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Kelvin-wave cascade and dissipation in low-temperature superfluid vortices
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.
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Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance � [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than � the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k

is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3�−2/3k−5/3, (2)

where � ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V

with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H = ∫

( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N = ∫ |ψ |2dx. Madelung’s transforma-
tion ψ(x,t) =

√
ρ(x,t)

m
exp [i m

h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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TABLE I. List of runs. N⊥ and Nz are the resolutions in the
perpendicular and parallel directions with respect to the vortex. Nrea

is the number of realizations. n is the number of initial KW modes
and m is the exponent k−m of the KW spectrum.

Run N⊥ Nz Nrea n ξ A m

I 256 128 31 3 0.025 2ξ 3.85 ± 0.24
II 256 128 31 2 0.025 4ξ 3.682 ± 0.13
III 256 256 11 2 0.025 4ξ 3.753 ± 0.17
IV 512 256 1 2 0.0125 4ξ 4.116 ± 0.56
V 128 512 11 2 0.1 4ξ

linearized around a constant ψ = ψ̂0, the sound velocity is

given by c = (g|ψ̂0|2/m)
1/2

with dispersive effects taking

place at length scales smaller than the coherence length ξ =
(h̄2/2m|ψ̂0|2g)

1/2
that also corresponds to the vortex core size.

In this Rapid Communication the density ρ ≡ mN/V = 1 and
the physical constants are determined by the values of ξ and
c = 2. Numerical integration of Eq. (3) is performed in a cubic
box of length V 1/3 = 2π by using a standard pseudospectral
code with an exponential time-splitting temporal scheme
(see Table I). Ensemble averaging is done over 30 initial
conditions.

To address the KW problem, an array of four alternate-sign
vortices is used. To obtain a clean initial condition and reduce
initial phonon emission, in a first step, an exact stationary
solution of the GPE with straight vortices is numerically
obtained by a Newton method [23]. Vortices are separated by a
distance π and can be considered isolated when ξ → 0, as the

(a)

(b) (b.1)

(b.2)

(c)

FIG. 1. (Color online) (a) 3D visualization of the density |ψ |2 in the sub-box [0,π ]2 × [0,2π ]. In red an isosurface of the vortex and a (orange)
density plot shows sound waves. (b) Temporal evolution of energies. (b.1), (b.2) Zoom of Ei

kin and Ec
kin, respectively. (c) Incompressible-kinetic,

compressible-kinetic, and wave energy spectra. Dashed lines display k2, k−1, and k−5/3 power-law scalings.
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resolution is increased. Then, a KW is introduced perturbing
the vortex. It reads

x(z) = A

n∑

i=1

cos
(
i z + φx

i

)
, y(z) = A

n∑

i=1

cos
(
i z + φ

y

i

)
,

(4)

where φ
{x,y}
i are random phases. A visualization of the the

density ρ(x) is displayed in Fig. 1(a) at t = 10. The KW is
observed with the (red) isosurface. Phonon waves correspond
to the (orange) cloud that is a density plot of ρ(x) in a narrow
threshold centered around the mean-density value ρ = 1. In
superfluid turbulence, interaction and reconnection between
vortices can influence KW propagation. Here such effects are
neglected. To quantify the vortical and wave energy of the
configuration, we use the standard hydrodynamic energy de-
composition, obtained by using the Madelung transformation
(see [24] for details). The total energy is thus decomposed in
two terms: the incompressible-kinetic energy Ei

kin containing
the contribution of vortical structures and the energy of
phonon waves Ewav = Ec

kin + Eint + Eq, where Eq, Eint, Ec
kin,

are the quantum, internal, and compressible-kinetic energy,
respectively. Figure 1(b) displays the temporal evolution of
Ei

kin, Ec
kin, Ewav, and Etot = Ei

kin + Ewav. Observe in Fig. 1(b)
that their temporal evolution rapidly reaches a (quasi)statistical
stationary regime. The same energy decomposition can be
applied to the energy spectra that are displayed on Fig. 1(c)
at t = 10. The energy spectrum of the compressible-kinetic
energy presents at large wave numbers a k2-equipartition
regime. This range is also present in the initial condition
albeit with smaller values. It rapidly reaches the station-
ary state observed in Fig. 1(c) showing that thermalized
waves coexist with vortices. As Ewav 	 Ei

kin, the large-scale
GPE dynamics is mainly driven by vortices setting a clean
configuration.

