Krstulovic and Brachet Reply: In the preceding Comment [1], Kozik raised a criticism against the bottleneck proposed in our Letter [2] causing a thermalization delay when dispersive effects, controlled by the coherence length ξ, are large at truncation wave number k_{max}. The late-time energy spectrum presents a front at wave number $k_c(t)$ propagating toward higher wave numbers and leaving in its wake a quasithermalized distribution. Kozik argues that our observations agree with the relaxation scenario, developed by Svistunov [3], that involves no bottleneck and predicts $k_c(t) \sim t^{1/4}$.

Indeed, it is apparent in Fig. 1 [where $k_c(t) \sim t^a$ corresponds to a line of slope $(\alpha - 1)/\alpha$] that four out of eleven runs (vi, vii, viii, and xii) are somewhat compatible with the Svistunov prediction. However, the prediction works only in the limited range $0.4 < k_c/k_{\text{max}} < 0.8$ where run xi, with Taylor-Green initial data and $\xi k_{\text{max}} \sim 6$, yields a slope of -2.4. Runs vi, vii, and viii, with initial data prepared using the stochastic Ginzburg-Landau equation and $\xi k_{\text{max}} \sim 6$, have slopes closer to the Svistunov prediction of -3. Runs that saturate with $k_c/k_{\text{max}} \sim 1$ are reaching (truncated) thermal equilibrium and are not spectrally well converged. In contrast, runs i–iv, with $\xi k_{\text{max}} \sim 24$, saturate at $k_c/k_{\text{max}} < 0.4$ and are well converged but the data suggest a logarithmic growth of $k_c(t)$ (vertical line on Fig. 1), a behavior very different from that predicted in [3].

This discrepancy is perhaps due to the fact that Svistunov considers a two-stage process: first a condensation produced by a particle-flux wave propagating to low energies and then a wave propagating from the low to high energy region. It is not absolutely clear that the initial conditions of our Letter [2] really correspond to any of the stages considered by Svistunov [see the discussion following Eq. (4.7) of [3]].

Concerning the criticism against our use of the word “bottleneck,” we believe it is related to a limitation in Svistunov theory. Indeed, it is well known that Bogoliubov’s dispersion relation $\omega_B(k) = kc(1 + k^2 \xi^2)^{1/2}$ (where c is the sound velocity) implies (around wave number $k \sim 1/\xi$) a change from propagative to dispersive behavior. This elementary point is not completely addressed in Svistunov theory, in particular, at the level of the kinetic equations 3.10–3.13 of [3] and Eq. (1) of [1,4]. Thus Svistunov’s analysis is applicable only for wave numbers $k \gg 1/\xi$. This limitation does not allow one to appreciate the importance of ξ and to grasp that $k\xi$ (in particular ξk_{max}) is an important dimensionless parameter in this problem leading to a crossover between different regimes [see Fig. 1 and also Figs. 7(b) and 7(c) of [6]].

In a physical BEC, k_{max} correspond to the equipartition wave number k_{eq} (see [2] and Sec. IV of [6]). Sinatra and Castin [7] have shown that the slowdown of thermalization reported in [2] can be related to the behavior of the (classical) damping rate around equilibrium that reaches a maximum around $k\xi \sim 3$ and decays for $k\xi \gg 1$. They have established that, at fixed $k\xi$ well beyond its maximum, the (quantum) Beliaev-Landau damping rate approaches the classical one provided $k_B T/(|\tilde{\psi}_0|^2 g) > 200$ which could be achieve experimentally using Feshbach resonance.

We acknowledge helpful discussion with S. Nazarenko.

Giorgio Krstulovic and Marc Brachet

1Laboratoire Cassiopée, Observatoire de la Côte d’Azur, CNRS, Université de Nice-Sophia-Antipolis, Boulevard de l’Observatoire, 06300 Nice, France

2Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France

Received 8 July 2011; published 23 August 2011
DOI: 10.1103/PhysRevLett.107.099602
PACS numbers: 67.25.dj, 03.75.Kk, 42.65.Sf, 47.27.—i

[4] The correct collision integral that takes into account the Bogoliubov dispersion relation is 4–26 of [5].

