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We study the statistics of velocity circulation in two-dimensional classical and quantum turbulence. We
perform numerical simulations of the incompressible Navier-Stokes and the Gross-Pitaevskii (GP)
equations for the direct and inverse cascades. Our GP simulations display clear energy spectra compatible
with the double cascade theory of two-dimensional classical turbulence. In the inverse cascade, we found
that circulation intermittency in quantum turbulence is the same as in classical turbulence. We compare GP
data to Navier-Stokes simulations and experimental data from Zhu et al. [Phys. Rev. Lett. 130, 214001
(2023)]. In the direct cascade, for nearly incompressible GP flows, classical and quantum turbulence
circulation displays the same self-similar scaling. When compressibility becomes important, quasishocks
generate quantum vortices and the equivalence of quantum and classical turbulence only holds for low-
order moments. Our results establish the boundaries of the equivalence between two-dimensional classical
and quantum turbulence.
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The chaotic spatiotemporal motion of turbulent flows
is a complex multiscale phenomenon occurring in a wide
variety of systems in nature [1–3]. One of the most
fascinating properties of three-dimensional (3D) turbulence
is that energy is transferred from large to small structures at
a constant energy rate, in a process known as direct energy
cascade. Some geophysical flows, like atmospheres or
oceans, present a quasi-two-dimensional (2D) behavior
due to the suppression of motion in one direction induced
by rotation or stratification [4,5]. Contrary to the 3D case,
2D turbulence exhibits an inverse energy cascade (IEC), in
which energy is transferred toward large scales leading
to the formation of large-scale coherent structures [6,7].
Moreover, enstrophy Ω—defined as one-half the mean-
squared vorticity Ω ¼ hω2i=2—is transferred toward
smaller scales in a process known as direct enstrophy
cascade (DEC) [8–10].
Turbulence also takes place in superfluids, such as 4He

and Bose-Einstein condensates (BEC) [11–13]. Because of
quantum mechanics, low-temperature superfluids are char-
acterized by the complete absence of viscous effects. In 2D
quantum fluids, vorticity is concentrated in topological
pointlike defects with a quantized circulation. The mutual
interaction of these structures, known as quantum vortices,
leads to the out-of-equilibrium state known as quantum
turbulence (QT) [14]. Experiments in 2D BECs and
quantum fluids of exciton-polaritons have shown evidence
of an IEC through the formation of Onsager vortex clusters
[15–17]. Direct numerical simulations (DNS) of 2D and

quasi-2D quantum turbulence have shown the development
of an IEC with the presence of a Kolmogorov energy
spectrum [18–20]. The vorticity field in quantum fluids is a
superposition δ-Dirac supported terms, making enstrophy
ill defined mathematically. Still, it can be phenomenologi-
cally related to the total number of vortices, which in
general can decrease due to vortex-antivortex annihilation
[21]. However, if compressible effects are neglected, the
number of vortices will be bounded by its initial value and
remain almost constant. In this case, one can expect the
development of an enstrophy cascade [22].
Another very interesting property of 2D turbulence is the

lack of intermittency in the IEC. Velocity increments
δvr ¼ vðxþ rÞ − vðxÞ at a length scale r in 2D turbulent
flows follow close-to-Gaussian statistics [23,24], in stark
contrast with 3D turbulence where velocity fluctuations
are strong [1,25]. As a consequence, the structure functions
of order p defined as Sp ¼ hδvpr i follow a self-similar
scaling within the inertial range Sp ∼ rζp with ζIECp ¼ p=3.
The DEC is also nonintermittent as the velocity field
in this regime is smooth, and the scaling exponents follow
ζDECp ¼ p [26].
An alternative way of studying turbulence intermittency

is through the velocity circulation around an area A
enclosed by a loop C, defined as Γ ¼ H

C v · dl. High-
resolution DNS of 3D classical turbulence (CT) have
shown that circulation moments in the inertial range are
less intermittent than velocity increments when compared
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with the self-similar Kolmogorov prediction [1,25,27–29].
Recent experimental studies in quasi-2D CT showed that
circulation in the DEC is nonintermittent, while in the IEC,
it surprisingly presents anomalous deviations [30]. The
study of circulation in QT turns out to be very convenient
due to the discrete nature of quantum vortices. Indeed, DNS
and experiments of 3D QT have shown that circulation
statistics is very similar to 3D CT [31–33]. This result
implies that the nature of circulation at small scales
becomes irrelevant in the inertial scales and motivates
the use of quantum fluids and circulation statistics as a
discrete system to understand intermittency in CT.
In this Letter, we compare the statistics of velocity

circulation in two-dimensional quantum and classical
turbulence, both in the inverse and direct cascades.
Using DNS, we characterize the intermittent behavior of
these two regimes, finding differences and similarities
between 2D CT and QT.
The dynamics of an incompressible two-dimensional

classical fluid is described by the Navier-Stokes (NS)
equation, which in terms of the vorticity field ωðr; tÞ ¼
−∇2ϕ is written as

