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We study intermittency of circulation moments in turbulent superfluid helium by using
experimental grid turbulence and numerical simulations of the Hall-Vinen-Bekarevich-
Khalatnikov model. More precisely, we compute the velocity circulation �r in loops of
size r laying in the inertial range. For both experimental and numerical data, the circulation
variance shows a clear Kolmogorov scaling 〈�2

r 〉 ∼ r8/3 in the inertial range, independently
of the temperature. Scaling exponents of high-order moments are comparable, within error
bars, to previously reported anomalous circulation exponents in classical turbulence and
low-temperature quantum turbulence numerical simulations.
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I. INTRODUCTION

Turbulence, the disordered and chaotic motion of fluids, is an ubiquitous phenomenon in nature
taking place at very different length scales, from astrophysical to microscales [1]. Its dynamics
is described by complex velocity fields dominated by vortices, regions of the flow with a strong
local rotation. Despite great efforts and improvements made on its understanding over the last two
centuries, there is still no full theory able to describe the dynamics of turbulent flows completely.

The most traditional way of characterizing velocity fluctuations in classical turbulence (CT) at
a given scale r = |r| is using the so-called structure functions Sp(r) = 〈[v(x + r) − v(x)]p〉, where
the brackets indicate an average in space, time, or over different ensembles. When a large scale
separation exists between the forcing scale L and the dissipative scale η, the structure function
displays power laws as Sp(r) ∼ rζp for η � r � L. For homogeneous isotropic flows, in 1941
Kolmogorov predicted the self-similar scaling ζ K41

p = p/3 (K41 prediction) [2]. Such a prediction
is based on a mean-field approach and simply based on dimensional analysis. Experiments and
numerical simulations on homogeneous isotropic CT have, however, showed some deviations from
K41 theory [3]. This breakdown of self-similarity is usually attributed to the highly intermittent
nature of velocity fluctuations at small scales. There are several phenomenological theories based
on multifractality intending to describe the intermittency of turbulent flows [4–6].

A different system with a manifest intermittency is quantum turbulence (QT), the turbulence
taking place in superfluids [7]. When liquid 4He is cooled below the critical temperature of
Tλ = 2.17 K, it undergoes a phase transition into a superfluid state [8]. Its dynamics at nonzero
temperatures can be interpreted as two-fluid systems that mutually interact between themselves:
a superfluid component with a velocity field vs that presents no viscosity, and a normal viscous
component vn that is described by the classical Navier–Stokes equations [9]. These two components
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can move in phase (coflow) or in counterphase (counterflow). In the first case, it has been observed
both in experiments and numerical simulations that the statistical properties of the flow at large
scales follows a behavior similar to classical fluids [10]. On the other hand, counterflow turbulence
dynamics differs from classical fluids, displaying an inverse energy cascade and a breakdown of
isotropy at small scales [11,12].

In superfluid 4He, the relative densities between the normal and superfluid components depend
on temperature, and therefore there is an open discussion on whether or not there is a dependence
of intermittency on the temperature. Experimental studies on QT at the wake of a disk in superfluid
4He at temperatures between 1.3 K � T � Tλ show that there is no temperature dependence on the
intermittency [13]. Other sets of experiments on homogeneous isotropic QT show that there is no
temperature dependence up to p = 6, but there are some deviations from CT [14,15]. Numerical
simulations on QT using different models like the Gross-Pitaevskii (GP) equation, shell models, or
the HVBK (Hall-Vinen-Bekarevich-Khalatnikov) equations show a clear temperature dependence
that is amplified at intermediate temperatures of 1.8 � T � 2 K, where the density fractions of
each component approach each other [16,17]. However, some HVBK-based shell models show an
enhancement of intermittency on this temperature range while others show some decrease or even
nonintermittent behavior [18,19]. Given the lack of consensus between experiments and numerical
simulations, further studies are required on this subject.

