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Kolmogorov and Kelvin wave cascades in a generalized model for quantum turbulence
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We performed numerical simulations of decaying quantum turbulence by using a generalized Gross-Pitaevskii
equation that includes a beyond mean field correction and a nonlocal interaction potential. The nonlocal potential
is chosen in order to mimic He II by introducing a roton minimum in the excitation spectrum. We observe that
at large scales the statistical behavior of the flow is independent of the interaction potential, but at scales smaller
than the intervortex distance a Kelvin wave cascade is enhanced in the generalized model. In this range, the
incompressible kinetic energy spectrum obeys the weak wave turbulence prediction for Kelvin wave cascade not
only for the scaling with wave numbers but also for the energy flux and the intervortex distance.
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I. INTRODUCTION

One of the most fundamental phase transitions in low
temperature physics is the Bose-Einstein condensation [1].
It occurs when a fluid composed of bosons is cooled down
below a critical temperature. In that state, the system has
long-range order and can be described by a macroscopic wave
function. One of the most remarkable properties of a Bose-
Einstein condensate (BEC) is that it flows with no viscosity.
Well before the first experimental realization of a BEC by
Anderson et al. [2], Kaptiza and Allen discovered that helium
becomes superfluid below 2.17 K [3,4]. A couple of years
later, London suggested that superfluidity is intimately linked
to the phenomenon of Bose-Einstein condensation [5]. Since
then, superfluid helium and BECs made of atomic gases have
been extensively studied, both theoretical and experimentally.
In particular, the fluid dynamics aspect of quantum fluids has
renewed interest due the impressive experimental progress of
the last fifteen years. Today it is possible to visualize and
follow the dynamics of quantum vortices, one the most fun-
damental excitations of a quantum fluid [6,7].

Quantum vortices are topological defects of the macro-
scopic wave function describing the superfluid. They are nodal
lines of the wave function and they manifest points and fila-
ments in two and three dimensions, respectively. To ensure the
monodromy of the wave function, vortices have the topologi-
cal constraint that the circulation (contour integral) of the flow
around the vortex must be a multiple of the Feynman-Onsager
quantum of circulation κ = h/m, where h is the Planck con-
stant and m is the mass of the Bosons constituting the fluid
[1]. In superfluid helium their core size is of the order of 1 Å
whereas in atomic BECs is typically of the order of microns
[8]. Quantum vortices interact with other vortices similarly to
classical ones. They move thanks to their self-induced veloc-
ity and interact with each other by hydrodynamics laws [9].
Unlike ideal classical vortices described by Euler equations,

quantum vortices can reconnect and change their topology
despite the lack of viscosity of the fluid [10].

At scales much larger than the mean intervortex distance �,
the quantum nature of vortices is not very important as many
individual vortices contribute to the flow. One could expect
then that the flow is similar, in some sense, to a classical
one. Indeed, if energy is injected at large scales, a classical
Kolmogorov turbulent regime emerges. Such a regime has
been observed numerically [11–13] and experimentally in
superfluid helium [14,15]. In a three-dimensional turbulent
flow, energy is transferred towards small scales in a cascade
process [16]. In a low temperature turbulent superfluid, when
energy reaches the intervortex distance, energy keeps being
transferred to even smaller scales where it can be efficiently
dissipated by sound emission. The mechanisms responsible
for this transfer are vortex reconnections and the wave tur-
bulence cascade of Kelvin waves, that have its origin in the
quantum nature of vortices [17].