∂tωþ fω;ϕg ¼ ν∇2ω − αωþ f ð1Þ

with ϕ the stream function such that the velocity field is
ðu; vÞ ¼ ð∂yϕ;−∂xϕÞ, the Poisson brackets are defined as
fω;ϕg ¼ ∂xω∂yϕ − ∂yω∂xϕ, ν is the kinematic viscosity, α
is a linear friction preventing the formation of a large-scale
condensate, and f an external forcing. The dynamics of a
quantum fluid composed of weakly interacting bosons at
zero temperature is described by the Gross-Pitaevskii (GP)
equation

i∂tψ ¼ cffiffiffi
2

p
ξ

�
−ξ2∇2ψ þ jψ j2

n0
ψ − ψ

�
ð2Þ

where ψ is the condensate wave function, n0 is the ground
state particles density, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gn0=m
p

the speed of sound
and ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgn0

p
the healing length, which is propor-

tional to the quantum vortex core size. Here, m is the mass
of the bosons, and g is the coupling constant. It is important
to notice that in the NS equation, circulation takes real
values while, in the GP equation, it is discrete as Γ ¼ nκ,
with n∈Z the vortex charge and κ ¼ h=m ¼ 2π

ffiffiffi
2

p
cξ the

quantum of circulation.
Equations (1) and (2) are solved using a standard

pseudospectral method in a periodic two-dimensional
domain. We use a Runge-Kutta temporal scheme of order
2 for NS and order 4 for GP. For each equation, we optimize
parameters to achieve the largest possible scale separation
for each cascade. For NS, we use 61442 grid points and
81922 for GP. To generate the IEC in NS, we force at small
scales and dissipate by the friction term and by viscous
dissipation. For the DEC, forcing is applied at large scales

and no friction is included. For both cascades, we average
several hundred fields from the stationary state. For the GP
equation, the total energy is conserved, but incompressible
energy (vortices) is irreversibly converted into sound.
Therefore, GP simulations can be seen as decaying turbu-
lent runs. We analyze data when turbulence is the strongest.
For both cascades, we generate an ensemble of initial
conditions with most of their energy concentrated at a target
wave number. These flows are obtained by a minimization
method that reduces the acoustic contribution [20,34].
As we intend to compare QT with incompressible CT,
GP reference runs have a small initial Mach number
M ¼ vrms=c ≤ 0.3 where compressible effects are negli-
gible. For comparison, we also prepare GP DEC initial data
with M ¼ 0.5. See Supplemental Material (SM) for details
on parameter values and initial conditions [35]. Relevant
length scales in the turbulent regimes are shown in Table I.
Figure 1 shows the vorticity field in two-dimensional
classical and quantum flows in the DEC regime. Both
systems display the typical large-scale thin elongated
structures of the enstrophy cascade, despite the fundamen-
tal small-scale difference of vortices. Such structures can
create strong density gradients eventually leading to qua-
sishocks and the spontaneous generation of vortices
[Figs. 1(c) and 1(d)]. As it will be seen later, for low-
Mach flows [Figs. 1(b) and 1(c)] those events are weak and
scarce enough in time and space to not influence turbulence
statistics (see movies in the SM [35]).
According to the Kraichnan-Leith-Batchelor (KLB)

theory [8–10], the energy spectra in the inverse and direct
cascade regimes, neglecting logarithmic corrections, follow

EðkÞ ¼ CEϵ
2=3k−5=3 for kI < k < kf ð3Þ

EðkÞ ¼ CΩβ
2=3k−3 for kf < k < kη; ð4Þ

where ϵ and β are the energy and enstrophy dissipation
rates, respectively, and CE and CΩ are dimensionless

TABLE I. Typical length scales of numerical simulations of the
NS and GP equations, with N the linear collocation points. L0

corresponds to the forcing scale Lf in NS, and the initial
condition characteristic length scale LIC in GP. LI is the integral
length scale, η the Kolmogorov length scale, l the intervortex
distance, and ξ the healing length. Runs GP-dir-M03 and GP-
dir-M05 are both forced at large scales, but the initial flows have
different Mach numbers, M ¼ 0.3 and M ¼ 0.5, respectively.