An alternative way of studying intermittency in turbulent flows is using moments of the velocity
circulation instead of the velocity increments [20–23]. The velocity circulation around a closed loop
C enclosing an area A is defined by

�A(C; v) =
∮
C

v · dl =
∫∫

A
ω · n dS, (1)

where in the second equality we make use of the Stokes theorem, with ω = ∇ × v the vorticity field.
First theoretical studies on the statistics of velocity circulation suggested that the probability density
function (PDF) follows the area rule, that is, within the inertial range of scales, they depend only
on the minimal area circumscribed by the closed loop [20,24]. Further numerical studies at low
Reynolds numbers suggested that velocity circulation is a highly intermittent quantity, as well as
velocity increments [21–23]. These results were also observed in experiments of homogeneous and
isotropic turbulence in classical fluids [25]. It was recently shown using high-resolution numerical
simulations of the Navier–Stokes equations that the moments of circulation present a clear scaling,

〈
�p

r

〉 ∼ rλp, for η � r � L, (2)

with r = √
A, which deviate from Kolmogorov-based prediction λK41

p = 4p/3 for larger moments
[26]. Moreover, in numerical simulations of the GP equation, a model for low-temperature super-
fluids, a very similar behavior between CT and QT was observed [27]. The advantage of using
the velocity circulation to study intermittency is that it is an integral quantity, and allows for
the development of new theories for intermittency [28–30]. To our knowledge, there is still no
experimental studies in superfluid 4He of the scaling laws of velocity circulation.

In this paper, we study intermittency of superfluid 4He from the point of view of velocity
circulation. We measure the circulation scaling in experiments of grid turbulence in superfluid 4He
and compare them with numerical simulations of the coarse-grained HVBK equations at different
temperatures (see Sec. II for details on the experimental and numerical methods). The analysis
is performed for large-scale statistics of QT. We show that for both experiments and numerical
simulations, the scaling exponents of low-order moments do not depend significatively on the
temperature of the superfluid. In particular, for numerical simulations we show that high-order
moments display the same intermittent behavior as in CT. These results are in agreement with the
experimental observations of the velocity increments [13,31]. This paper is organized as follows.
In Sec. II, we provide details of our experimental and numerical methods, including the model
we use and the algorithm for computing the velocity circulation. Then, in Sec. III we present our

104604-2



VELOCITY CIRCULATION INTERMITTENCY IN …

(a) M

GN2 vent

Motor

He+D2 gas Mixture

Pump

Pump

Laser

Optics

CCD cameraGrid

Window

LN2 shield

Bellows

LHe
bath

Flow channel
Injection tube

Drive shaft

~

(b)

(c)

FIG. 1. (a) Experimental apparatus for grid turbulence of the superfluid 4He. (b) Typical experimental
velocity field obtained from the PTV measurements of grid turbulence in superfluid 4He following the
procedure described in Sec. II A. (c) Turbulent kinetic energy density as a function of decay time for a typical
acquisition at T = 1.95 K.

experimental and numerical results. Finally, in Sec. IV we summarize our results and discuss known
results on the circulation intermittency.

II. EXPERIMENTAL SETUP AND MATHEMATICAL MODEL

A. Experimental setup

To examine the circulation statistics experimentally, we have conducted velocity-field measure-
ments in quasiclassical turbulence generated in He II by a towed grid using the particle tracking
velocimetry (PTV) method [15]. The experimental apparatus, shown in Fig. 1(a), consists of a
transparent cast acrylic flow channel with a cross-section area of 1.6 × 1.6 cm2 and a length of
33 cm immersed vertically in a He II bath (more details of the setup can be found in Ref. [32]).
The bath temperature is controlled by regulating the vapor pressure. A brass mesh grid with a
spacing of 3 mm and 40% solidity is suspended in the flow channel by stainless-steel thin wires
at the four corners. A linear motor outside the cryostat can pull the wires and hence the grid at a
speed up to 60 cm/s. In the current paper, we used a fixed grid speed at 30 cm/s. To probe the
flow, we adopt the PTV method using solidified D2 tracer particles with a mean diameter of about
5 μm [32]. These particles are entrained by the viscous normal-fluid flow due to their small sizes
and hence small Stokes number [15,33,34], but they can also get trapped on quantized vortices in
the superfluid [35–38]. A continuous-wave laser sheet (thickness: 200 μm, height: 9 mm) passes
through the center of two opposite side walls of the channel to illuminate the particles. The motion
of the particles is then capture by a CCD camera at 200 frames per second at an angle perpendicular
to both the flow channel and the laser sheet. The pixel size of the camera is 7.5 μm × 7.5 μm
with a full view resolution of 2560 × 1440 pixels. We install a Nikon Micro-Nikkor 105 mm f/2.8
lens to the camera so the view region is coupled to the camera sensor at a ratio of nearly 1:1. The
exact length scale in the images can be calibrated by measuring the pixel distance between the two
side walls of the channel. We set t = 0 when the grid passes the center of the view window and
typically record the particle motion continuously for 40 s. A modified feature-point tracking routine
[32] is adopted to extract the trajectories of the tracer particles from the sequence of images. In the
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current paper, we focus on analyzing the data obtained in the time interval t = 3 s to t = 5 s at two
bath temperatures, i.e., T = 1.65 K and 1.95 K. The turbulence at these decay times appears to be
reasonably homogeneous and isotropic, and its turbulence intensity is relatively high such that an
inertial range exists [15].

