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Critical velocity for vortex nucleation and roton emission in a generalized model for superfluids
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We study numerically the process of vortex nucleation in the wake of a moving object in superfluids using a
generalized and nonlocal Gross-Pitaevskii model. The nonlocal potential is set to reproduce the roton minimum
present in the excitation spectrum of superfluid helium. By applying numerically a Newton-Raphson method
we determine the bifurcation diagram for different types of nonlinearities and object sizes which allow for
determining the corresponding critical velocities. In the case of a nonlocal potential, we observe that for small
object sizes the critical velocity is simply determined by the Landau criterion for superfluidity, whereas for large
objects there is little difference between all models studied. Finally, we study dynamically in two and three
dimensions how rotons and vortices are excited in the nonlocal model of superfluid.
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I. INTRODUCTION

One of the most interesting features of superfluids is their
total absence of viscosity. This means that a particle traveling
in a superfluid experiences no drag force and moves freely
with no friction. However, it took not long for Landau to
realize that if a moving impurity exceeds a certain velocity,
known as Landau’s critical velocity [1]

vL = min
k

ω(k)

|k| , (1)

with ω(k) being the dispersion relation of the superfluid and
k being the wave vector, it generates the spontaneous creation
of elementary excitations that act as a dissipative mechanism
on the impurity. This is known as Landau’s criterion for
superfluidity. In a noninteracting Bose-Einstein condensate
(BEC), the dispersion relation is proportional to k2, so Lan-
dau’s velocity is zero and superfluidity cannot take place. In
a weakly interacting BEC, the system follows the Bogoliubov
dispersion relation [2] and Landau’s velocity is given by the
speed of sound of the superfluid vL = c, while in superfluid
4He, Landau’s critical velocity is smaller than the speed of
sound as a consequence of the well-known roton minimum
appearing in its excitation spectrum [3,4].

In classical compressible fluids, velocities above the speed
of sound would lead to the formation of shock waves [5].
However, shock waves in superfluids are suppressed due to
the dispersive nature of the system. Instead, these structures
are replaced by the nucleation of vortices. In the early 90s
it was first observed numerically in weakly interacting BECs
that a particle traveling through a superfluid may experience a
drag force if it exceeds a critical velocity vc [6], nucleating
vortices in its wake. This critical velocity was found to be
smaller than the speed of sound. The reason for this is that the
local velocity of the flow exceeds the speed of sound some-
where around the surface of the obstacle. Since then, several
efforts have been carried out to provide a better description
of the mechanisms of vortex nucleation, in particular, in the

determination of the critical velocity of superfluids and its
dependence on the size of the moving obstacle [7–13]. The
nucleation of vortices is a process that takes place in different
quantum flows, like BECs [14,15], superfluid of light [16,17],
and superfluid 4He [18]. Numerical simulations in models of
BECs and dipolar BECs showed that the obstacle can create
regular or irregular vortex patterns in its wake, in particular,
the creation of a Bénard-von Kármán vortex street [19–22].

Understanding the process of vortex nucleation is very
important for its practical applications. For instance, it can be
used as a mean of injecting vortices and energy into a system
as in grid turbulence [23,24] and is also a relevant process on
the study of lift force of a flow around an airfoil [25]. The
study of vortices in superfluid 4He presents some difficulties
given that there is not a simple microscopic description of it.
However, it is possible to study some of its phenomenology
assuming a nonlocal interaction between the bosons consti-
tuting the superfluid [26–29]. In this framework, a moving
obstacle is allowed to emit some density excitations known
as rotons [29–31].

In this work, we focus on the determination of the critical
velocity for the nucleation of vortices in different zero-
temperature models for superfluids. In particular, we study a
model that better describes weakly interacting BECs where
compressibility effects can vary and a model that incorporates
a roton minimum in the excitation spectrum. In particular, we
show the differences between the vortex nucleation and roton
creation processes. In Sec. II we introduce the different mod-
els used in this work and, in particular, with the presence of
a moving obstacle. In Sec. III we present the results obtained
in the study of the vortex nucleation in these different models
both in the stationary and dynamical regimes in two and three
dimensions and, finally, in Sec. IV we present our conclusions.