Describing a turbulent superfluid is not an easy task, in
particular for superfluid helium. One of the main reasons
is the gigantic scale separation existing between the vortex
core size and the typical size of experiments, currently of the
order of centimeters or even meters [18]. Their theoretical
description began at the beginning of the 20th century by the
pioneering works of Landau and Tisza where superfluid he-
lium was modeled by two immiscible fluid components [19].
In this two-fluid model, the thermal excitations constitute the
so-called normal fluid that is described by the Navier-Stokes
equations whereas the superfluid component is treated as an
inviscid fluid. It was later realized that the thermal excitations
interact with superfluid vortices through scattering processes
that lead to a coupling of both components by mutual friction
forces [19]. Today the two-fluid description, known as the
Hall-Vinen-Bekarevich-Khalatnikov model is understood as a
coarse-grained model where scales smaller than the intervor-
tex distance are not considered. The quantum nature aspects
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of superfluid vortices are therefore lost. However, this model
remains useful for describing the large scale dynamics of fi-
nite temperature superfluid helium. An alternative model was
introduced by Schwarz [9], where vortices are described by
vortex filaments interacting through regularized Biot-Savart
integrals. However, the reconnection process between lines
needs to be modeled in an ad-hoc manner and by construction
the model excludes the dynamics of a superfluid at scales
smaller than the vortex core size. Finally, for weakly interact-
ing BECs in the limit of low temperature, a model of different
nature can be formally derived which is the Gross-Pitaevskii
(GP) equation, obtained from a mean field theory [1]. This
model naturally contains vortex reconnections [10,20], sound
emission [21,22], and is known to also exhibit a Kolmogorov
turbulent regime at scales much larger than the intervortex dis-
tance [11]. Although this model is expected to provide some
qualitative description of superfluid helium at low tempera-
tures, it lacks of several physical ingredients. For instance, in
GP, density excitations do not present any roton minimum as it
does superfluid helium, where interactions between boson are
known to be much stronger than in GP [23]. However, there
have been some successful attempts to include such effects in
the GP model. For instance, a roton minimum can be easily
introduced in GP by using a nonlocal potential that models a
long-range interaction between bosons [24–26]. The stronger
interaction of helium can also be included phenomenologi-
cally by introducing high-order terms in the GP Hamiltonian.
Note that these terms can be derived as beyond mean field
corrections [27]. Some generalized version of the GP model
has been used to study the vortex solutions [28,29] and some
dynamical aspects such as vortex reconnections [26]. Intu-
itively, for a turbulent superfluid, we can expect that such
generalization of the GP model might be important at scales
smaller than the intervortex distance and with less influence at
scales at which Kolmogorov turbulence is observed.

In this work, we study quantum turbulent flows by
performing numerical simulations of a generalized Gross-
Pitaevskii (gGP) equation. We compare the effect of high-
order nonlinear terms and the effect of a nonlocal interaction
potential in the development and decay of turbulence at scales
both larger and smaller than the intervortex distance. Re-
markably, by modeling superfluid helium with a nonlocal
interaction potential and including high-order terms, the range
where a Kelvin wave cascade is observed is extended and
becomes manifest. Using the dissipation (or rate of transfer)
of incompressible kinetic energy we are able to show that the
weak wave turbulence results [30] are valid not only to predict
the scaling with wave number but also with the energy flux
and the intervortex distance.

The paper is organized as follows. Section II introduces the
gGP model and discusses its basic properties and solutions.
It also discusses how the vortex profile is modified in this
generalized model. All useful definitions to study turbulence
are also given here. Section III gives a brief overview of the
predictions of quantum turbulence and the numerical methods
used in this work. Also, it includes the results of different
simulations at moderate and high resolutions by varying the
different parameters of the beyond mean field correction and
the introduction of a nonlocal potential. Finally in Sec. IV we
present our conclusions.

II. THEORETICAL DESCRIPTION OF SUPERFLUID
TURBULENCE

In this section we introduce the generalized Gross-
Pitaevskii model used in this work. We also discuss and review
some of the basic properties of the model such as its elemen-
tary excitations and its hydrodynamic description.

A. Model

The Gross-Pitaevskii equation describes the low tempera-
ture dynamics of weakly interacting bosons of mass m

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ − μψ + g|ψ |2ψ, (1)

where ψ is the condensate wave function, μ the chemical
potential, h̄ = h/(2π ), and g = 4π h̄2as/m is the coupling
constant fixed by the s-wave scattering length as that models a
local interaction between bosons. Note that the use of a local
potential assumes a weak interaction between bosons, which
certainly is not the case for other systems like He II and for
dipolar gases [31].

A generalized model that is able to describe more complex
systems can be obtained by considering a nonlocal interaction
between bosons. With proper modeling [24–26], density exci-
tations exhibit a roton minimum in their spectrum as the one
observed in He II [23]. It also describes well the behavior of
dipolar condensates [32,33]. In helium and other superfluids,
the interaction between bosons is stronger and high-order
nonlinearities are needed for proper modeling. For instance, in
helium high-order terms are considered to mimic its equation
of state [25] and in dipolar BECs beyond mean field terms
are needed to describe the physics of recent supersolid exper-
iments [34].

