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Abstract. A mass-ejection model in a time-dependent random environment
with both temporal and spatial correlations is introduced. When the environment
has a finite correlation length, individual particle trajectories are found to diffuse
at large times with a displacement distribution that approaches a Gaussian.
The collective dynamics of diffusing particles reaches a statistically stationary
state, which is characterized in terms of a fluctuating mass density field.
The probability distribution of density is studied numerically for both smooth
and non-smooth scale-invariant random environments. Competition between
trapping in the regions where the ejection rate of the environment vanishes and
mixing due to its temporal dependence leads to large fluctuations of mass. These
mechanisms are found to result in the presence of intermediate power-law tails
in the probability distribution of the mass density. For spatially differentiable
environments, the exponent of the right tail is shown to be universal and equal
to −3/2. However, at small values, it is found to depend on the environment.
Finally, spatial scaling properties of the mass distribution are investigated. The
distribution of the coarse-grained density is shown to possess some rescaling
properties that depend on the scale, the amplitude of the ejection rate and the
Hölder exponent of the environment.
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1. Introduction

Many different situations found in nature occur in an environment where spatial fluctuations
occur at length scales so small that they contribute to macroscopic processes only through
an averaged effect. The environment is then usually modeled by introducing some random
disorder from which effective properties are derived. Examples include the Kraichnan velocity
ensemble for turbulent transport [1] and the Sherrington–Kirkpatrick spin-glass model for
magnetization [2]. There are many applications where the environment fluctuates on much
slower timescales than the processes of interest (such as diffusion, transport or wave
propagation). This leads us to consider quenched disorder, as in the case of directed polymers
[3, 4], of wave propagation in random media [5], of heat transport in open-cell foams [6]
and of viscous permeability in porous materials [7]. In most instances, one of the main
goals is to derive an effective diffusivity, conductivity or permeability of the medium (see,
e.g., [8]).

As to diffusive processes in quenched random media, mathematicians and physicists
have largely studied their discrete version known as random walks in random environment
(RWRE) [9]. One usually considers a lattice with fixed random transition probabilities between
sites and studies the behavior of a random walk on it. One of the important questions of
interest has been to determine under what assumptions such RWRE are transient or recurrent
(i.e. whether they escape to infinity or indefinitely come back to their starting position). For
a time-independent random environment with no space correlations, it has been shown that
randomizing the environment slows down the diffusive properties of the random walk [10].
Furthermore, under some precise assumptions, Sinai [11] proved that one-dimensional (1D)
symmetric nearest-neighbor random walks in an uncorrelated environment are sub-diffusive
and scale as X t ∼ log2t when t → ∞. Derrida and Pomeau [12] demonstrated that when the
assumption of symmetry is relaxed, the random walk escapes as X t ∼ tα, with 0 < α < 1.
Bricmont and Kupiainen [13] showed that the upper critical dimension of random walks in
a time-independent random environment is 2, so that for d > 2 RWRE are diffusive. More
recently, a great deal of effort was devoted to proving central-limit theorems or large-deviation
principles for quenched disorder [14–16]. Such works generally assume that the environment
has no (or very short) spatial correlations and that it is time independent. Very little is known in
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the time-dependent environment. One then deals with annealed statistics where the averages are
performed over the fluctuations of the random medium. In such settings and under some rather
general assumptions, it was shown that random walks are always diffusive and that central-limit
theorems generally hold [17, 18].

In this work, we are interested in those situations where the timescales and length scales
of diffusion are comparable to or longer than those at which the environment fluctuates,
and thus we are interested in time-dependent random media with both temporal and spatial
correlations. A clear instance where this occurs is turbulent transport whose modeling is a
key issue in industrial and environmental science. The classical models generally used in
engineering and meteorology are based on an ‘eddy-diffusivity’ approach (see, e.g., [19]), which
in general requires a clear scale separation between the turbulence and large-scale variations
of the mean velocity. Homogenization techniques can then be used to show that the averaged
concentration field follows an effective advection–diffusion equation with an advecting velocity
and a diffusion coefficient tensor that depend on the slow variables [20]. The large-scale
mixing originating from small-scale fluctuations acts only through the diffusive term, which,
by the maximum principle, cannot be responsible for the creation of large concentrations. The
concentrations observed in compressible flows can thus come only from the effective advection
term. As we will see later in this paper, the situation can be rather different when one is interested
in other types of compressible transport.

The paper is organized as follows. In section 2, we introduce a time and space continuous
model of diffusion in a random environment that can be interpreted either as a limiting process
of Langevin dynamics or as the continuous limit of a discrete ejection model. The model
corresponds to an Itō differential equation with multiplicative noise and no drift. Section 3
is devoted to the study of individual trajectories of the Itō diffusion in the case of smooth and
non-smooth environments. When the environment has a finite correlation length, particles are
found to have standard diffusion properties at large times with a displacement distribution that
approaches a Gaussian. In section 4, we define the density of mass and study the fluctuations
of the density in smooth and non-smooth random environments. The locations where the
environment ejection rate vanishes are shown to play a crucial role in the large fluctuations
of density. Spatial scaling properties of the mass distribution are then investigated in section 5.
We show that the distribution of the coarse-grained density possesses some rescaling properties
that depend on the scale, the amplitude of the ejection rate and the Hölder exponent of the
environment. Finally, section 6 presents some concluding remarks.