II. MODEL FOR SUPERFLUID 4He

A superfluid at zero temperature constituted by bosons of
mass m can be described by the generalized Gross-Pitaevskii
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(gGP) equation [26,28,32]

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ − μ(1 + χ )ψ

+ g

(∫
VI(x − y)|ψ (y)|2d3y

)
ψ + gχ

|ψ |2(1+γ )

nγ

0

ψ,

(2)

where ψ is the macroscopic wave function of the condensate,
μ is the chemical potential, g = 4π h̄2as/m is the coupling
constant fixed by the s-wave scattering length as, and n0 is
the particle density of the ground state. The last term is a
high-order correction of the mean-field approximation, with χ

and γ being two dimensionless parameters corresponding to
its amplitude and order, respectively. The chemical potential
has been renormalized so that |ψ0|2 = n0 remains the ground
state of the system. The interaction potential between bosons
VI is normalized such that

∫
VI(x)d3x = 1. Note that by choos-

ing a δ-function interaction potential VI(x − y) = δ(x − y),
and setting χ = 0, one recovers the standard Gross-Pitaevskii
(GP) equation [1]. We refer to the local gGP model as the
case where the interaction potential is a δ function, but the
beyond-mean-field corrections are not neglected, i.e., χ �= 0,
the local gGP model.

Perturbing the system around the ground state recovers the
generalized Bogoliubov dispersion relation of the system

ωB(k) = ck

√
ξ 2k2

2
+ V̂I(k) + χ (γ + 1)

1 + χ (γ + 1)
, (3)

where k is the wave number of the perturbation and V̂I =∫
eik·rVI(r)d3r is the Fourier transform of the interaction po-

tential normalized such that V̂I(k = 0) = 1. The speed of
sound and the healing length of the system are respectively
given by

c = c0

√
fχ,γ , (4)

ξ = ξ0√
fχ,γ

, (5)

with c0 = √
gn0/m and ξ0 = h̄/

√
2mgn0 being the speed of

sound and the healing length of the standard GP model,
respectively. The factor fχ,γ = 1 + χ (γ + 1) is a rescaling
parameter of the system. Larger values of χ or γ correspond
to stronger interactions between bosons, thus making the fluid
more incompressible. As a consequence, the speed of sound
increases at the same rate as the healing length decreases.
Note that the product between c and ξ is independent of
the high-order corrections and is associated with the quanta
of circulation κ = cξ2π

√
2 = h/m that depends only on the

mass of the bosons constituting the superfluid.
The gGP model (2) can be rewritten in terms of the relevant

parameters of the system as

∂ψ

∂t
= −i

c

ξ
√

2 fχ,γ

[
− fχ,γ ξ 2∇2ψ − (1 + χ )ψ

+ 1

n0
(VI ∗ |ψ |2)ψ + χ

nγ+1
0

|ψ |2(γ+1)ψ

]
. (6)

This generalized model can be used to provide a better phe-
nomenological description of different systems like superfluid
4He [28], dipolar gases [33], or even the supersolid state
of matter [34]. In the particular case of superfluid 4He, the
following isotropic potential [27,32],

V̂I(k) =
[

1 − V1

(
k

krot

)2

+ V2

(
k

krot

)4]
exp

(
− k2

2k2
rot

)
, (7)

can reproduce the excitation spectrum observed experi-
mentally [4,35]. Here krot = 2π/arot is the wave number
associated with the roton minimum length scale of 4He,
arot = 3.26 Å, and together with the dimensionless param-
eters, V1 and V2 are determined to mimic its experimental
dispersion relation [35]. In this work, this fit was done by
considering that Eq. (6) is written in terms of the heal-
ing length of 4He, ξ = 0.8 Å, and the turnover time at
small scales, τ = ξ/c = 3.36 × 10−13 s, being the speed
of sound in 4He, c = 238 ms−1. Using this system of
units it is possible to determine the values of V1, V2,
and krot to recover the roton minimum in the excitation
spectrum [28]. The beyond-mean-field correction was im-
plemented to avoid the development of instabilities of wave
numbers close to the roton minimum [27]. In the following
sections, all simulations with a nonlocal interaction were done
with γ = 2.8, χ = 0.1, V1 = 4.54, V2 = 0.01, and krotξ =
1.638. This particular choice of γ is set so that the long-
wavelength sound waves are proportional to ρ2.8 according to
experiments [26,36].

A. Superfluid with a moving obstacle

In superfluid 4He, Landau’s critical velocity is determined
by the roton minimum in the excitation spectrum and is asso-
ciated with the emission of density fluctuations. In the case
of an obstacle moving with a velocity U = Uŷ, assuming
energy and momentum conservation, Landau’s criterion for
superfluidity can be rewritten as [31]

k · v − ω(k) = kyU − ω(k) = 0, (8)

showing that there is some anisotropy and a range of excited
wave numbers.