We consider the generalized Gross-Pitaevskii (gGP) model
written as

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ − μ(1 + χ )ψ

+ g

(∫
VI(x − y)|ψ (y)|2d3y

)
ψ + gχ

|ψ |2(1+γ )

nγ

0

ψ,

(2)

where γ and χ are two dimensionless parameters that de-
termine the order and amplitude of the high-order terms,
respectively. The interaction potential VI is normalized such
that

∫
VI(x)d3x = 1. The chemical potential and the interac-

tion coefficient of the high-order term have been renormalized
such that |ψ0|2 = n0 = μ/g is the density of particles for
the ground state of the system for all values of parame-
ters. The GP equation (1) is recovered by simply setting
VI(x − y) = δ(x − y) and χ = 0. The gGP equation is not
intended to be a first principle model of superfluid helium,
but it has the advantage of at least introducing in a phe-
nomenological manner some important physical aspects of
helium.
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B. Density waves

The dispersion relation of the GP model is easily obtained
by linearizing equation (1) about the ground state. The waves
obey the Bogoliubov dispersion that reads

ωB(k) = c0k

√
ξ 2

0 k2

2
+ 1, (3)

where k is the wave number, c0 = √
gn0/m is the speed of

sound of the superfluid, and ξ0 = h̄/
√

2mgn0 is the healing
length at which dispersive effects become important. The
healing length also fixes the vortex core size.

A similar calculation leads to the Bogoliubov dispersion
relation in the case of the gGP model (2)

ω(k) = ck

√
ξ 2k2

2
+ V̂I(k) + χ (γ + 1)

1 + χ (γ + 1)
, (4)

where V̂I(k) = ∫
eik·rVI(r)d3r is the Fourier transform of the

interaction potential normalized such that V̂I(k = 0) = 1. The
inclusion of beyond mean field terms and a nonlocal potential

yields to a renormalized speed of sound and healing length.
They are given in terms of c0 and ξ0 by

c = c0

√
1 + χ (γ + 1) (5)

ξ = ξ0√
1 + χ (γ + 1)

. (6)

Note that, in what concerns low amplitude density waves,
the effect of high-order terms is a simple renormalization of
the healing length and the speed of sound. Depending on the
shape and properties of the nonlocal potential, the dynamics
and steady solutions can be drastically modified. Note that
the product between c and ξ remains constant because it is
related to the quantum of circulation κ = h/m = cξ2π

√
2 =

c0ξ02π
√

2.
In order to be able to compare systems with different types

of interactions, it is convenient to rewrite Eq. (2) in terms of
its intrinsic length ξ and speed of sound c and the bulk density
n0. The gGP model then becomes

∂tψ = −i
c

ξ
√

2(1 + χ (γ + 1))

[
− (1 + χ (γ + 1))ξ 2∇2ψ − (1 + χ )ψ + χ

|ψ |2(1+γ )

n1+γ

0

ψ + ψ

n0

∫
VI(x − y)|ψ (y)|2d3y

]
. (7)

The only dimensional parameters of the model are the speed
of sound c, the healing length ξ , and the bulk density n0. They
can be absorbed by a trivial rescaling of time, length, and
density. The dimensionless parameters χ , γ and the nonlocal
potential VI should be chosen to model the physical system
under study. In numerical simulations we will express lengths
in units of the healing length ξ . A natural time scale to study
excitations is the fast turnover time τ = ξ/c. However, this
small-scale based time is not appropriate for turbulent flows.
For such flows, it is customary to use the large-eddy turnover
time corresponding to the typical time of the largest coherent
vortex structures. It will be defined later.

Modeling superfluid helium excitations

In this work, we aim at mimicking some properties of
superfluid helium II, in particular, the roton minimum in the
dispersion relation. For the sake of simplicity, we use an
isotropic nonlocal interaction potential used in previous works
[26,28]. With our normalization it reads

V̂I(k) =
[

1 − V1

(
k

krot

)2

+ V2

(
k

krot

)4]
exp

(
− k2

2k2
rot

)
, (8)

where krot is the wave number associated with the roton min-
imum and V1 � 0 and V2 � 0 are dimensionless parameters
to be adjusted to mimic experimental dispersion relation of
helium II [23]. The effects of different functional forms of
the nonlocal potential have been studied in previous works,
showing that only a phase shift of ψ and the overall am-
plitude of the density depend on the precise form of the
interaction [29].

In order to compare the dispersion relation (4) with the ex-
perimental data [23], we plot the helium dispersion relation in

units of the helium healing length ξHe = 0.8 Å and its turnover
time τHe = ξHe/cHe = 3.36 × 10−13s, where cHe = 238 m/s
is the speed of sound in He II. The experimental helium
dispersion relation is displayed in Fig. 1 as green dotted lines.
Note that by definition, the speed of sound of the gGP model
and the one helium are equal to 1 (in units of ξ/τ .)