2. Description of the model

We consider the dynamics given by the following Itō stochastic differential equation:

dXt =
√

20 σ(Xt , t) dWt , (1)

where Wt is the D-dimensional Wiener process. The diffusion coefficient σ is a random, space-
and time-dependent field, whose statistics are independent of Wt and are described below.
Before specifying our settings, we motivate this model by considering two instances where (1)
arises as a limiting process.
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Let us first consider species whose dynamics is dissipative in the full position–velocity
phase space. We assume that the trajectory of a particle obeys the Newton equation

Ẋ t = Vt , V̇t = −µVt +
1

√
ε

f (X t , t, t/ε). (2)

The forces acting on the particle are viscous drag and an external force f that depends on
both space and two different timescales. We have dropped here the vectorial notation but all the
following considerations can be easily generalized to any dimension. Such an equation describes
for instance the dynamics of a heavy inertial particle in a velocity field that varies over two
timescales. Also, one could consider a large particle embedded in a time- and space-dependent
thermal bath. The fast timescale ε can be interpreted as the typical time of momentum exchange
between the particle and its environment. As in Einstein’s original work on Brownian motion,
the timescale ε is much smaller than the viscous damping time 1/µ. In the limit εµ → 0, the
force f can be approximated by a Gaussian noise with correlation

C(t, t ′) = (1/ε)〈 f (X t , t, t/ε) f (X t ′, t ′, t ′/ε)〉ε ' 20µ2σ 2(X t , t)δ(t − t ′), (3)

where the average 〈·〉ε is with respect to the fast time variable. The spatio-temporal variations
of σ 2 can be interpreted as a non-homogeneous temperature field in the thermal bath. We next
consider the limit when the response time 1/µ is much shorter than the slow timescale. This
introduces a new fast timescale O(1/µ) over which the particle velocity fluctuates. We see that

〈Vt Vt ′〉ε =

∫ t

−∞

∫ t ′

−∞

C(s, s ′)eµ(s+s′
−t−t ′)ds ds ′

=

∫ t∧t ′

−∞

20µ2σ 2(Xs, s)eµ(2s−t−t ′)ds ≈ 0µ σ 2(X t∧t ′, t ∧ t ′)e−µ|t−t ′|, (4)

where t ∧ t ′
= min(t, t ′). The last equality is obtained by integrating by parts and neglecting

exponentially small terms. Then, taking the limit µ → ∞ in (4) we obtain 〈Vt Vt ′〉 =

20σ 2(X t , t)δ(t − t ′). The particle position thus satisfies the stochastic equation (1). The model
we consider is thus relevant to the study of the Langevin dynamics in a fluctuating environment.

The second instance where (1) arises is in the continuous limit of a mass-ejection model.
Let us consider the D-dimensional periodical lattice of fundamental size 1x and period
L = N1x . This lattice defines a tiling on which we consider the following discrete-time
dynamics. The cell indexed by i contains at time n1t a mass ρi(n). Then, between times n1t
and (n + 1)1t , a fraction 0 < γi(n) < 1/(2D) of this mass is ejected from the cell i to one of
its 2D neighbors. For a given set of ejection rates {γi(n)}i∈{1,...,N }D the variables {ρi(n)}i∈{1,...,N }D

define a Markov chain whose master equation is given by

ρi(n + 1) =
[
1 − 2D γi(n)

]
ρi(n) +

∑
j∈Ni

γj(n)ρj(n), (5)

whereNi are the neighbor cells of i. It is clear that, because of periodic boundary conditions, the
total mass M =

∑
i ρi is conserved. Equation (5) describes a mass-ejection process in a time-

dependent non-homogeneous environment determined by the ejection rates γi(n). A similar
model has been studied in [21] in the case when the γi(n) take two values, γ and 0, and are
uncorrelated in both space and time. This model was motivated by the study of inertial particles
clustering in turbulent flows and was expected to mimic heavy particle ejection from coherent
vortical structures by centrifugal forces.
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Turning back to the ejection model (5), we now consider the continuous limit 1x → 0
and 1t → 0. To take this limit, we suppose that the ratio 1x2/1t is kept fixed. We denote by
0σ 2(x, t) the continuous limit of γx/1x(t/1t), where the coefficient 0 is the typical amplitude
of the ejection rate and σ is an order-one time and space continuous function. In this limit,
equation (5) becomes

∂ρ(x, t)

∂t
= 0 ∇

2
[
σ 2(x, t)ρ(x, t)

]
. (6)

This is the Fokker–Planck (forward Kolmogorov) equation associated with the Itō stochastic
differential equation (1). For t > s, we define the (forward) transition probability density

p(x, t | y, s) = 〈δ(Xt − x) | Xs = y〉, (7)

where 〈·〉 designates averages with respect to the realizations of Wt . Then the solutions to (6)
trivially satisfy for all t > s

ρ(x, t) =

∫
p(x, t | y, s) ρ(y, s)dy. (8)

The model described by the diffusion equation (6) can thus be reinterpreted in terms of an
RWRE. Indeed the discrete version of the process given by (1) corresponds to a random walk
on the D-dimensional lattice, with a probability to hop from site i to one of its neighbors equal
to 2D γi(n).

In contrast with a standard diffusion equation coming from Fick’s first law, the differential
operator ∇

2[σ 2(x, t) ·] in the right-hand side of equation (6) is not positive-definite. There is no
maximum principle and the solution is expected to behave very differently. The mass is going to
accumulate at the zeros of σ . Suppose indeed in one dimension that σ(x, t) ' Cx in the vicinity
of x = 0. At leading order, the flux reads J = −0(∂/∂x)(σ 2ρ) ' −20C2xρ, which is positive
for x < 0 and negative for x > 0, leading to a permanent mass flux toward x = 0. As we will see
later, the zeros, their densities and their lifetimes play a crucial role in the statistical properties
of the density field.