We can describe an obstacle moving in a superfluid with

the Gaussian potential Vobs(r − Ut ) = V0e− 1
2

|r−Ut |2
2 , which de-

scribes a disk (sphere) in two (three) dimensions. The size
of the obstacle in the Thomas-Fermi approximation is deter-
mined by  = D/[2

√
2log(V0)], with D being its diameter.

The amplitude of the potential is chosen as V0 � 1 so that
the obstacle completely depletes the superfluid. Thus, the
equation of motion of a superfluid with a moving obstacle
becomes

∂ψ

∂t
= −i

c

ξ
√

2 fχ,γ

{
− fχ,γ ξ 2∇2 − [1 + χ − Vobs(r − Ut )]

+ 1

n0
(VI ∗ |ψ |2) + χ

nγ+1
0

|ψ |2(γ+1)

}
ψ, (9)
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with the total energy of the system being

E = c2

n0V fχ,γ

∫ {
fχ,γ ξ 2|∇ψ |2 + |ψ |2

2n0
(VI ∗ |ψ |2)

−[1 + χ − Vobs(r − Ut )]|ψ |2 + χ |ψ |2(γ+2)

nγ+1
0 (γ + 2)

}
d3r.

(10)

To determine the critical velocity of the superfluid, it is
convenient to study solutions of the system that are stationary
in the frame of reference of the moving particle [7,11]. To do
this, we look for steady solutions of the wave function of the
form ψ (r, t ) = �(r − Ut ) = �(r̃) with boundary conditions
such that ψ

r→∞−−−→ √
n0. The equation obtained after perform-

ing this transformation is

U · ∇r̃� = i
c

ξ
√

2 fχ,γ

{
− fχ,γ ξ 2∇2 − [1 + χ − Vobs(r̃)]

+ 1

n0
(VI ∗ |�|2) + χ

nγ+1
0

|�|2(γ+1)

}
�. (11)

III. VORTEX NUCLEATION

In this section, we study the different dynamics of an object
moving at a constant velocity of U = Uŷ in a superfluid at
rest. We determine the critical velocity Uc or the critical Mach
number Mc = Uc/c of the system for different diameters D
of the disk, above which it starts nucleating vortices. To do
this, we perform two-dimensional numerical simulations with
periodic boundary conditions of the gGP model with a moving
particle (9). In all cases we solve the system with a spatial
resolution of x = ξ in a squared domain with a size of
L > 5D to minimize spurious effects that may surge as a
consequence of periodicity, using a number of collocation
points that go from 5122 to 20482. We study the differences
of the phenomenon of vortex nucleation for the standard GP
model, the local gGP (9) for different values of χ and γ ,
and the nonlocal gGP with the interaction potential (7) that
supports roton excitations.

A. Critical velocity in the local gGP model

As discussed in Sec. II A, the determination of the critical
velocity can be done by studying the stationary solutions of
the system. A superfluid with a moving obstacle has different
sets of steady solutions, some of them stable and some others
unstable [7,11]. The stable stationary solutions of the system
can be obtained by solving the imaginary time gGP model,
i.e., by replacing t → −it in Eq. (11). However, this method
only recovers states with minimal energy; that is, it can only
be used to recover stable stationary solutions. Therefore, we
implement a Newton-Raphson method to be also able to
obtain unstable stationary solutions of the system (see the
Appendix for details).

Figure 1 shows different energy branches E − E (U = 0)
of stationary solutions obtained as the Mach number of the
disk M = U/c varies. Each of these values was obtained using
a Newton-Raphson method to solve the standard GP (local

FIG. 1. Bifurcation diagram of the energy of stationary solutions
in the standard GP model with a disk diameter of D = 40ξ moving
at different velocities U . The stable branch (solid line) and the two-
vortex (dashed line), four-vortex (dot-dashed line), and six-vortex
(dotted line) unstable branches are shown. The insets show the
density fields of the different branches. Dark colors correspond to
regions where the density vanishes.

interaction potential with χ = 0) and with a disk diameter of
D = 40ξ . The other energy branches correspond to unstable
solutions in which two (dashed line), four (dot-dashed), or six
(dotted) vortices are nucleated. The time evolution of each
of these solutions is stationary in the frame of reference of
the moving disk; i.e., the number of vortices in the system
will not change. The interesting aspect of the bifurcation
diagram of the system is that it provides a way to determine
the critical Mach of the superfluid Mc for a particular disk
size D. Such a value corresponds to the Mach number where
the stable and unstable branches merge together, being in
this case Mc ≈ 0.315. Beyond this critical velocity there is
no stationary solution, meaning that the disk would nucleate
vortices and experience some drag force. The bifurcation dia-
gram observed here is similar to the one obtained in previous
works [7,11], but the exact values may differ due to a different
choice on the potential describing the disk.

