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RELATION BETWEEN CIRCULATION AND TRANSVERSE SCALING EXPONENTS

We consider the circulation Γr(s0) around a squared loop of size r, with one corner of the loop placed at s0 = (x0, y0).
It follows that

⟨|Γr|p⟩ =
1

V

∫
|Γr(s0)|pds0 ≤ 1

V

∫ [∫ x0+r

x0

|ux(x, y0 + r)− ux(x, y0)|dx+

∫ y0+r

y0

|uy(x0 + r, y)− uy(x0, y)|dy
]p

ds0,

(1)
where we applied the triangular inequality several times. Following a similar procedure to the one in Iyer et al. [1],
we now apply the Hölder inequality for each of the two integrals in the right hand side. It leads to

⟨|Γr|p⟩ ≤
1

V

∫ [
r1/q

(∫ x0+r

x0

|ux(x, y0 + r)− ux(x, y0)|pdx
)1/p

+ r1/q
(∫ y0+r

y0

|uy(x0 + r, y)− uy(x0, y)|pdy
)1/p

]p

ds0

(2)
with p and q satisfying p−1 + q−1 = 1 for p, q > 1.
For a sufficiently large Reynolds numbers, assuming homogeneity, isotropy, and at a fixed r in the inertial range,

we can approximate each inner integral by r⟨|δu⊥
r |p⟩ = rS⊥

p (r). Fig. 1 shows the validity of this approximation in the
inertial range for RUN-A. The outer integral cancels out and we obtain

⟨|Γr|p⟩ ≤ 2prp/qrp/p(S⊥
p )p/p = 2prpS⊥

p (r). (3)

Finally, we use the fact that the circulation moments and TSFs follow the scaling properties ⟨|Γr|p⟩ ∼ (r/Lf )
λp

and S⊥
p ∼ (r/Lf )

ζ⊥
p , with Lf the forcing scale. For the inertial range of the inverse energy cascade in two-dimensional

turbulence, we take the limit r/Lf ≫ 1, so we obtain an inequality for the scaling exponents

λp ≤ ζ⊥p + p. (4)
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FIG. 1. Validation of the approximation performed between Eqs.(2) and (3) for p = 2, with u = ux and v = uy. The angular
brackets ⟨.⟩ indicate averaging in space.
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