We now specify how the statistical properties of the random environment are prescribed in
our model. We consider that L = 2π and that σ(x, t) is 2π -periodic in space. The environment
is then entirely determined in terms of its Fourier series that we write as

σ(x, t) =

∑
|k|

ak χk(t/τk) eik·x, (9)

where the ak are positive real amplitudes and the τk are scale-dependent characteristic times. The
Fourier modes χk satisfy χ−k(t) = χk(t) and χ0 ≡ 0. They are independent Gaussian processes
with unit variance and unit correlation time. We choose them as complex Ornstein–Uhlenbeck
processes that solve the stochastic differential equation [22]

dχk(s) = −χkds +
√

2 dBk(s), (10)

where the Bk are independent 1D complex Wiener processes.
We now prescribe scale-invariance properties for the random environment. We want

|σ(x + r, t) − σ(x, t)| ∼ |r|h , where h > 0 controls the regularity of the ejection rate. When
h < 1, it is the spatial Hölder exponent of the ejection rate. This amounts to assuming that the
Fourier mode amplitudes behave as ak =

1
2k−1/2−h . Temporal scale invariance is set by assuming

that τk = k−β with β > 0. The exponent β relates time dependence to spatial scale invariance;
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(a) (b)

Figure 1. (a) Left: space–time plot of ρ(x, t) (high densities in yellow and
low densities in black) for h = 1 in dimension D = 1. Right: the corresponding
evolution of the ejection rate σ 2(x, t) during the same realization; low values
are in black and high values in yellow. (b) Snapshot of the positions of particles
obeying (1) (in green) for D = 2, together with σ 2(x, t). Low values of σ 2(x, t)
are shown in black and high values in yellow; contour lines of σ = 0 are shown
in white.

the case β = 0 corresponds to σ having a unique correlation time and β → ∞ to white noise.
As we shall see below, when h < 1, dimensional analysis motivates the choice β = 2 − 2h.

The numerical results presented in this work are obtained in two different ways. The density
evolution is obtained by solving equation (6) with a second-order finite-difference discretization
of the Laplacian and a semi-implicit Euler temporal scheme. This numerical scheme ensures
the conservation of the total mass with high accuracy. In this work, numerical resolutions vary
from N = 512 to N = 8192 collocation points and the time step is chosen small enough to well
resolve the fastest timescale of the problem. For particle trajectories, the stochastic equations (1)
and (10) are solved by a standard stochastic Euler scheme and ensemble averages are obtained
by Monte Carlo methods. In both cases, we expect the error made in the solution to act as a
numerical diffusion with a constant proportional to the time step.

Figure 1(a) show the temporal evolution of the density and of the ejection rate σ 2(x, t),
respectively, for a typical realization in dimension D = 1. Figure 1(b) shows a snapshot of the
random environment σ and of the position of a set of particles obeying equation (1) in D = 2.
It is apparent in figure 1 that the high-density zones are located in the vicinity of the zeros of
σ(x, t). From the right of figure 1(a) we observe that the zeros of σ follow random paths. Their
role in the statistical properties of the density of mass and in the diffusion properties of particles
will be discussed further in this work.

The distribution and time evolution of these zeros strongly depend on the parameter h
characterizing the environment. Let us first consider the case of large h. In figure 1(a), it is
apparent that the zeros typically appear in pairs and then diffuse and separate until they merge
together or with another zero. Without loss of generality, we can assume that the ejection rate
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has only two modes and takes the simple form

σ(x, t) = σr(t) cos x − σi(t) sin x, (11)

with σr + i σi = 2χ1. Using the Itō formula it is possible to show that σ can be equivalently
rewritten as σ(x, t) = At sin (x − 8t), where the stochastic processes At and 8t satisfy

dAt = −

(
At −

1

At

)
dt +

√
2 dB A

t , d8t =

√
2

At
dB8

t , (12)

where B A
t and B8

t are uncorrelated Wiener processes. It is clear that the amplitude At fluctuates
around A = 1 and that its correlation time is of the order of 1. It follows from equation (12)
that, for typical values of At , the phase 8t , and thus the positions of the zeros of σ , diffuse on a
timescale of the order of 1.

When h < 1, the random environment presents scaling properties and very different
behavior is expected. We have by construction that the second-order structure function of σ

behaves like

δσ 2
` = |σ(x, t) − σ(x + `, t)|2 ∼ (`/L)2h, (13)

where the overline stands for the ensemble average with respect to fluctuations of the
environment (i.e. with respect to the Ornstein–Uhlenbeck processes χk). In this work, we
make the choice of relating space and time correlations by a dimensional argument. The
characteristic time τk introduced in equation (9) behaves as a power law, so that the correlation
time of σ at scale ` is τC(`) = (`/L)β . According to equation (13), the diffusion timescale
associated with the spatial scale ` behaves as τD(`) = `2/(0δσ 2

` ) ∼ 0−1L2h`2−2h . The ratio
Ku(`) = τC(`)/τD(`) ' 0L−(2h+β)`β+2h−2 defines a dimensionless space-dependent parameter
that is usually called the Kubo number. When Ku(`) � 1, the environment looks as if frozen.
When Ku(`) � 1, it fluctuates in an almost time-uncorrelated manner. When β 6= 2 − 2h,
the Kubo number depends on the scale and this breaks any possible scale invariance of the
mass distribution. When β = 2 − 2h, we have Ku(`) = Ku = 0/L2, so that scale invariance is
possible. Here, we will focus on the latter case and describe the mass concentration properties
in terms of the dimensionless parameter Ku ∝ 0. Note that the choice of having a scale-
independent Kubo number is common in the framework of turbulence and is expected to be
relevant to the problem of diffusion of inertial particles in turbulent flows.