RUN N LI=L0 L0=η l=L0 L0=ξ

NS-inv 6144 176 � � � � � � � � �
NS-dir 6144 0.65 3788 � � � � � �
GP-inv 8192 16.0 � � � 0.75 45.51
GP-dir-M03 8192 1.7 � � � 0.036 2731
GP-dir-M05 8192 1.55 � � � 0.013 4096
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universal constants. The inertial range for the IEC lays
between the integral scale wave number kI ¼ 2π=LI, with
LI ¼ 2π

R
k−1EðkÞdk= R EðkÞdk, and the forcing wave

number kf. The DEC takes place between the forcing
and the dissipation wave numbers kη, with η the enstrophy
dissipation length scale η ¼ ν1=2=β1=6. Figure 2(a) shows
the incompressible energy spectra of all four simulations.
The subscript 0 denotes the forcing scale for NS or the

initial condition scale for GP. For small wave numbers
k=k0 < 1, we observe the k−5=3 scaling law of the IEC in
both classical and quantum 2D turbulence. For large wave
numbers k=k0 > 1 the energy spectra exhibit a k−3 scaling
law corresponding to the DEC, which in quantum turbu-
lence takes place between k0 < k < kl, with l ¼ 2π=kl
the intervortex distance. We verified that within the inertial
range of the IEC the energy flux becomes close to constant
taking negative values, while the enstrophy flux in the DEC
becomes positive [35]. In the GP case, we also observe the
development of two other scaling laws. Between the
intervortex distance l and healing length ξ (kl and kξ
wave numbers, respectively), the dynamics is governed
by single quantum vortices having an azimuthal velocity
field vðrÞ ¼ κ=ð2πrÞ, which leads to a k−1 energy spectrum
[18,39]. Note that in 3D QT, this is the range of scales in
which Kelvin waves are observed [40–42]. For k > kξ,
there is a k−3 scaling law due to the core of quantum
vortices [39].
We now focus on the statistics of velocity circulation in

2D classical and quantum turbulence. We compute the
circulation Γr ¼

H
Cr
v · dl around squared planar loops of

linear size r. Integrals are performed in Fourier space to
take advantage of the spectral accuracy of the simulations
[43]. For the GP equation, we obtain the velocity field from
the condensate wave function as v ¼ −

ffiffiffi
2

p
cξImðψ∇ψ�Þ=ρ,

after performing a Fourier interpolation of ψ to a resolution
326782 to better resolve the vortex density profiles [31]. For
small scales r=L0 < 1, the circulation variance hΓ2

ri in CT
follows the r4 scaling expected for a smooth field that
extends for the DEC and the diffusive scales [see Fig. 2(b)].
In QT, it follows the r4 scaling for l < r < L0, and there is
a second r2 scaling given by the probability of finding a
quantum vortex inside a loop for r < l [31]. The IEC

(a) (b) (c)

(d)

FIG. 1. Visualization of vorticity in (a) classical and (b) quantum turbulence in the enstrophy cascade. For Navier-Stokes, we show the
vorticity field ωðx; yÞ (RUN NS-dir). For Gross-Pitaevskii we show the sign and position of individual vortices at t ¼ 0.56t0 with
t0 ¼ L0=vrms (RUN GP-dir-M03). Panel (c) shows the density field jψ j2 exhibiting a mild quasishock [area indicated with a rectangle in
(b)] for a flow with a Mach number M ¼ 0.3, while (d) corresponds to a quasishock for a flow with M ¼ 0.5 (RUN GP-dir-M05). Full
movies of the GP evolution are provided in the Supplemental Material [35].

(a)

(b)

FIG. 2. (a) Incompressible energy spectra and (b) circulation
variance in NS and GP for both the IEC and DEC runs, with
Mach number M ¼ 0.3. L0 indicates the forcing scale in NS and
the initial injection length scale in GP. Direct cascade curves are
vertically shifted for better visualization. Other characteristic
length scales are reported in Table I.
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inertial range takes place at large scales L0 < r < LI,
where the circulation variance follows a r8=3 scaling
consistent with KLB theory.
To characterize the intermittent behavior of the two

cascades, we compute the circulation moments hjΓrjpi up
to order p ¼ 16 in QT (see Fig. 3) and CT [35]. The good
statistical convergence of high-order moments is shown in
the SM [35]. For the IEC in the inertial range L0 < r < LI,
circulation moments display scaling laws that deviate from
the self-similar prediction of λIECp ¼ 4p=3, obtained by
dimensional arguments. This behavior is better observed in
the local slopes displayed in the insets, defined as the
logarithmic derivatives d loghjΓrjpi=d log r, which
become flat in the inertial range. For the largest scales
of the system r > LI, circulation moments follow a scaling
rp=2, which is smaller than the scaling of a system of
randomly distributed vortices [32]. Such an exponent
suggests an anticorrelation between vortices that could
be induced by a gas of vortex dipoles. The behavior in this
range of scales might also depend on the initial conditions
and is likely to be nonuniversal. Further studies of this
regime are left for future work. In the DEC, we plot the
extended-self-similar (ESS) moments with respect to the
circulation variance and obtain the self-similar scal-
ing λDECp ¼ 2p.
The circulation scaling exponents of our QT and CT