The energy spectra displayed in Fig. 1(c) present a k−1

scaling at small k; this can be associated with decaying
of the velocity field of an isolated vortex at long distances
[24,25]. At an intermediate range a scaling compatible with
k−5/3, however, it cannot be associated with Kolmogorov
turbulence as the scale separation V 1/3 
 � is not realized
(here V 1/3 ∼ �). Note that a k−5/3 has been also observed
in a situation where the Kolmogorov regime is not clear to
be applicable [25]. The scaling could be explained by the
presence of a KW cascade and predictions (1) or (2), as the
principal contribution to energy of the fluid (see Fig. 1) is
coming from vortices. However, the relationship between the
KW spectrum and 3D (hydrodynamical) energy spectra is not
clearly established. To explicitly study the KW cascade, we
numerically track the coordinates (x(z),y(z)) of the vortex.
For each value of z the equation ψ(x(z),y(z)) = 0 is solved by
using a Newton method. Derivatives of the fields at intermesh
points are obtained by Fourier interpolation. This allows us
to accurately obtain the vortex coordinates with a precision
much larger than the one given by the mesh size. Once the
coordinates are obtained, it is possible to compute (1D) KW
occupation-number spectrum defined by

n(k) = |ŵ(k)|2 + |ŵ(−k)|2, (5)

where ŵ(k) is the Fourier transform of w(z) = x(z) + iy(z).
The KW spectrum allows us to construct the KW en-
ergy EKW = ∑

k ω(k)nk and the dissipation ε = −dEKW/dt ,
where ω(k) is the KW dispersion relation. It can be ap-
proximated by ω(k) = C(κ/4π )k2, where C is a numerical
constant which eventually depends logarithmically on ξ/�.
Figures 2(a) and 2(b) show the temporal evolution of the
total vortex length L = ∫ √

1 + |∂zw(z)|2dz and the mean
curvature K = ∫ |∂zw(z) × ∂zzw(z)|/|∂zw(z)|3dz, normalized
by their initial values. Note that their temporal fluctuations are
small. Finally, in Fig. 2(b) the temporal evolution of the KW

(a)

(b)

FIG. 2. (Color online) (a) Vortex
length L(t) (blue circles) and curvature
K(t) (red crosses) normalized by L(0) =
6.51 and K(0) = 0.44. (b) KW energy
EKW(t) (circles). The (red) solid line
displays EKW(t) averaged over temporal
windows of width t = 2. Inset: energy
dissipation ε.
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energy is displayed. Note that the energy fluctuates, especially
after the arrival of phonon waves coming from neighboring
cells at t ∼ π/c ≈ 1.5. The solid (red) line presents the
energy averaged over temporal windows of width t = 2;
the decrease in energy is apparent. The inset of Fig. 2(b)
displays temporal evolution of the energy dissipation showing
also some negative values. This can be related to the presence
of phonon waves that excite KW at small scales. Its temporal
average is positive as more energy is radiated than absorbed
by the vortex.

We now turn to the KW spectrum. Two kinds of simulations
are presented: the first trying to enhance the scale separation
between V 1/3 and ξ and thus obtaining a larger inertial range;
the second concerns the dissipative range of the KW spectrum
and then presents a large number of modes between ξ and
smallest resolved scale V 1/3/Nz. Details of runs are listed in
Table I.

Let us focus now on the inertial range of the KW cascade.
The two KS and LN predictions for n(k) read

nKS(k) = 4πCKSκ
2/5ε1/5

k17/5
, nLN(k) = 4πCLNε1/3

�2/3k11/3
, (6)

where CKS and CLN are numerical constants. The temporal
evolution of the KW spectrum is displayed in Fig. 3(a) for run
III. KW are rapidly exited, and populate all wave numbers. At
low wave numbers an excess of energy is observed. For Bose
gases, a wave-turbulence energy transport to large scales was
reported in [26]; here for KW, data do not allow to clearly
observe such a behavior. When energy arrives to scales small
enough to be efficiently dissipated, a steep decay zone called
dissipative range in hydrodynamic turbulence [5] is observed.
As dissipation by phonon emission is very weak [27], the
spectrum stabilizes and a clear inertial range is observed.
For all modes the amplitude of KW remains small; it is
thus expected that weak-turbulence theory applies for wave
numbers such that V −1/3 	 k 	 2π/ξ . Temporal-averaged
KW spectrum of runs I–IV are displayed in Fig. 3(b). A
power-law scaling is clearly appreciated for almost one decade.