Finally, let us make a couple of remarks on the dependence upon another parameter of
the environment, namely the Hölder exponent h. Using Parseval’s theorem, it is possible to
show that ‖σ‖

2
L2 = ζ(1 + 2h) and that ‖∂xσ‖

2
L2 = ζ(−1 + 2h), where ζ(s) is the Riemann zeta

function. We thus have that ‖σ‖L2 < ∞ when h > 0 and that ‖∂xσ‖L2 < ∞ when h > 1. Note
that, at each fixed time t , σ(x, t) is a Gaussian variable with the variance of increments given
by equation (13). Therefore σ(·, t) is a fractional Brownian motion of exponent h [23]. For
h = 1/2 it corresponds to standard Brownian motion. For h > 1/2 the increments of σ are
not independent and have positive covariance; the zeros of σ are then finite and isolated. For
h < 1/2, the covariance of increments is negative, and therefore we expect the number of zeros
to become infinite and to accumulate. The different behavior of the random environment will
affect the general properties of diffusion, as we will see in the following sections.

As the Ornstein–Uhlenbeck processes χk are stationary, the fluctuations of the ejection rate
σ 2 are a stationary and homogeneous random field. Hence we expect that, at sufficiently large
times, the density distribution reaches a statistically stationary state and numerical simulations

New Journal of Physics 14 (2012) 073053 (http://www.njp.org/)

http://www.njp.org/


8

indicate that this is indeed the case. The work reported in this paper is mainly concerned with
the statistical properties of the density field in this large-time asymptotics. Most of the results
presented in this work are in dimension D = 1.

3. Diffusive properties

We now turn to studying the diffusive properties of the solutions X (t) to (1). One has

X (t) = X (0) +
√

20

∫ t

0
σ(X (s), s) dWs, (14)

so that 〈
[X (t) − X (0)]2

〉
= 20

∫ t

0

〈
σ 2(X (s), s)

〉
ds, (15)

where the angular brackets denote average over trajectories. At times much larger than the
correlation time of σ 2 along particle trajectories, the integral becomes a sum of independent
random variables, which obeys the law of large numbers. We thus have

〈[X (t) − X (0)]2
〉 ∼ 2D(0, h) t

with D(0, h) = 0〈σ 2(X (t), t)〉 =
0

L

∫ L

0
σ 2(x, t)ρ(x, t) dx, (16)

where the overline denotes the average with respect to the environment. The effective diffusion
constant D(0, h) involves an average of the environment along particle trajectories which is
equivalent to an average weighted by the mass density ρ. As the trajectories are expected to
spend a long time in the vicinity of the zeros of σ , we expect this Lagrangian average to be
less than the full Eulerian spatial average. The displacement fluctuations of order less than

√
t

are expected to be given by a central-limit theorem. However, larger fluctuations should obey
a large deviations principle with a rate function that might not be purely quadratic as it is non-
trivially related to the Lagrangian properties of the environment. To study these fluctuations, we
perform Monte-Carlo simulations of equation (1).

We first consider the case when the ejection rate σ 2 is a smooth function of space
(i.e. h > 1). With this configuration there is a finite (and small) number of isolated zeros
separated by a distance order L/2 = π . A number of simulations of equation (1) have been
performed for different values of 0 using 32 modes and h = 2. Figure 2 shows the mean-
square displacement of particles averaged over 1000 realizations of the diffusion and 20 000
realizations of the environment. As expected from equation (16), linear growth is observed at
large times. However, the diffusion constant D(0) non-trivially depends on 0, as seen in the
inset of figure 2. The non-monotonic behavior of D(0)/0 can be explained by two competing
phenomena. In the limit 0 → 0 (or equivalently Ku → 0) the environment changes fast enough
compared to the characteristic time of diffusion given by 1/0. In this limit, we can consider that
the particle trajectories sample the environment homogeneously, so that the Lagrangian average
can be replaced by the spatial Eulerian average. This leads to

D(0, h) '
0

L

∫
σ(x, t)2 dx = 0ζ(1 + 2h) when γ → 0. (17)
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Figure 2. Mean-square displacement 〈(X (t) − X (0))2〉 for different values of 0.
Inset: dependence of the effective diffusion constant (16) on 0.
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Figure 3. Rescaled PDFs of the displacement X (t) − X (0) for h = 2, for three
different values of 0 and for various times, as labeled. The initial condition was
chosen in the statistically stationary regime.

For h = 2, we obtain D(0, 2)/0 ' 1.03, which is in agreement with the value observed in
the inset of figure 2. As 0 increases, trajectories spend a longer time at the zeros of σ

decreasing the value of D(0)/0. In the limit of 0 → ∞ (i.e. Ku → ∞), the environment can
be considered completely frozen and we expect the mass density solving equation (6) to be
approximately given by ρ(x, t) ∼ 1/σ 2(x, t). From equation (16), we obtain that D(0, h) =

(0/L)
∫

σ 2ρ d(x) ≈ (0/L)
∫

dx = 0. Hence D(0)/0 = 1 for 0 → ∞ as seen in the figure. In
this limit the mass is completely concentrated at the zeros of the ejection rate, and the diffusion
is carried out by the motions of the latter that follow a dynamics similar to equation (12).

The normalized probability distribution functions (PDFs) of the displacements are shown
in figure 3 for different times and different values of 0. At early times and for low values of 0,
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Figure 4. (a) PDF of (X (t) − X (0))/(L/2) for different values of 0 taken
at t∗ such that 〈〈(X (t∗) − X (0))2

〉〉 = (L/2)2
= π2. (b) Temporal evolution of

normalized moments C p defined by (18) for 0 = 0.1 (solid lines), 0 = 1 (dashed
lines) and 0 = 10 (dotted lines). (c) A(0) showing the dependence of C p on 0,
see equation (19).

the PDFs present exponential tails that are also observed at intermediate times for larger values
of 0. In all cases, the PDFs approach a Gaussian distribution at very large times. Note that for
sufficiently large values of 0, some oscillations can be observed on the PDF tails at intermediate
times. As we will now see, this is due to trapping by the zeros of σ(x, t). To emphasize this
point, we compare the PDF of the displacement for different values of 0 chosen at the time t∗

such that 〈〈(X (t∗) − X (0))2
〉〉 = (L/2)2

= π 2, i.e. the time when the typical distance traveled
by the particles reaches a length of the order of the separation between two zeros (of the order
of L/2 for smooth environments). The PDF of (X (t∗) − X (0))/(L/2) is displayed in figure 4(a)
for various values of 0. It is apparent that the bumps appear at multiples of L/2 for large 0s.
With a high probability, a particle is initially located close to a zero of σ . When it travels away,
there is a very good chance that it stops at the neighboring zero, leading to a quasi-multimodal
distribution.