To understand how the high-order nonlinear term affects
the dynamics of the system, we study the critical velocity Uc

of the superfluid for different values of χ and γ . Here, we
use in all cases a local interaction potential of VI(x − y) =
δ(x − y), a disk of diameter of D = 5ξ , and values of χ

that go between 1 and 5 with γ = 1 or γ = 2.8. We also
compare with the standard GP model (χ = 0). Note that the
speed of sound and the healing length of the system depend
on the values of χ and γ according to Eqs. (4) and (5). In
particular, we fixed in all the simulations c = 1 and ξ = x.
Therefore, the speed of sound varies between c = 1c0 (χ = 0)
and c = 4.54c0 (for χ = 5 and γ = 2.8). As a consequence,
the critical velocity Uc in the gGP system can take relative
values that are larger than c0, as shown in Fig. 2(a), where
solid and dashed lines correspond to stable and two-vortex
unstable solutions of the system, respectively. The increase of
the relative values of Uc is due to the changes in the properties
of the flow, as the speed of sound of the superfluid c relative to
c0 increases. However, when the velocity is normalized by the
speed of sound of the superfluid c, the critical Mach number
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FIG. 2. Bifurcation diagrams of the energy of stationary solu-
tions of the local gGP model (10) for a disk of diameter D = 5ξ

moving at different velocities U . The velocity is normalized by
(a) the GP speed of sound c0 = √

gn0/m and (b) the superfluid speed
of sound c. Different diagrams correspond to different values of the
amplitude χ and the order γ of the nonlinearity. The stable (solid
lines) and two-vortex unstable (dashed lines) branches are shown.

Mc rescales in a nontrivial manner, as shown in Fig. 2(b). In
particular, Mc decreases with the nonlinearities.

As already shown in Figs. 1 and 2, the critical Mach
number varies according to the size of the obstacle [7,19].
Figure 3 shows the bifurcation diagram of a flow around
a disk of diameters varying between D = 5ξ and D = 40ξ .
The blue curves correspond to the bifurcation diagram of the
standard GP model (χ = 0) and the red curves correspond to
the local gGP with χ = 5 and γ = 2.8. Solid lines correspond
to the stable branch and dashed lines correspond to unstable
solutions with two vortices. As the particle size D increases,
the critical Mach number Mc decreases.

B. Rotons

We now focus on a system with the nonlocal interaction
potential introduced in Eq. (7), which is able to reproduce the
roton minimum in the dispersion relation (3). The parameters
for the high-order nonlinear terms are chosen as described
in Sec. II. The bifurcation diagram of the model with rotons
(yellow lines) for a disk of diameter D = 10ξ is shown in
Fig. 4 and is compared with the local gGP (red lines) and the
standard GP (blue lines). The stable branch in the case with ro-
tons presents an abrupt stop at a Mach number of Mc ≈ 0.248.
This value is close to Landau’s Mach number ML ≈ 0.245,
obtained from applying Eq. (1) to the dispersion relation of

FIG. 3. Bifurcation diagram of the energy of stationary solutions
of a superfluid with a disk moving at a constant velocity U for
different diameters for the disk. Simulations of the GP model (blue
lines) and the local gGP model with χ = 5 and γ = 2.8 (red lines)
are shown. The solid and dashed lines correspond to the stable and
unstable branches, respectively.

the gGP system (3) with the nonlocal potential (7) with the
parameters discussed below that expression, and Landau’s
Mach number of 4He MHe

L = 0.252 assuming c = 238 ms−1

and vL = 60 ms−1 [4,35]. Indeed, when the disk is moving
at a velocity that is greater than but still close to the Landau
velocity, we observe the emission of density modulations on
the fluid, which can be associated with rotons. However, if the
velocity of the disk is not large enough, there is no nucleation
of vortices. This result suggests that there are two kinds of ex-
citations when a nonlocal interaction potential is introduced:
rotons and vortices.