For circulation analysis, it is more convenient to have two-dimensional Eulerian velocity field.
To generate this information using the spatially sparse PTV data, we adopt the method reported
in Ref. [39]. We first combine the velocity data v(x, y) obtained from 11 successive images into
a single velocity-field image. This procedure assumes that during the acquisition time of these 11
images (i.e., 50 ms), the velocity field does not change considerably, so these data describe a single
instantaneous velocity field. Then we divide the combined image into square cells with side length
� = 0.02 mm so most of the cells have at least 1–2 data points. The velocity assigned to the center of
each cell is calculated as the Gaussian-averaged velocity of particles inside the cell with a Gaussian-
profile variance σ ≈ �/2 to ensure that the Gaussian weight drops to near zero at the cell’s edge.
Occasionally, there may not be any particles that fall inside a particular cell. In this case, we increase
the size of this cell by a factor of 2, and this process may be repeated until a few particles fall in the
enlarged cell so the velocity at the cell center can be determined. A representative resulted velocity
field v(x, y) obtained at T = 1.95 K is shown in Fig. 1(b) . In Fig. 1(c), we show the time evolution
of the turbulent kinetic energy density, defined as Ex,y = 〈v2

x,y〉/2. At t � 3 s, the kinetic energy
density of the velocity components in both x and y directions are comparable, suggesting that the
flow is relatively isotropic. Furthermore, a decay scaling Ex,y ∝ t−2 at t � 3 s is clearly visible. This
scaling is a characteristic feature of the homogeneous and isotropic turbulence in He II when the
size of the energy containing eddies are saturated by the channel width [40]. Here we specifically
analyze the data at 3 s � t � 5 s, since the flow is reasonably homogeneous and isotropic and the
turbulent kinetic energy density is relatively large such that a clear inertial range may exist.

To aid the discussion of the statistical analysis, we have also calculated the Taylor microscale
λT = √

15ν/εvrms and the Taylor Reynolds number Reλ = vrmsλT/ν. These calculations involve
the evaluation of the energy dissipation rate ε. As explained in more detail in our previous work
[15], we calculate the energy dissipation rate based on the measured velocity derivatives in the x-y
plane. The obtained Reλ is 40–60, and the corresponding Taylor microscale is 0.15–0.17 mm for 3 s
� t � 5 s at both 1.65 K and 1.95 K.

B. Model for superfluid helium

The dynamics of superfluid helium at finite temperatures and scales larger than the intervortex
distance can be described by the coarse-grained HVBK equations [9,18,34,41]:

∂vn

∂t
+ vn · ∇vn = − 1

ρn
∇pn + νn∇2vn − ρs

ρn
f ns + �n, (3)

∂vs

∂t
+ vs · ∇vs = − 1

ρs
∇ps + νs∇2vs + f ns + �s, (4)

∇ · vn = ∇ · vs = 0. (5)