To better quantify the large-time behavior of the displacement, we compute its higher-order
moments and compare them to those corresponding to a Gaussian distribution. We thus define
for even p

C p =
〈(X (t) − X (0))p

〉

〈(X (t) − X (0))2〉p/2
−

2p/2

√
π

0

[
p + 1

2

]
, (18)

where 0[z] denotes the Gamma function. C p = 0 for all p > 2 if X (t) − X (0) is a Gaussian
variable. C2 = 0 by construction and C4 is the kurtosis. C p can be interpreted as a pth-order
deviation from a Gaussian distribution. Data suggest that all the C p display 1/t behavior at
large times. The dependence on the amplitude 0 and on the order p is well represented by the
functional form

C p '
A(0)λp/2

t
. (19)

The temporal evolution of C p/A(0) for different values of 0 and p, and the function A(0)

are displayed in figures 4(b) and (c), respectively. As can be seen from figure 4(b), the data
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Figure 5. Rescaled PDF of X (t) − X (0) for 0 = 1 and with (a) h = 0.2 and
(b) h = 0.6 for different times. Dashed lines correspond to the Gaussian
distribution. (c) Diffusion constant for 0 = 1 as a function of h. The inset shows
the same data normalized by D0 = ‖σ‖

2
L2 .

for different 0 and p fixed collapse at large times. The limiting lines associated with different
orders are equally spaced, confirming the dependence on λp/2 of the constant. The value of λ

was found to be λ ≈ 15.
Different simulations have been performed for various values of the exponent h. Behavior

similar to the smooth case was found: at large times particles diffuse and their statistics become
Gaussian. The rescaled PDFs of the displacement are shown in figures 5(a) and (b) for 0 = 1
and for h = 0.2 and h = 0.6, respectively. At large times 〈(X (t) − X (0))2〉 also present a linear
growth consistent with equation (16) (data not shown). The measured diffusion constant D(0, h)

is displayed in figure 5(c) for 0 = 1 and different values of h. The apparent divergence at small
values of h is due to the divergence of the L2 norm of σ(x, t) for h → 0. The inset of figure 4(c)
shows the dependence of the diffusion constant normalized by D0 = ‖σ‖

2
L2 = ζ(1 + 2h). It is

seen that the importance of zeros on the diffusion constant increases as h decreases.

4. Density fluctuations

So far, we have studied the diffusion properties of particles described by the stochastic
equation (1). We now turn to studying the statistical properties of the mass density ρ that
evolves according to the diffusion-like equation (6). As we have previously observed, the spatial
fluctuations of ρ are correlated with the distribution of zeros of the random environment σ(x, t).
More precisely, we observe from equation (6) that the flux of mass at x is directly given by

J(x, t) = 0 σ(x, t) [2∇σ(x, t)ρ(x, t) + σ(x, t)∇ρ(x, t)] . (20)

The flux hence vanishes at the zeros of σ(x, t), so that they would act like sinks concentrating
all of the mass as if they were not moving. However, due to their diffusion, the zeros are not
able to indefinitely concentrate mass and the density saturates in their neighborhood. In parallel,
as the total mass is conserved, this concentration process leads to the creation of voids in the
regions where σ is of the order of 1.
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In the following, we consider the case D = 1. Under some assumptions of homogeneity
and ergodicity of the dynamics, the PDF of the mass density can be written as

P(ρ̄) =
d

dρ̄
(measure({(x, t) | ρ(x, t)6 ρ̄})) (21)

= lim
T →∞

1

2πT

∫ T

0

∫ 2π

0
δ (ρ(x, t) − ρ̄) dx dt ≡ lim

T →∞

PT (ρ̄). (22)

This will be the main quantity studied in the following sections. As we will see, it strongly
depends on the parameters 0 and h. The definition (22) in terms of a space–time average will be
particularly useful in first attacking the stationary case and then developing phenomenological
arguments on its behavior in the non-stationary case.

4.1. Smooth random environments

Let us first consider the limit Ku → ∞, i.e. when the ejection 0 is infinitely larger than the
inverse of the diffusion time of the zeros of σ . Note that, in the limit of a time-independent
environment, no stationary state can be achieved. Mass will then concentrate around the zeros,
and at t = ∞ the density will become atomic, supported at these points. For sufficiently large
but finite times, as almost all the mass is concentrated around the zeros of σ , the ejection rate
can be Taylor-expanded in the vicinity of these points. Without loss of generality, let us assume
that a zero appears at the origin x = 0 at t = 0 and does not move. In this limit, equation (6)
reduces to

∂tρ = 0C2 ∂2

∂x2
(x2ρ), (23)

where C = dσ/dx |x=0. Rescaling time allows us to set 0 C2
= 1. Without loss of generality,

we also consider an infinite domain and an initial condition with compact support: ρ(x, 0) = 1
for |x |6 1 and 0 elsewhere. Equation (23) can be analytically integrated by using the method
of characteristics. For x > 0 the change of variable u(y, t) = e2tρ(x = ey−3t , t) leads to the
homogeneous heat equation that can be easily solved by using the corresponding Green
function. The solution for x < 0 is obtained by symmetry. One then obtains