As discussed in Sec. III A, the critical velocity for vortex
nucleation depends on the size of the obstacle. Here, we study
the dependence of the critical Mach number for a wide range

FIG. 4. Bifurcation diagram of a moving disk of diameter D =
10ξ for a local interaction with χ = 0 (blue lines) and χ = 5 and
γ = 2.8 (red lines) and for the isotropic nonlocal potential defined
in Eq. (7) (yellow lines) that reproduces the roton minimum in the
excitation spectrum. The solid and dashed lines correspond to the
stable and unstable branches, respectively.
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FIG. 5. Critical Mach number as a function of the diameter of
the disk for the standard GP model (black) and the local (blue)
and nonlocal gGP (yellow) models. The horizontal solid black line
indicates Landau’s Mach number of the system, ML = 0.248.

of disk diameters in the nonlocal gGP model (yellow line)
and compare it with the same system with a local potential
(blue lines) (Fig. 5). For comparison reasons, we also show
the critical velocity dependence in the standard GP model
(black line). This last one follows a behavior similar to that
of the local gGP simulation but with larger critical values.
The system presents an interesting behavior in the case where
rotons are supported. If the disk diameter is smaller than
D ≈ 100ξ , there is a range of velocities in which the disk in
the nonlocal gGP model emits rotons but no vortices. As the
diameter increases, the critical velocities for systems with and
without roton minimum tend to collapse, presenting a similar
behavior for large obstacles.

According to experiments [18], the critical velocity in su-
perfluid 4He is of the order of vc ≈ 10 cm/s, a value that
is much smaller than Landau’s velocity vL ≈ 60 m/s. How-
ever, the experiments were performed with a fork of size
D = 0.4 mm ≈4 × 106ξ , a value 4 orders of magnitude larger
than the largest one studied in this work of D = 400ξ . The
regime where only rotons are emitted would correspond to a
particle size smaller than 10 nm in superfluid 4He, which, to
our knowledge, to this day has not been studied. However, it
is important to remark that the presence of the roton minimum
seems to be irrelevant in the process of vortex nucleation for
sufficiently large obstacles.

C. Temporal evolution of a moving obstacle

The solutions introduced in Sec. III A provide us with a
better understanding of the system for the study of its temporal
evolution. To do this, we start from a two-dimensional initial
condition at rest with a disk of size D = 20ξ and let it evolve
using the nonlocal gGP equation (6) with a roton minimum
in its excitation spectrum. We apply an external force to the
particle until it achieves the desired velocity. Note that we do
not include a two-way coupling in the system [37]; i.e., the
particle will not slow down after the nucleation of vortices or
the emission of rotons. During the acceleration regime, the

FIG. 6. Two-dimensional density fields of nonlocal superfluid
with a disk of diameter D = 20ξ . Dark zones correspond to regions
where the superfluid is depleted. The disk is moving at a Mach
number at which (a) the system is stationary, (b) rotons are emitted,
and (c) vortices are nucleated. The insets show the two-dimensional
Fourier transform of the density field. Green dashed lines show the
wave number of the roton minimum krot and the blue dotted lines
show solutions of Eq. (8).

disk introduces small density perturbations on the flow. To
mitigate spurious effects caused by these perturbations, we
apply some dissipation during this regime and turn it off as
soon as the target velocity is achieved.

Previous works have already studied the dynamical pro-
cess of vortex nucleation in the standard GP model in either
two-dimensional [7,11] or three-dimensional systems [9], ob-
serving the regular or irregular emission of vortices in the
wake of the moving obstacle [19–21]. Here, we focus on the
nonlocal gGP model and the different regimes of roton or
vortex emission. Figure 6 shows snapshots of the disk moving
at different Mach numbers. In black we show the regions
where the superfluid is depleted, corresponding to either the
obstacle or the vortices. For a velocity that is smaller than
Landau’s velocity ML ≈ 0.245, there are no excitations on the
flow [Fig. 6(a)]. Note that there are some stationary density
modulations around the disk as a consequence of the nonlocal
interaction [26,38], which keep their shape around the disk
as it moves without causing any drag force on it. The inset
shows the two-dimensional density spectrum |ψ̂ |2(kx, ky) of
the superfluid. The excited modes correspond to the density
modulations around the disk. These patterns have already
been observed around small obstacles and vortices in previous
works [26,27,30]. More interestingly, when the particle moves
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M=0.8