This incompressible two-fluid model describes the motion of the normal (vn) and superfluid
(vs) components via two coupled Navier–Stokes equations. The kinematic viscosity is related to
the dynamic one via νn = μ/ρn, pn,s is the hydrodynamic pressure of each component, and the
total density of the fluid is ρ = ρn + ρs. The superfluid component also dissipates via an effective
viscosity νs that takes into account dissipative effects taking place at small scales that the HVBK
model is not able to resolve, like quantum vortex reconnections and Kelvin waves [42–46]. Both
Navier–Stokes equations are coupled through the mutual friction force between both velocity
components f ns = α
0(vn − vs), with α = α(T ) the mutual friction coefficient that depends on
the temperature of the system. The frequency 
0 = κL is proportional to the vortex line density L
and to the quantum of circulation of the vortices κ , and can be estimated using the enstrophy 
 as
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TABLE I. Table of parameters for the numerical simulations of the HVBK equations. N corresponds to
the linear resolution on each direction, T is the temperature of the HVBK system expressed in Kelvin units,
α the mutual friction coefficient, ρs and ρn the superfluid and normal densities, respectively, νs/νn the ratio of
the kinematic viscosities, and Ren,s

λ to the Taylor-microscale Reynolds number Reλ = vrmsλT/ν of the normal
and superfluid components, respectively. The Reynolds number Retot

λ is associated to the total velocity vtot =
(ρsvs + ρnvn )/ρ. The integral length scale is defined as Ltot

I = ∫
k−1E (k)dk/

∫
E (k)dk.

RUN N T (K) α ρs/ρ ρn/ρ νs/νn Ren
λ Res

λ Retot
λ Ltot

I

I 1024 1.3 0.034 0.952 0.048 0.043 34 412 418 0.56
II 1024 1.5 0.072 0.889 0.111 0.2 187 651 628 0.57
III 1024 1.79 0.156 0.696 0.304 0.8 358 427 389 0.57
IV 1024 1.9 0.206 0.574 0.426 1.25 500 419 462 0.53
V 1024 1.96 0.244 0.504 0.496 1.50 550 410 545 0.57
VI 1024 2.05 0.347 0.362 0.638 1.87 550 345 495 0.54
VII 1024 2.1 0.481 0.259 0.741 2.5 406 193 344 0.56


2
0 ≈ 
 = 〈|ωs|2〉/2 with ωs = ∇ × vs the superfluid vorticity and 〈.〉 denoting a spatial average

[17,34]. Thus, it is possible to find an estimation of the mean intervortex distance of the flow as
� = L−1/2. It is important to remark that this relation is not obtained from first principles. An
alternative approach is to assume that the intervortex distance is of the order of the Taylor microscale
of the turbulent flow � ∼ λT = √

5E/
, with E = 〈|v|2〉/2 the mean kinetic energy and 
 = 
2
0 the

enstrophy of the flow [47]. We use two independent large-scale constant-in-time Gaussian random
forces �n(x) and �s(x) to excite both fluid components and obtain a stationary state.

We study the scaling of velocity circulation in superfluid 4He at different temperatures by
solving numerically the HVBK Eqs. (3)–(5) using a fully dealiased Fourier pseudospectral code in a
periodic cubic domain and a third-order Runge-Kutta integration in time (see Ref. [48] for details).
We perform seven numerical simulations of these equations for temperatures that vary between
T = 1.3 K and T = 2.1 K, using N = 1024 linear collocation points in each direction. All the
parameters used for each numerical simulation are shown in Table I. The mutual friction, normal,
and superfluid density fractions and viscosity ratios were chosen to reproduce the typical values
observed experimentally in superfluid helium at each temperature [49,50]. We report the Reynolds
number associated to the Taylor-microscale Ren,s,tot

λ = vn,s,tot
rms λT/νn,s,tot , where the superscripts

correspond to the normal, superfluid and total components, respectively. The total velocity is defined
as vtot = (ρnvn + ρsvs)/ρ.

For comparison, we also use data from Refs. [27,28]. In particular, we use the circulation
exponents of CT obtained by integrating the Navier-Stokes equations with a Taylor-microscale
Reynolds number of Reλ = 510, and zero-temperature QT generated by using the GP model, with
a separation between the integral length scale LI and the healing length ξ of LI/ξ = 820. Using the
intervortex distance � as the equivalent of the Taylor microscale in the GP model, we can obtain
a microscale Reynolds number of ReGP

λ ≡ 15LI/� = 440. In both cases, the numerical simulations
have a linear spatial resolution of N = 2048.