ρ(x, t) =
e2t

√
4π t

∫
∞

0
exp

[
−

(z − log |x | − 3t)2

4t

]
dz =

1

2
e2terfc

[
ln |x | + 3t

2
√

t

]
, (24)

where erfc(z) =
2

√
π

∫
∞

z e−s2
ds is the complementary error function. The time-averaged

distribution PT (ρ̄) defined in equation (22) can be rewritten as

PT (ρ̄) =
1

2πT

∫ T

0

∫ 2π

0

δ(x − xρ̄(t))

|
∂ρ(x(t),t)

∂x |
dx dt, (25)

where xρ̄(t) is such that ρ(xρ̄(t), t) = ρ̄. It exists only for t > ln ρ̄/2 . The contour lines
of ρ(x, t) are displayed in figure 6(a). The high-density zones are concentrated in a narrow
region of space. This will justify the saddle-point approximation used below. With the change
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(a) (b)

Figure 6. (a) Contour lines of the analytic solution ρ(x, t) explicitly given in
equation (24). (b) Probability distribution P(ρ) (22). Dashed lines display the
scalings of equations (28) and (29).

of variables t 7→ λ = 2t/ ln ρ̄, introducing µ(λ; ρ̄) = − ln xρ̄(t)/ ln ρ̄, and after some algebra,
equation (25) becomes

PT (ρ̄) =
1

T

√
ln3 ρ̄

4π

∫ 2T
ln ρ̄

1

√
λ e− ln ρ̄F(λ;ρ̄)dλ, (26)

with

F(λ; ρ̄) = λ + µ(λ; ρ̄) −
1

2λ

(
3

2
λ − µ(λ; ρ̄)

)2

, (27)

µ(λ; ρ̄) =
3

2
λ −

√
2λ

ln ρ̄
erfc−1

(
2

ρ̄λ−1

)
≈

3

2
λ −

√
2λ(λ − 1),

where in the last equation the asymptotic of erfc−1(z) ≈
√

log (1/z) for z ≈ 0 has been
used (recall that λ > 1). Using a saddle-point approximation for ln ρ̄ � 1 of the integral in
equation (26), we obtain at leading order (dropping the bar over ρ)

PT (ρ) ∼
1

ρα
, with α = inf

λ
F(λ) = 2. (28)

This scaling is clearly observed in figure 6(b), where equation (6) is integrated using the
stationary environment σ(x, t) = sin x .

Note that a clear power-law scaling is also seen in figure 6(b) at small values of the mass
density. To explain this scaling, let us consider a cell of length 1x located at x0 far away from
a zero of σ(x) and where the density reaches its minimum. At leading order the mass ejected
from this cell between t and t + dt is proportional to J ' ρ(x, t)0∂xσ

2(x)|x=x0 as ∂xρ ≈ 0 at this
point. Considering that ∂xσ

2(x) is constant near x0 yields an exponential decay of the mass in the
cell. Introducing in equation (22) a density of mass with an exponential decay ρ(x, t) ∼ ρ0 e−σ 2

0 t
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Figure 7. A log–log plot of the PDF of the density for K = 1 and different values
of 0. Inset: the same figure in log–lin.

(with σ 2
0 an effective rate) directly leads to

PT (ρ) ∼
1

ρ
, (29)

which is in agreement with figure 6(b).
As we will soon see, the situation is rather different in the non-stationary case where the

motion of the zeros of the ejection rate limits the process of mass concentration. Now, the
coefficients σr(t) and σi(t) of equation (11) are the Ornstein–Uhlenbeck processes defined in
equations (9) and (10). The PDF of ρ for different values of 0 is presented in figure 7. The time
needed for the density to accumulate near the zero of the ejection rate σ 2 is of the order of 0−1.
Hence, for small values of 0 (i.e. Ku � 1), the fast temporal variations of σ(x, t) do not leave
enough time for the system to accumulate mass. It is apparent in this case that most of the mass is
distributed around the mean mass 〈ρ〉 = 1 (see the 0 = 0.1 curve represented by orange stars).
However, for large but finite values of Ku, accumulation is fast enough and a resulting ρ−3/2

scaling is observed. This scaling can be derived by considering that for large Ku the system
rapidly relaxes to a quasi-stationary solution in a time of the order of 1/0 and stays there for a
time of the order of the correlation time of σ . Far enough from a zero, the environment behaves
like σ(x) ' C x and its time evolution can be neglected. The density converges there to a quasi-
stationary solution, which is such that ∂2

x (σ
2ρ) ≈ 0, so that ρ ≈ σ−2

∝ 1/x2. Closer to a zero,
the time variations of its location become faster than the concentration of mass and the density
saturates to a finite value ρmax (see the left-hand side of figure 8). The transition between these
two regimes occurs at a distance 1x from a zero, which by continuity satisfies 1x ∼ ρ−1/2

max .
The length 1x is of the order of the distance traveled by a zero during a timescale equal to that
of mass concentration. Hence, if we assume that a zero diffuses, one has 1x ∼ 0−1/2, so that
the typical value of ρmax is of the order of 0. The distribution of density has thus a crossover
at ρ ∼ 0. When ρ � 0, that is, for values much below the plateau at ρmax, the behavior is
dominated by the divergence of the quasi-stationary density profile. Introducing ρ(x) ∼ 1/x2 in
equation (22) straightforwardly leads to the algebraic behavior

P(ρ) ∼ ρ−3/2 for 1 � ρ � 0. (30)
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2

max

x

x

~ 1/

Figure 8. Left: sketch of the density field in the vicinity of a zero of the ejection
rate σ 2 located at x = 0; the density grows as x−2 and saturates to ρmax at a
distance 1x ∼ ρ−1/2

max from the zero. Right: sketch of the diffusive time evolution
of a zero of σ 2, which has remained at a distance less than 1x for a time T before
the reference time t = 0.

