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This document gives technical details about the numerical resolution of the kinetic equation.
Firstly, we describe the resonant manifold, the expression of the collision integral for axisymmetric
and vertically symmetric spectra. Secondly, we show the numerical grids used for the computations.
Thirdly, we present our integration and interpolation schemes. Finally, we explain our time-stepping
scheme. The last sections provide additional studies based on wave kinetic equation simulations
concerning the random perturbation of the initial condition and forcing shape and width.

COLLISION INTEGRAL AND RESONANT MANIFOLD

For axisymmetric and vertically symmetric spectra, the kinetic equation can be written as [1]

ṅk = Stk[nk] + Fk −Dknk = 8π
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where k1z, k2z, and the scalar products of horizontal wave-vectors (kh · k1h, kh · k2h, and k1h · k2h) are evaluated
for the solution of the resonance conditions, i.e. k = k1 + k2 and ωk = ω1 + ω2 (or permutations). Here, we have
introduced a forcing term Fk and dissipative term Dknk, with Dk a dissipation coefficient. We fix
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were (kfh, |kfz|) are the wave vectors component amplitudes of the forced modes, ∆kf fixes the width of the forcing,
and the normalization factor f0 is fixed such that the energy injection rate (computed numerically) is equal to unity.

The parametrization of the resonant manifold can be found in Lvov et al. [2]. For Rk(h)
12 k = k1+k2, ωk = ω1+ω2,

we have the two branches
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For R1(h)
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The R2(h)
k1 and R1(h)

k2 terms give the same contribution to the collisional integral, which is used to reduce the compu-
tational cost. Because (kh,k1h,k2h) form a triad, they must satisfy the triangular inequalities

kh ≤ k1h + k2h, k1h ≤ kh + k2h, k2h ≤ k1h + kh, (12)

meaning that (k1h, k2h) must lie in the so called “kinematic box” shown in Fig.1(a). It is therefore more convenient
to work with the (p, q) variables such that

k1h =
kh + p+ q

2
and k2h =

kh − p+ q

2
. (13)

The kinematic box is then given by the domain (p, q) ∈ [−kh, kh]× [0,∞[ and the collision integral reads

Stk = 4π
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√
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FIG. 1. (a) Kinematic box defined by conditions (12) and the (p, q) coordinates (13). (b) Illustration of the grid used for the
computation of the collision integral at a given (kh, kz). Blue and green cells corresponds to regions where special treatment is
required because of singularities (zeros of ∆(p, q)). The size of these cells have been increased for visualization purposes.

NUMERICAL GRIDS

We store the spectra on a logarithmic grid of Mh ×Mz points. Namely kα takes values in

kα[i] = kα,maxλ
−Mα+i
h , i ∈ [1 : Mα], (16)

with λα = (kα,min/kα,max)
1/(1−Mα) for α = h or z. For each (kh, kz) of the grid, we compute Stk by integration

over (p, q) ∈ [−kh, kh] × [0, qmax], where qmax = 2kh,max is a cutt-off for large q (i.e. large k1h and k2h). We use
logarithmic grids also for p and q: We note p = ∓kh ± a where a takes value on a logarithmic grid of Mp points
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between amin and kh (see equation (16)). To save computational time, we take Mp = max(8, ih) where ih is the
kh index on the (kh, kz) grid. For q, we use Mq = 2Mh points grid between qmin and qmax = 2kh,max. We choose
amin = kh,min/Mh and qmin = kh,min/Mq such that increasing resolution allows to improve accuracy at the border
of the kinematic box. An illustration of the grid is given in Fig.1(b). With these choices, the numerical cost is
∼ Mh ×Mz ×Mp ×Mq ∼ M3

h ×Mz operations per time step.

INTEGRATION AND INTERPOLATION SCHEMES

Integration on logarithmic grids are performed by using the trapezoidal rule after a change of variable. For example,
integration in q gives

qi+1∫
qi
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2
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For q ≤ qmin ≪ kh,min, we have an integrable singularity with ∆(p, q) ≃ 1
2
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where the standard trapezoidal rule (without change of variable) is used and L(p, 0) is given by the maximum between
0 and a linear extrapolation. The contribution of the region q ≥ qmax is not computed and is negligible because of
dissipation. The integration scheme is easily adapted to the variable p, and generalized to 2D. We checked that this
integration scheme allows us to reach order 2 precision. In order to compute n1 = (k1h, |k1z|) and n2 = (k2h, |k2z|), we
interpolate with a bilinear fit of the form nk = c0 + chkh + cz|kz|+ βkh|kz|, where (c0, ch, cz, β) are constants in each
cell. This interpolation scheme is of order 2 precision. For extrapolations, we simply fix nk to the maximum between
0 and a linear fit whose coefficients are fixed with the two first grid points. We checked that the collision integral
conserves well the energy for some test spectra. Namely, the energy conservation ratio

∫
ωkStk dk/

∫
ωk|Stk| dk

(see Eden et al. [3]) remains less than few % in our simulations, and decreases as M−2 for M = Mh = Mz.