C. Data analysis

The velocity circulation for the HVBK numerical simulations is computed using the Fourier
coefficients of the velocity fields of each component using our openly available code [51]. Over
each two-dimensional L-periodic slab of the system, in three different orientations, we compute the
circulation over square loops of different sizes r centered at each point x = (x, y) of the domain as
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the convolution [28]

�r (x) =
∫

Sr (x)
ωn,s(x′)d2x′ =

∫∫
Hr (x − x′)ωn,s(x′)d2x, (6)

where ωn,s = (∇2D × vn,s) · ẑ is the two-dimensional vorticity of the normal or superfluid com-
ponent for each slab and Sr (x) a squared planar surface of linear size r centered at x. The
convolution kernel is defined as Hr (x) = �(x/r)�(y/r), where �(x) = 1 for |x| < 1/2 and 0
otherwise, so it can be written in Fourier space in terms of the normalized sinc function as
Ĥr (kx, ky) = (r/L)2sinc(kxr/2π )sinc(kyr/2π ).

This method can be used to compute the simulations for the normal and superfluid components
obtained from the numerical simulations of the HVBK equations due to their periodicity. However,
the velocity fields obtained from experiments are not periodic. Therefore, instead of using the
Fourier coefficients, we compute the circulation directly from the velocity field following the first
equality in Eq. (1). We have checked that the analysis done using this nonperiodic method leads to
the same quantitative results for the circulation moments and their scaling exponents obtained using
the Fourier coefficients and periodic boundary conditions. In particular, we tested these methods
using the velocity fields from the numerical simulations of the HVBK equations.

III. RESULTS

A. Low order statistics from experimental data

We analyze the data obtained from several realizations of grid turbulence in superfluid helium at
temperatures T = 1.65 K and T = 1.95 K following the experimental setup described in Sec. II A.
We determine that the system reaches a regime of fully developed turbulence between three and
five seconds after the grid passes through the center of the region. We study and obtain a two-
dimensional Eulerian velocity field every 0.1 s within this time interval on a rectangular window of
7.98 × 12.48 mm, following the procedure described in Sec. II A. These velocity fields allow us to
compute the velocity circulation around squared planar loops of different linear sizes r, as described
in Sec. II C. As the velocity field is not periodic, we analyze a reduced window of (Lx − r, Ly − r),
obtaining a reduced amount of statistics for larger loops. In Fig. 1(c), we show that the energy
injected may vary between different realizations of the flow, and that within the time interval studied
it shows a consistent decaying. Averaging the different realizations and the circulation obtained at
different times would give a stronger weight to some realizations and to early times of the evolution.
Therefore, we normalize each realization and each time step by the circulation at large scales

�0 = vrmsLI, with the root mean square velocity field vrms =
√

(2v2
x + v2

y )/3 of each time step and

the mean integral length scale LI = ∫
k−1E (k)dk/

∫
E (k)dk, with E (k) the energy spectrum. The

typical integral length scale in our experiments is LI = 4.5 mm and the typical root-mean-square
velocity is vrms = 1.7 mm/s. Figure 2 shows the variance of the normalized circulation �̄ = �/�0

obtained from the averaged measurements as a function of the linear size of the loop normalized by
the Taylor-microscale λT ≈ 0.16 mm. In the inertial range, represented by the green-shaded region,
the circulation variance follows a scaling that approximates the Kolmogorov one λK41

2 = 8/3 for
both temperatures. Moreover, when the variances are compensated by λK41

2 , they approach to a
plateau. Note that scales in this range are larger than the laser sheet thickness and should be little
affected by the construction of the Eulerian field using experimental data.

Figure 3 shows the PDFs of the velocity circulation for both temperatures and for different loop
sizes (in green). At small scales, the PDFs present heavy tails, a clear signature of intermittency. As
the size of the loop increases, they collapse and approach a Gaussian distribution (red dashed line).
This behavior is similar to the one observed for the velocity circulation in numerical simulations of
the Navier–Stokes and GP equations [26–28], and experiments in classical fluids [25].

The study of high-order moments of the circulation 〈�p〉 usually requires a large amount of data
for statistical convergence [52]. Measured moments of order p cannot be trusted if the integrands
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FIG. 2. Left panel: Circulation variance for the average of the experimental acquisitions at temperatures
T = 1.65 K (blue circles) and T = 1.95 K (red squares). The green shaded area indicates the inertial range. The
black solid line corresponds to Kolmogorov scaling law r8/3. Right panel: Circulation variance compensated
by Kolmogorov scaling.