The exponent m, obtained from a fit k−m, is shown on Table I
with their respective errors.

For all runs the exponent is slightly larger than the one
predicted by the two weak-turbulence results (6) and presents
a variation of 5%. However, for all runs data support the
exponent −5/3 − 2 predicted by LN, that it is within errors,
and excludes the −7/5 − 2 KS prediction. Note that although
the power-law range extends until near 1/ξ , where dissipation
can start to play a role, the exponent m is stable for the different
runs. Experimentally, one usually has access only to the (3D)
kinetic energy, that for small amplitude KW is dominated by
the singularity of the velocity at the vortex core. However,
a singularity cannot transfer energy and the KW cascade
is thus crucial for understanding low-temperature dissipative
mechanisms of superfluids.

We now turn to the dissipative range of the KW spectrum,
that takes place at wave numbers larger than kξ = 2π/ξ . For
such small scales it is known that dispersive effects of phonon
waves slow down the dynamics producing a bottleneck and
quasithermalization [28]. This effect was observed for large
values of ξkmax, where kmax is the largest wave number. A
natural question is can this slowdown affect the dissipative
mechanism of the KW cascade? If excitations of high-
wave-number phonons are difficult, one could expect that
dissipation of KW by sound emission should be reduced
at such scales. To investigate such a configuration we have
performed simulations with a large value of ξkmax = 17 (run
V). For such a configuration, the inertial range of the KW
cascade is not clearly identified in Fig. 4(a). At very early
times, KWs stop to be populated at wave numbers larger than
kξ ∼ 60 displaying an equipartition of KW spectrum followed
by a faster than exponential decay for k > kξ . Unlike, the
3D dispersive bottleneck, this behavior does not last long and
the statistics of KW modes in this range is not Gaussian. At
later times, the equipartition range is destroyed and a large-k
exponential decay of rate 2 δ(t) [see Fig. 4(a)] is observed.

Finally we study the statistics of KW amplitudes in the
inertial and dissipative range. The PDF of KW amplitudes

(a)

(b)

FIG. 3. (Color online) (a) Temporal evolu-
tion of KW spectrum, run III. (b) Time-averaged
KW spectra, runs I–V. Dashed line displays the
power-law fits.
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(a)

(b) (c)

FIG. 4. (Color online) (a) Temporal evolu-
tion of KW spectrum for run V. Inset: temporal
evolution of the exponential decay rate δ(t). (b)
PDF of KW amplitudes in the inertial range 20 <

k < 40 (run III). (c) PDF of KW amplitudes
in the dissipative range 80 < k < 100 (run III)
and 30 < k < 170 (run V). Inset: same PDF
in log-log, the power law w−7/3 is drawn for
reference.

varying at scales inside the inertial range for run III is obtained
by filtering in Fourier space and keeping modes in the range
20 < k < 40. The normalized PDF is displayed in Fig. 4(b).
The quasi-Gaussian behavior is manifest as expected from
weak turbulence predictions. |w(z)|2 consequently presents
exponential tails. In the dissipative range (for 80 < k < 100)
the PDF shows a strong non-Gaussian character as apparent
in Fig. 4(c). Better statistics are obtained for run V. The PDF
has power-law tails as shown in the inset of Fig. 4(b) and
present, as in turbulent flows, an asymmetry of skewness
〈w3〉/〈w2〉2/3 = −0.15. Recently, in Biot-Savart simulations
[29], a crossover between Gaussian and non-Gaussian statistics
was found in the velocity field at the mean intervortex scale �.
Here, for KWs, the crossover takes place at the scale ξ 	 �.
At scales smaller than ξ , KWs are somehow decoupled of
the large-scale dynamics prescribed by wave turbulence and
are in direct interaction with a strongly fluctuating superfluid
velocity field, as the one found in the GP simulations of
Ref. [30], and hence inherit some properties of the surrounding
fluid.

The behavior of KWs at very small scales is important
at low temperature where mutual friction is absent. In all
vortex-filament models, some small-scale artificial dissipation
is needed to avoid energy pileup. Although vortex-filament
models are not concerned with such small scales, how the
energy is dissipated in those models can affect the vortex
dynamics. It would be important to check if the dissipative
mechanisms used are consistent with dissipation produced by
phonon radiation. A natural extension of this work is to include
thermal waves and vortex interaction by using the projected
GPE, where mutual friction effects are present [31].
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