TIME STEPPING

For the time evolution, we use the splitting method. Namely, the dissipative operator is treated implicitly for half
a time step. Then, we use the Runge-Kutta 2 method to treat the collision integral and forcing terms. Finally, we
apply again the dissipation operator for half a time step. This method allows us to achieve second-order precision.
We employ adaptative time-stepping to follow rapid changes in the wave-action spectrum, and to save computational
time when slow changes occur. For this, we compute the ratio between the time step dt and the minimum of the
nonlinear time tnl,k = |nk/Stk| (which is the inverse of the Boltzmann rate used in other studies, see e.g. [4]) every
time step. If dt/min

k
tnl,k > 0.5, we decrease the time step by a factor 1.25. Conversely, if dt/min

k
tnl,k < 0.05, we

increase the time step by a factor 1.25.

EFFECT OF RANDOM INITIAL CONDITION PERTURBATIONS

To check the influence of initial perturbations, we have run other simulations employing the log-normal forcing with
kfh = kfz = 0.07, but with an initial perturbation for the wave-action spectrum:

nk(t = 0) =
a|ηk|
ωk

, (19)

where a is the noise amplitude and ηk is a random variable distributed according to the normal law. It corresponds
to a statistically homogeneous perturbation of the 3D energy spectrum nkωk. For these simulations, we used Mh =
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Mz = 40 grid points. In Fig.2, we show the 2D energy spectrum at different times for two simulations with a = 0.01
and a = 1. We observe that the same interactions (local and nonlocal) are responsible for the evolution of the energy
spectrum. Yet, when the noise amplitude is larger, it takes a longer time to see the resonance lines emerge from the
background noise (Fig.2(d)) when compared to a simulation with a small noise amplitude (Fig.3(b)). Interestingly, we
see that the spectrum is smoothed out in regions near the nonlocal interactions branches toward large wave vectors,
shown by dashed lines in Fig.2(c) and (f). It shows that the forcing can interact directly with small scales through
non-local interactions. Yet, it does not significantly change the evolution of the internal gravity wave spectrum, at
least for this set of parameters.

FIG. 2. 2D energy spectrum e(kh, kz, t) at different times for two simulations with two different initial noise amplitude (19):
(a-c) Small noise amplitude a = 0.01 and (d-f) Large noise amplitude a = 1. Dashed lines are for non local interactions (see
Fig.2 of the manuscript).

EFFECT OF FORCING SHAPE AND WIDTH

To check the influence of the forcing properties, we have run other simulations employing a top-hat forcing:

Fk =
f0
ωk

Θ(kh − kfh/w)Θ(kh + kfhw)Θ(kz − kfz/w)Θ(kz + kfzw), (20)

where Θ is the Heaviside function, kfh = kfz = 0.07 is the forcing position, w the forcing width factor, and f0 is such
that the total energy injection rate is equal to unity. For these simulations, we used Mh = Mz = 40 grid points. In
Fig.3, we show the energy spectrum at different times for two simulations with w = 1.25 and w = 2. We observe
that the same interactions (local and nonlocal) are responsible for the evolution of the energy spectrum. Yet, a
larger forcing width involves more resonances, spreading energy faster at early times (Fig.3(d)), when compared to a
simulation with a narrow forcing (Fig.3(b)). In particular, the direct energy transfer (to large wave vectors) is faster
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with a wide forcing range. Interestingly, the last state of the energy spectrum is very similar for w = 1.25 (Fig.3(c))
and w = 2 (Fig.3(f)).

FIG. 3. 2D energy spectrum e(kh, kz, t) at different times for two simulations with top-hat forcing with different width (20):
(a-c) Small forcing width w = 1.25 and (d-f) Large forcing width w = 2. The colored lines shows the trajectory of the integral
scales (see Fig.4 of the manuscript).
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