�pPr (�), for a given length scale within the inertial range, do not go to zero for the largest
measured value of �, since the assumption 〈�p〉 = ∫ ∞

−∞ �pPr (�)d� ≈ ∫ �c

−�c
�pPr (�)d�, with �c

the circulation cut-off, breaks down. In Fig. 3, we also show the circulation integrands of the
experimental measurements up to fourth order (in blue) for length scales within the inertial range. In

FIG. 3. Left panel: Experimental PDFs of the velocity circulation at different length scales. Each row
corresponds to a different temperature. Middle and right panels: Circulation integrands up to moment four
for two different length scales laying within the inertial range. The statistical convergence starts to fail on the
fourth moment.
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FIG. 4. (a) Circulation moments for the experimental data up to order four for temperatures T = 1.65 K
(blue circles) and T = 1.95 K (orange diamonds). The inset shows the local slope of the circulation moments
and Kolmogorov scaling as dashed horizontal lines. Green shaded areas indicate the inertial range for both
temperatures. (b) Scaling exponents of the experimental measurements. The error bars indicate the maximum
and minimum values of the local slope within the inertial range. As reference, we show Kolmogorov scaling
λK41

p = 4p/3 and the scaling exponents of classical turbulence obtained from numerical simulations of the
Navier–Stokes equations (gray squares).

particular, for the highest order shown here, the tails fail to converge for some scales. This behavior
suggests that, at best, moment of order four are borderline in terms of statistical converge.

The circulation moments up to the fourth order for T = 1.65 K (blue circles) and for T = 1.95 K
(orange diamonds) are shown in Fig. 4(a). Odd-order moments of circulation shall vanish as there is
no preferential rotation of the flow inducing a symmetry breaking. Therefore, we study their absolute
values 〈|�|p〉. The local slopes, defined as the logarithmic derivative λp(r) = d log〈|�|p〉/d log r,
approach to a plateau within the inertial range, obtaining the scaling exponents λp shown in
Fig. 4(b). The error bars correspond to the maximum and minimum values of the local slopes in
the inertial range. Up to the third order, the scaling exponents seem to follow the Kolmogorov
scaling law for the circulation λK41 = 4p/3. For higher orders, they start deviating from this
prediction, taking smaller values and hence a stronger intermittency. As a reference, we show the
scaling exponents of CT obtained from numerical simulations of the incompressible Navier–Stokes
equations, taken from Ref. [28]. Our experimental data starts deviating from the classical limit for
increasing order moments. However, data does not allow us to enforce this claim due to a possible
lack of statistics to compute the fourth-order moment, as shown in Fig. 3. See Sec. IV for a further
discussion.

B. HVBK results

The experimental results presented in Sec. III A provide evidence of circulation scaling in
superfluid helium turbulence for low-order moments, in particular, observing a Kolmogorov scaling
up to third order. However, the analysis of high-order moments cannot be completely trusted due
to the lack of statistics. To provide insight on this aspect, we perform numerical simulations of
the coarse-grained HVBK Eqs. (3)–(5) using typical parameters for superfluid 4He (see Table I).
We force the system with two independent random forces to obtain a stationary state of homo-
geneous isotropic QT (see Sec. II B for details on the model and numerical simulations). The
two-fluid HVBK model describes the motion of the normal and the superfluid components at
finite temperatures. Therefore, the turbulent properties of the flow may differ between them, so
each velocity component, in principle, should be studied independently. Figure 5 shows the energy
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FIG. 5. Left panel: Spectra of the different energy components for the lowest and highest temperature of
the simulations. Right panel: Velocity cross-correlation defined in Eq. (7) for different temperatures.

spectra of each velocity component in a statistically steady turbulent regime for two temperatures,
the highest and lowest ones studied in this work. For both temperatures and velocity components, the
energy spectra display a scaling close to Kolmogorov one En,s ∼ k−5/3 within an inertial range that
varies depending on the temperature and the velocity component. The reason for these variations
is that the normal and effective superfluid viscosities vary, and also present a different temperature
dependence. One way of defining a homogeneous inertial range to facilitate the analysis of these
two velocity components is by studying the total velocity field vtot = j/ρ with j = ρsvs + ρnvn the
total momentum density.