M=0.3

M=0.2

(a)

(b)

(c)

FIG. 7. Three-dimensional density field of a superfluid with a
roton minimum in the excitation spectrum. In green, we show a
sphere of diameter D = 20ξ moving to the right at Mach numbers
M = 0.2 (a), M = 0.3 (b), and M = 0.8 (c). In red, we show density
fluctuations around the equilibrium and in blue we show low values
of the density. We can identify three different regimes, one of them
stationary (a), one in which rotons in the shape of a cone are emitted
(b), and one where vortices are nucleated (c).

at a velocity of M � ML [Fig. 6(b)], it introduces some den-
sity fluctuations on the superfluid. The excited wave numbers
obey the anisotropic expression in Eq. (8) computed using the
dispersion relation with rotons, shown as blue dotted lines
in the inset of Fig. 6(b). Finally, for a velocity of M � ML

[Fig. 6(c)], the disk emits rotons but also it starts nucleating
vortices. Due to the mutual interaction between vortices and
the rotons, vortices can annihilate emitting phonons. Thus,
there is a wide range of modes that are excited, as shown in
the inset.

In conclusion, we show here that, at velocities above
Landau’s critical one, the moving obstacle introduces some
elementary excitations with wave numbers that obey Eq. (8).
We can thus identify these excitations with rotons. For larger
velocities, the disk starts nucleating vortices, emitting rotons
and other excitations in a wide range of wave numbers.

D. Three-dimensional system

All of the results discussed until now were obtained from
two-dimensional simulations of the nonlocal gGP model. A
similar behavior can be obtained in three-dimensional sys-
tems. In particular, we studied the motion of a sphere of
diameter D = 20ξ in the z direction in an elongated domain
with Lz = 4L⊥ and a spatial resolution of 256 × 256 × 1024.
In the case of the sphere moving at a velocity of M = 0.2, be-
low Landau’s Mach number, there is no quasiparticle emission
[Fig. 7(a)]. The density fluctuations in red around the sphere
create a pattern induced by the roton minimum but that do

FIG. 8. Stable stationary solutions of a moving sphere of two
different diameters D. The highlighted regions correspond to the in-
tervals where we estimate the critical Mach number should be found,
with the lower bound being the maximum value obtained using the
Newton-Raphson method and the upper bound obtained using the
imaginary time evolution of Eq. (9). The vertical black dashed line
indicates Landau’s Mach number of the system, ML = 0.245.

not emit any excitation on the flow. In the case of the sphere
moving at a velocity of M = 0.3, just above Landau’s Mach
number, it starts emitting rotons in the shape of a cone, shown
as red density fluctuations above the equilibrium in Fig. 7(b).
Note that the cone is emitted in both upstream and down-
stream directions, consistent with negative solutions in the
wave numbers shown in the inset of Fig. 6(b). For a larger ve-
locity of M = 0.8, the particle starts nucleating vortices [blue
rings in Fig. 7(c)]. The depletion of the superfluid is stronger
in the wake of the sphere, where vortices are nucleated. In this
region, many vortex rings reconnect and collapse due to the
interaction with strong density fluctuations introduced by the
roton minimum, shown in red.

We also perform an analysis on the critical velocity in the
three-dimensional case for two sphere diameters, D = 10ξ

and D = 20ξ . These sizes correspond to the small-particle
limit discussed in the two-dimensional case and are chosen in
this way to avoid spurious effects introduced by the boundary
conditions. Larger particle sizes require larger computational
boxes that are prohibitive. The critical velocity of the system
can be determined by the Mach number where the stable
and unstable branches merge. The unstable branch can only
be obtained using a Newton-Raphson method that is too ex-
pensive in three dimensions and is out of the scope of this
work. Therefore, we only show the stable branch in Fig. 8 for
both particle sizes. The stable branch allows us to determine a
lower bound of the critical Mach value, corresponding to the
maximum value of M at which the Newton-Raphson method
converges. We have checked that the imaginary time evolution
of the gGP model, obtained by replacing t → −it in Eq. (9),
does not converge for M = 0.25, which is slightly above the
theoretical value for roton emission, ML = 0.245. Therefore,
we can estimate that the critical Mach belongs to the interval
Mc ∈ [0.24, 0.25] for D = 10ξ and Mc ∈ [0.231, 0.25] for
D = 20ξ (highlighted regions in Fig. 8). These results are
consistent with the ones obtained in two dimensions for small
particles of D < 100ξ . A more precise determination of the
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critical value in three dimensions and the study of the unstable
branch are left for a future study.