Note that this value of the exponent in the large-density intermediate tail is very robust. It
has also been observed for larger numbers of modes and with an environment of the form
σ(x, t) =

√
0 cos (x − ct) (data not shown).

The behavior at ρ � 0 of the PDF of density is related to the large fluctuations of ρmax

and thus to the events when a zero does not move much during a time greater than 0−1. More
precisely, if at a fixed time we observe a large value of ρmax, this means that the zero has not
moved by a distance larger than ρ−1/2

max during a time interval of length T larger than 0−1 (see
the right-hand side of figure 8). When zeros diffuse, this probability relates to the first exit time
distribution of a diffusive process. The probability density of the first time T at which the Wiener
process exits the interval |x | < 1x is ∼ exp(−CT/1x2) (see, e.g., [24]). We thus obtain

Prob (ρmax > ρ) ∼

∫
∞

0−1

e−C T ρ dT . (31)

For ρ � 0 the leading-order behavior is given by T = 0−1. This leads to the following
exponential cutoff for the PDF of mass density:

P(ρ) ∼ e−C 0−1 ρ for ρ � 0. (32)

This exponential behavior is confirmed numerically as can been seen from the lin–log plot in
the inset of figure 7.

4.2. Non-smooth random environment

We now turn to the case of a time-dependent non-smooth ejection rate σ . Figure 9 presents the
PDF of ρ for a number of runs with different values of 0 and h. Note that for large 0 power-law
behavior is observed at small masses—see the inset of figure 9(b). These tails can be understood
using a phenomenological argument similar to the one used in [21]. Consider an extreme event
leading to a very low density in a cell where only ejection of mass has taken place for some time.
For such a configuration we expect an exponential decay of the density and thus a time of the
order of T ∝ −0−1 ln ρ to reach a small density ρ (where σ0 is an effective rate). The probability
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Figure 9. A log–log plot of the PDF of the density ρ for different values of h and
(a) 0 = 0.1 and (b) 0 = 10.

of having this configuration depends only on the properties of the environment. Let p < 1 be
the probability of having such a configuration. As the environment de-correlates in a time of the
order of 1, the number n of independent realizations of the environment that is needed for
the full process to take place during a time T is proportional to T , and thus n = −C 0−1 ln ρ,
where C is a constant that depends on h. Therefore, the probability of this complete event is

p−C 0−1 ln ρ
=

(
eln p

)−C 0−1 ln ρ
= e− ln p C 0−1 ln ρ

= ρ−C 0−1 ln p. (33)

We thus obtain that the probability of such an extreme event is ρβ , with β = −C ln p/0 > 0.
Note that this is actually a lower bound to the small mass tail, which is valid as far as p 6= 0
and C 6= 0. Obtaining an analytic expression for the exponent β is a theoretically challenging
problem that is beyond the scope of this work. The exponent β can be obtained by fitting the
left tail of the mass density PDF inside the range where the power law is observed. The fits are
presented as dashed lines in the inset of figure 9(b), and the dependence of β on the Hölder
exponent h is displayed in figure 10(a) for 0 = 10.

Note that the width of the PDFs in figure 9 clearly depends on the value of the Hölder
exponent h as is apparent in figure 10(b), which represents the variance of the density 〈δρ2

〉 =

〈(ρ − 〈ρ〉)2
〉. Note that neither the exponent β nor the variance δρ have monotonic behavior as

a function of h. This can be qualitatively understood in the following way. When the value of h
is decreased, the number of zeros of σ(x, t) increases. However, their spatial distribution also
depends on the Hölder exponent h. On the one hand, for h > 1/2 the space increments of σ are
positively correlated. This implies that there is no accumulation of zeros. For this configuration,
the mass is transported from the non-vanishing zones of σ(x, t) to the nearest zeros. Therefore
as h decreases, more and more zeros are present, creating large masses and void zones and thus
increasing fluctuations. On the other hand, for h < 1/2 the covariance of increments is negative
and there are some finite-size regions with a large number of zeros. σ(x, t) vanishes many times
in such zones, so that the diffusion is very weak and mass is trapped. This makes the transfer
inefficient and reduces the probability of having extremely high or low mass concentrations. In
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Figure 10. (a) The exponent β of the power-law fit at the small-mass tail of the
PDFs in figure 9(b), i.e. for 0 = 10 and various h as labeled. (b) The variance
〈δρ2

〉 = 〈(ρ − 〈ρ〉)2
〉 as a function of h for different values of 0.

simpler terms, a large number of zeros increases fluctuations as long as they are not too dense.
We expect then a change of behavior near h = 1/2; this is in agreement with figures 10(a) and
(b), especially for the largest value of 0 where the properties of the system are expected to
depend more strongly on the ejection rate distribution of zeros.

5. Scale invariance of the mass density field

In this section we study the scaling properties of the density field. For this, we introduce the
coarse-grained mass density

ρ`(x, t) =
1

`

∫ x+`/2

x−`/2
ρ(y, t) dy. (34)

Note that by homogeneity we have 〈ρ〉 = 〈ρ`〉. The PDF of ρ` is computed using definition (22)
and is displayed in figure 11 for different values of h and 0 = 1. The narrowest curves on each
figure correspond to the largest (non-trivial) scale L/2 and the curves monotonically increase in
width with decreasing scale, down to the smallest scale of the runs.

For spatially smooth environments, the coarse-grained density of mass becomes invariant
when decreasing the scale, as is apparent in figure 11(a) for h = 2. This indicates that the density
field is spatially smooth and that the zeros are isolated. The collapse is faster for small densities.
This is due to the accumulation of mass only in some very small clusters and the creation of
large void zones. These large voids dominate the coarse-grained density statistics up to their
typical size, that is, for ` < L/8, as seen from figure 11(a). In contrast, the typical size `clust of
mass clusters is rather small. Averaging over scales larger than that, this length scale reduces
the largest mass fluctuations. Indeed, the coarse-grained density cannot exceed `clust/` and this
cutoff decreases with `, as can be observed in figure 11(a).