The use of the total velocity could be valid under the assumption of locking between both velocity
components, in the sense of vn ≈ vs [50,53]. One way of quantifying the scale-by-scale locking is
with the velocity cross-correlation, [17,18]

K(k) = 2Ens(k)

En(k) + Es(k)
, (7)

with Ens(k) the cross-velocity energy spectrum associated to vn · vs. If the cross correlation is equal
to one, it indicates that both components are completely locked, while if it approaches to zero
the superfluid and normal velocities are statistically independent. Figure 5(b) shows that for all
temperatures the velocity components are locked with K(k) > 0.95 at least up to k ≈ 50 except
for the lowest temperature case T = 1.3 K, where the locking stops at k ≈ 20 as a consequence
of the small proportion of normal density. In the inertial range, where the energy spectrum obeys
Kolmogorov scaling, both fluid components are locked, so the study of the normal, superfluid, or
total velocities should be statistically equivalent. Therefore, most of the following analysis on the
velocity circulation is done using the total velocity.

The PDFs of the total velocity circulation normalized by its standard deviation σ = 〈�2〉1/2 for
different length scales are presented in Fig. 6. Here, length scales are normalized by the lambda
microscale λT = √

5E/
 with E = ∫
v2/2dV the total energy of the system and 
 = ∫ |ω|2/2dV

the enstrophy. For all temperatures, the PDFs follow a qualitatively similar behavior as the one
observed in the experiments discussed in Sec. III A (Fig. 3), with heavy tails for small scales and
approaching a Gaussian for large scales. The circulation integrands show a good convergence up to
order eight.

The circulation variance for different temperatures is shown in Fig. 7. The circulation is normal-
ized by �2

T = (λ4
T/3)〈|ω|2〉, which corresponds to the small-scale prediction [27]. In this manner,

when the normalized circulation variance is plotted as a function r/λT, the data collapses for all
temperatures. For each individual temperature, the inertial range extends to a full decade. The green
region corresponds to the intersection of all inertial ranges, corresponding also to scales where
K > 0.95. For all temperatures, the circulation variance follows a scaling close to the Kolmogorov
one 〈�2〉 ∼ r8/3. In the right panel, we show that the local slope approaches a plateau of 8/3 within
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FIG. 6. Normalized PDFs of the velocity circulation � for different loop sizes at different temperatures. In
red dashed lines, we show as reference a Normal distribution. The last panel shows the circulation integrands
up to order eight for T = 1.3 K and a length scale within the inertial range.

the inertial range of scales. To analyze more in detail the temperature dependence of the system,
we show the scaling exponents of the circulation variance as a function of the superfluid density
ρs/ρ for the different velocity components in Fig. 8. The error bars correspond to the maximum and
minimum values of the local slope in the inertial range. The different velocity components display
no significant difference between themselves, supporting the argument of velocity locking. Also, in
all cases there is no apparent temperature dependence and the exponents approach to Kolmogorov
λK41

2 = 8/3. The temperature T = 1.3 K is removed from the normal velocity scaling due to the fact
that the normal mass density is very small, displaying no clear scaling.

For high-order moments, the scaling exponents of the system seem to follow the same behavior
observed in numerical simulations of the Navier–Stokes and GP equations [26,27], the latter repre-
sented by the shaded area in Fig. 9(a) which accounts for the error bars of data from Ref. [28]. For

FIG. 7. Circulation variance of the total velocity vtot for different temperatures. Black solid lines corre-
spond to Kolmogorov scaling. On the right, the local slope of the circulation variance, defined as the logarithmic
derivative d log〈�2〉/d log r.
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FIG. 8. Scaling exponents of the second-order moment of the velocity circulation at different temperatures
for (a) the total velocity, (b) the normal velocity, and (c) the superfluid velocity fields. As a reference, the solid
black line shows Kolmogorov scaling λK41

2 = 8/3. Error bars indicate the maximum and minimum value of the
local slope within the inertial range. The lowest temperature is removed from the middle panel due to the low
mass density of the normal component.

