from their energy exchange with the
“neighboring” waves with wave numbers k0 of the order of
k. In the language of hydrodynamic turbulence we are
dealing here with the step-by-step cascade energy transfer,
local in the wave number space. We found the energy flux
to be positive, meaning that the energy is transferred from
small to large k, i.e., it is a direct energy cascade.
We tested our analytical predictions by numerical sim-

ulations of the forced-dissipated GP equation (17) in the
presence of a strong condensate. The analytically found

spectrum (9) was confirmed by the numerics, including
both the power-law exponent and the prefactor C1 without
any adjustable parameter. Such a double validation is a rare
success in the theory of wave turbulence, where numerical
tests were attempted by numerical simulations for various
types of waves but, in most cases, only the spectrum
exponent was confirmed. Wave turbulence is therefore a
valid and productive approach for describing 2D superfluid
BEC turbulence where interacting sound waves represent
the principal mechanism of energy dissipation. Since
measurements of the spectrum are experimentally acces-
sible in BEC [16,17], our results present verifiable pre-
dictions which could guide future experiments. The focus
of the present Letter was on the weak turbulence of 2D
acoustic waves, and the strong turbulence regimes would
be an interesting subject for future studies.
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