This argument does not apply for non-smooth environments where the distribution of zeros
is highly non-trivial. The scale invariance is then broken, as can be observed in figures 11(a)
and (c). This is also apparent in figure 12(a), which represents the variance δρ2

` = 〈(ρ` − 〈ρ〉)2
〉
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Figure 12. (a) Variance 〈δρ2
` 〉 = 〈(ρ` − 〈ρ〉)2

〉 as a function of ` for different
values of h, as labeled. Inset: the exponent ζ(h; 0) of the variance 〈δρ2

` 〉 ∼

`−ζ(h;0) for 0 = 1. (b) PDF of the coarse-grained density ρ` for h = 1/2 and
different values of 0 and `, showing a collapse at large masses when the
scaling (35) is used.

as a function of ` for different values of h. For h > 1 and ` � L the variance δρ2
` does not

depend on the scale ` (see the inset of the figure). However, one observes that for h < 1 and
` � L the variance presents a power-law scaling δρ2

` ∼ `−ζ that suggests self-similar behavior
of the density. The exponent ζ(h; 0) is displayed in the inset of figure 11(c).

The scaling invariance of the density field can be understood in the neighborhood of the
zeros of σ . Let us assume that the ejection rate vanishes at x = x0. Then, in the neighborhood of
x0, we have σ(x, t)2

= |σ(x0 + x, t)|2 ∼ x2h . Supposing that the density behaves as a power-law
in the vicinity of x0 and rescaling space as x̃ = λx , one can easily see that the rescaled density
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ρ̃ = ρ(x̃) is a solution of

∂ρ̃(x̃, t)

∂t
= 0λ2−2h ∂2

∂ x̃2

[
σ 2(x̃, t)ρ̃(x̃, t)

]
. (35)

Hence, we expect that if the coarse-grained density ρ` presents a self-similar property, then
the PDF of ρ` obtained with a given value of 0 will coincide at large values with that of
ρλ` corresponding to an ejection rate of amplitude 0λ2−2h . This scale invariance is apparent
in figure 12(b) where different PDFs of ρ`, with different values of 0 and ` such that 0`2h−2

=

const, are confronted for h = 1/2 and collapse at large densities.

6. Conclusions

To summarize, we have introduced a diffusion model based on a simple discrete mass ejection
process where the ejection rates are random variables with temporal and spatial correlations. The
model can be interpreted in terms of random walks in a time-dependent random environment.
We have considered space-periodic environments where the temporal dependence of each
Fourier mode is given by independent Ornstein–Uhlenbeck processes and both the amplitudes
of the modes and their correlation times present some prescribed spatial scaling properties.
This allowed us to consider smooth and non-smooth environments with fast and slow temporal
dependence. No other assumptions were made on the environment and we expect such
environments to display generic properties and to be representative of sufficiently general
situations.

The model was studied analytically and numerically. The corresponding particle dynamics
is given by an Itō differential equation with a multiplicative noise and no drift. We observed
that random trajectories diffuse at large times. Also, the probability distribution of their
displacements tends to a Gaussian at large times and the deviations from this asymptotic
behavior decrease as t−1. To take into account the fluctuations of mass due to the randomness
of the environment, we introduced and studied the probability distribution of the density of
mass. We obtained some analytical results on the density of mass in the case of a stationary
environment and showed that it displays a power-law tail at large masses with exponent −2. In
the general case, we observed competition between a trapping effect due to vanishing ejection
rates of the random environment and the mixing due to its time dependence which leads to
large fluctuations in the density of mass. These fluctuations were studied for both the smooth
and the non-smooth random environment. In the smooth case, we showed that the PDF has
an intermediate power-law behavior, like in the stationary case but with an exponent −3/2,
followed by an exponential cutoff. Finally, we studied the spatial scaling properties of the mass
distribution by introducing a coarse-grained density field. For smooth random environments
the coarse-grained density was found to be scale invariant. We showed that at large masses,
it possesses some scaling properties that depend on the coarse-graining size, the ejection rate
typical amplitude and the Hölder exponent of the environment.

The overall dynamics of the model that was introduced in this paper contains several space
scales and timescales. Mass rapidly accumulates near those regions with a vanishing ejection
rate, and slowly moves following diffusion of the zeros. Depending on the properties of the
environment, there is also a clear separation of length scales: small mass fluctuations at small
scales and large ones at the scale of the distance between two vanishing ejection rates. This
scale separation demonstrates the need to determine, by standard homogenization techniques,
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a large-scale effective diffusion tensor and possibly an effective transport term. We leave this
topic for future work.

Extending our approach to dimensions higher than 1 is another possible direction for the
future. The ejection rate will then vanish on complicated sets that, depending on the regularity,
might display fractal properties. Varying the Hölder exponent of the random environment, its
amplitude and the observation scales could then lead to a rather rich collection of different
regimes. For instance, much more effort should be made to confirm whether or not a power-law
is still present in the mass density probability distribution.

To conclude, we stress again that the presence of zeros in the environment has crucial
effects on both the diffusive properties and the mass density statistics. They are responsible for
mass accumulation but, at the same time, constitute barriers to transport. This duality implies
that the fine statistical details of such systems crucially depend on the features of such zeros
and in particular on the local structure of the ejection rate in their vicinity. In particular, the
presence of an extra drift in the dynamics would completely alter the roles of the zeros and
would prevent mass accumulation. In this work, we have decided to focus on ejection rates
that can be written as the square of a generic Gaussian random function. However, this choice
cannot always be relevant and, for instance, it might sometimes be more appropriate to write
the ejection rate rather as the exponential of a random function. This would change drastically
most of the results reported in this paper.
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