p � 3, the scaling exponents of the velocity circulation follow Kolmogorov scaling λK41
p = 4p/3,

while for higher-order moments up to p = 8 the scaling can be described by different multifractal
models [26,28,29]. Figure 9(b) shows the scaling exponents from p = 2 to p = 8 as a function of
the superfluid density. Horizontal dashed lines correspond to the exponents obtained in CT, and the
gray area including its error bars. Here, it is clear that there is no apparent temperature dependence
on the circulation scaling even for high-order moments, following in all cases the same behavior as
in CT.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have addressed the scaling of circulation moments in superfluid helium at differ-
ent temperatures. We have used superfluid grid turbulence experiments and numerical simulations
of the HVBK model. We have compared the resulting circulation scaling exponents with those of
Navier-Stokes (CT) and GP (zero-temperature QT) simulations from Ref. [28].

We obtained the scaling exponents for experiments at temperatures T = 1.65 K and T = 1.95 K
up to order four. Remarkably, we have observed a clear Kolmogorov scaling for the circulation
variance, and there is no apparent temperature dependence within the error bars. For the HVBK

FIG. 9. Scaling exponent of the p-order moments of the velocity circulation at different temperatures. As a
reference, the solid black line shows Kolmogorov scaling λK41

p = 4p/3 and gray shaded area shows the scaling
obtained from numerical simulations of the Navier–Stokes equations, with the black dashed line its mean value.
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FIG. 10. Relative deviation of the circulation scaling exponents λp with respect to K41 prediction λK41
p =

4p/3. Data corresponds to superfluid grid turbulence experiments and numerical simulations of the HVBK,
Gross-Pitaevskii, and Navier-Stokes models. Grid superfluid experiments are realized at two different tem-
peratures (Texp = 1.65K and Texp = 1.95K). Exponents obtained from HVBK data of the current paper are at
temperatures T = 1.3K−2.1K. Error bars are obtained by measuring the maximum and minimum of the local
slope in the inertial range (see text). Classical and zero-temperature quantum turbulence exponents are taken
from Navier-Stokes and Gross-Pitaevskii simulations of Ref. [28]. The green and gray areas show the error
bars for those data sets, respectively.

numerical simulations, we have varied the temperature in the range 1.3 � T � 2.1 K and observed
that there is no clear temperature dependence either on the intermittent behavior both for low and
high-order moments of velocity circulation. Furthermore, experimental and HVBK data coincide,
within error bars, with classical and low-temperature QT simulations. This result is consistent
with experimental observations of the velocity increments in superfluid helium [13,31]. Figure 10
presents the relative deviation (λK41

p − λp)/λK41
p of the circulation exponents λp with respect to the

Kolmogorov scaling λK41
p for all available data.

Note that if one drops error bars, there is a slight systematic departure of the experimentally
measured circulation exponents from those obtained using HVBK simulations. First, one could be
tempted to claim that such a deviation origins from the HVBK description of superfluid helium
which might fail to capture the whole physics of superfluids. Indeed, the HVBK model provides
only a coarse-grained description of superfluids and does not incorporate the dynamics of quantized
vortices. Quantum vortices are related to singularities of the velocity field, which could impact high-
order statistics. Whereas such singularities could affect velocity increments, they have no impact
on circulation as it is perfectly well-defined for quantum vortices (it is actually quantized); see
Ref. [27] for further discussion. Second, the available statistics used to compute high-order moments
might not be enough to observe clean power laws in the inertial range, which could undoubtedly
induce some errors. Finally, the circulation was computed using Eulerian fields constructed from
Lagrangian particles. Several issues can arise from this method. For instance, a lack of particles
in a given location of the flow could induce larger regions of constant velocity with abrupt jumps,
affecting circulation values. Such regions are visible in the experimental Eulerian fields in Fig. 1(b).
Moreover, particles might be trapped by superfluid vortices [34,36,37,43]. In that case, they cannot
be considered perfect tracers, which will affect the determination of the Eulerian fields for which
this assumption is crucial [54]. All those effects are difficult to quantify. On the other hand, the
fact that the variance displays such a clear K41 scaling validates the current method and motivates
its use for further studies. Whether the slight intermittency enhancement observed in experiments
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has an actual physical origin or arises from the construction of the Eulerian fields is an interesting
question that should be addressed in the future.
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