IV. CONCLUSIONS

In this work, we study the process of vortex nucleation
in the wake of a moving obstacle in a generalized Gross-
Pitaevskii (gGP) model [28,34] in periodic two-dimensional
systems. We determine the critical velocity of the super-
fluid, the velocity above which superfluidity breaks down, for
moving disks of diameters between D = 2.5ξ and D = 400ξ

by analyzing the bifurcation diagram of stationary solutions
of the system [7,11]. In particular, we study the role of
the beyond-mean-field corrections and the introduction of a
nonlocal interaction potential that can reproduce the roton
minimum in the excitation spectrum, observed in superfluid
4He and in dipolar BECs [4,33], and compare them with the
standard GP model.

Varying the amplitude and order of the high-order non-
linear terms in the local gGP model, we show that the role
of beyond-mean-field corrections is to reduce compressible
effects in the system, increasing the value of the speed of
sound c and decreasing the core size of the vortices. As
the absolute value of the speed of sound increases, the crit-
ical velocity also does. However, it does not do it in a
trivial way as the critical Mach number decreases with the
nonlinearities.

In the case of a nonlocal interaction potential, we show
that the superfluid presents two characteristic velocities, one
of them associated with the emission of rotons and the other
related with the vortex nucleation. In the case of impenetrable
disks of diameter D � 100ξ , the critical velocity is a con-
sequence of the roton minimum in the excitation spectrum.
Above ML ≈ 0.25, the disk starts emitting rotons that, in the
case of the particle moving in the y direction, satisfy the
dispersion relation (8). For small obstacles, there is a range
of velocities where only rotons are emitted and no vortices are
nucleated. In this case, rotons are the reason for the breakdown
of superfluidity. For larger obstacles of diameter D � 100ξ ,
the critical velocity for nucleation of vortices becomes smaller
than the one for emission of rotons, and its value for the
different models tend to collapse, suggesting that for large
obstacles the rotons are not relevant in the mechanism of
vortex nucleation. In the case of a three-dimensional system,
the dynamics of a moving sphere immersed in a superfluid is
consistent with the behavior observed in the two-dimensional
case, although the study is limited to small particles because of
computational constraints. We identify the presence of three
regimes for different particle velocities, one in which the
moving particle does not perturb the flow, one in which it
emits rotons, and a third one in which it nucleates vortices

perturbing the flow in the whole range of scales. The critical
velocity in the limit of small particles is consistent with Lan-
dau’s critical velocity of the system.
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APPENDIX: NEWTON-RAPHSON METHOD

In order to find the critical velocity at which a superfluid
breaks down, i.e., the velocity above which vortices are nucle-
ated, we can study stationary solutions of the system of either
maximum or minimum of the energy E (10). One way of doing
this is to study the imaginary time gGP, obtained by replacing
t → −it in Eq. (11). The evolution of this equation allows
one to obtain a ground state of the system, which corresponds
to a stable stationary solution of the system. However, for
the vortex nucleation problem we expect to find a bifurcation
diagram with stable and unstable solutions of the gGP equa-
tion [7,11], so this method would only allow us to obtain the
stable branch of the system.

An alternative way of computing the stationary solutions of
Eq. (11) is by using the Newton-Raphson method [39]. To find
both stable and unstable steady states, we study an equation of
the form

∂�

∂t
= 0 = L� + N (�) + A(�), (A1)

where L corresponds to a linear operator, N (�) is an arbi-
trary function involving multiplicative and nonlinear terms,
and A(�) corresponds to the advective term. The Newton-
Raphson method consists of finding iteratively a solution of
the above problem. We start from an initial guess �, which
is then perturbed as � − δψ , with δψ small. By lineariz-
ing Eq. (A1) for small δψ , we obtain the following linear
equation:

[L + DW (�)]δψ = L� + W (�), (A2)

with DW (�) being the Jacobian of W (�) = N (�) + A(�)
at �, acting on δψ . To solve numerically this equation, we
use an iterative biconjugate gradient stabilized method with
a preconditioner P = (I − tL)−1, where t is an arbitrary
parameter used to improve convergence [39]. The Newton-
Raphson method can only be used when a good estimation of
the steady state is provided as an initial guess.
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