simulations are presented in Fig. 4. For the IEC, both
systems follow the same intermittent behavior within error

bars, defined as the maximum and minimum value of the
local slopes in the inertial range. These results are con-
sistent with recent experimental measurements in quasi-2D
turbulence [30], also reported in the figure. Moreover, the
dotted line shows the monofractal fit λfitp ¼ 1.14pþ 0.58
for p > 3, with Hölder exponent h ¼ 1.14 and fractal
dimension D ¼ 1.42 proposed in [30]. Similar to 3D
turbulence [31–33], CT and QT share the same statistics
in 2D for the IEC. The equivalence between CT and QT
also holds for the enstrophy cascade, in which both systems
display a self-similar behavior, consistent with recent
experiments [30]. It is important to remark that, to recover
this scaling, compressible effects in the quantum flow
should be negligible. To test this idea, we repeat the
previous analysis of the DEC starting from a flow with
M ¼ 0.5. The development of quasishocks [Fig. 1(d)]
occurs more frequently, eventually modifying the flow
statistics. Figure 4 also displays circulation scaling expo-
nents for this run. Remarkably, low-order circulation
moments still display the same scaling as the classical
ones but high-orders deviate [35]. The effect of quasishocks
on turbulent statistics is consistent with some recent
experimental measurements in compressible flows [44].
An alternative multifractal interpretation of the inter-

mittent behavior of velocity circulation was given
in [32] by introducing a modified version of Obukhov-
Kolmogorov 1962 (mOK62) theory [46,47]. Circulation
scaling exponents are proposed to follow λp ¼ ðhþ 1Þpþ
τ½ðhþ 1Þp=4�, where h is the Hölder exponent of the
velocity field, which can be related to vortex polariza-
tion [32]. For the IEC, h ¼ 1=3 and for the DEC h ¼ 1. The
correction to the self-similar scaling τð·Þ is introduced
through the anomalous scaling of the coarse-grained energy
dissipation moments hϵpr i ∼ rτðpÞ [48]. Here, we use the
random-β model of fractal dimension D, which reads
τðpÞ ¼ ð2 −DÞ½ðβ − 1Þpþ 1 − βp�, with 0 < β < 1 a free
parameter [45,49]. For the inverse cascade, a best fit [50]
leads to D ¼ 1.4, in agreement with the monofractal fit
of [30]. For the high-Mach DEC in QT, the fit yields
D ¼ 0, suggesting isolated quantum vortices are respon-
sible for the intermittent behavior in this regime. Note that
the self-similar behavior of the CT DEC corresponds
to D ¼ 2.
In this Letter, we reported numerical simulations of

classical and quantum 2D turbulence in the direct and
inverse cascade settings. Whereas several studies have been
devoted to studying the inverse energy cascade in quantum
turbulence [15,16,18–20], the enstrophy cascade has only
been observed using a dissipative version of the point-
vortex model [22]. Here we used the Gross-Pitaevskii
equation, which naturally includes vortex annihilation
and interaction with sound. The observation of the DEC
in GP simulations was possible thanks to the use of
very high resolutions and well-controlled initial conditions
that minimize acoustic emissions. Indeed, the enstrophy

FIG. 3. Circulation moments in two-dimensional quantum
turbulence for (top panel) the inverse energy cascade as a function
of r=L0 and (bottom panel) the direct enstrophy cascade as a
function of the circulation variance. The insets display the local
slopes defined as d loghjΓrjpi=d log r, with x ¼ r or x ¼ hΓ2

ri.
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cascade only makes sense in a coarse-grained manner, as
the enstrophy is not mathematically defined. Therefore, it
requires a large number of vortices arranged to produce a
large-scale flow. Moreover, we studied high-order statistics
of velocity circulation in 2D classical and quantum turbu-
lence. For the IEC, the intermittent behavior of CT and QT
are equivalent, reminiscent of recent studies in 3D turbu-
lence [31–33]. This numerical measurement provides
further support for the difference between the statistics
of velocity circulation and velocity increments [23,24,27].
For the DEC the equivalence between CT and QT also
holds, following a self-similar scaling in both cases,
provided that initial GP flow has a low Mach number.
For higher Mach flows, the equivalence only holds for low-
order statistics, while the singular character of quantum
vortices strongly affects high orders. In classical fluids,
shocks are smoothed out by viscous dissipation, which is
very different from regularization by dispersive mecha-
nisms in quantum flows. Naturally, it would be important to
study the injection of vorticity and enhancement of circu-
lation intermittency through strong density gradients in
compressible classical fluids. Finally, the characterization
of these differences and similarities between 2D quantum
and classical turbulence could be useful for the develop-
ment of future theories of intermittency.
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