It was reported in Reneuve et al. [26] that introducing a
roton minimum in the GP dispersion relation (without beyond
mean field terms) that matches helium measurements leads
to an unphysical crystallization under dynamical evolution of

FIG. 1. Spatiotemporal dispersion relation for simulations with
10242 grid points with a nonlocal potential and beyond mean field
corrections. Light zones correspond to excited frequencies. Figures
(a) and (b) correspond to different amplitude of the perturbation A,
both exhibiting a roton minimum. Experimental observations (green
dotted line, see Ref. [23]) and theoretical dispersion following equa-
tion (4) (blue dashed line) are shown.
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a vortex. We confirm such behavior in our simulations. In
order to avoid such spurious effect of the model, in Ref. [26]
the frequency associated to the roton minimum was set to
higher values to be able to study vortex reconnections. We
have numerically observed that this crystallization takes place
even when a first order correction of the beyond mean field
expansion is included, with values of χ = 0.1 and γ = 1. For
this reason, we chose a higher order expansion with γ = 2.8
for the simulations with a nonlocal potential, a value that
was already used in the literature to study the vortex density
profile in superfluid helium [25]. Furthermore, with this value
no crystallization is observed for all test cases and all the
simulations performed in this work.

The dispersion relation of a nonlinear wave system can
be measured numerically by computing the spatiotemporal
spectrum of the wave field [13]. As an example, in Fig. 1
we also display the spatiotemporal spectrum of small density
perturbations of a numerical simulation of the gGP model
in two dimensions using 10242 collocation points and with
parameters set to γ = 2.8, χ = 0.1, V1 = 4.54, V2 = 0.01,
and krotξ = 1.638 (see details on numerics later in Sec. III),
for two different amplitude values A. Dark zones indicate
that no frequencies are excited, while light zones correspond
to the excited ones with the total sum normalized to one.
The parameters have been set in a way such that they match
qualitatively the dispersion relation measured in helium up to
the roton minimum. As expected for weak amplitude waves,
the numerical and theoretical dispersion relations coincide.
For larger wave amplitudes, theoretical prediction (4) and
numerical measurements slightly differ together with an ap-
parent broadening of the curve. This is a typical behavior of
nonlinear wave systems [35]. In the following sections, all
simulations with a nonlocal interaction are performed with the
aforementioned set of parameters.

C. Hydrodynamic description

The GP equation maps into a hydrodynamic description by
introducing the Madelung transformation

ψ =
√

ρ/m exp

(
iφ√
2cξ

)
, (9)

which allows the mapping of the wave function with the fluid
mass density ρ = m|ψ |2 and with the fluid velocity v = ∇φ.
Replacing equation (9) into the gGP model (7) two hydrody-
namic equations are obtained

∂ρ

∂t
+ ∇ · (ρv) = 0 (10)

∂φ

∂t
+ 1

2
(∇φ)2 = −h[ρ] + (cξ )2 ∇2√ρ√

ρ
, (11)

with

h[ρ] = −c2
0(1 + χ ) + c2

0
VI ∗ ρ

ρ0
+ c2

0χ

(
ρ

ρ0

)γ+1

. (12)

Here ∗ denotes the convolution product and ρ0 = m|ψ0|2
is the fluid mass density of the ground state. These equations
correspond to the continuity and Bernoulli equations, respec-
tively, of a fluid with an enthalpy per unit of mass h[ρ] [11].

FIG. 2. (a) Mass density of a two-dimensional vortex with a
nonlocal potential. (b) Density profile of a vortex for the gGP model
with different values of the nonlinearity and a local potential, and a
single profile with a nonlocal potential (yellow line). The vortex core
size tends to increase with the nonlinearity.

The last term of equation (11) is called the quantum pressure.
Note that hydrodynamic pressure is given by

p[ρ] = c2
0ρ

ρ0

[
1

2
VI ∗ ρ + χ

γ + 1

γ + 2

ργ+1

ρ
γ

0

]
. (13)

As expected, for large amplitude waves, the speed of sound
reads ∂ p

∂ρ
|
ρ0

= c2
0(1 + χ (γ + 1)) = c2.

Although the fluid is potential, it admits vortices as topo-
logical defects of the wave function. A stationary vortex
solution of (7) is a zero of the wave function where the
circulation around it is quantized with values ±sκ with s an
integer. Because of this last condition, topological defects are
also called quantum vortices.

A quantum vortex has a vortex core size of the order of
a healing length ξ and depends on the parameters of the
gGP model. By replacing the Madelung transformation (9)
into the gGP equation (7) and using cylindrical coordinates, a
differential equation for the vortex profile is directly obtained

1

r

d

dr

(
r

dR

dr

)
+

{
1 − s2ξ 2

0

r2
− VI ∗ R2 + χ (1 − R2γ+2)

}
R

ξ 2
0

= 0, (14)

where R(r) = √
ρ(r)/ρ0 defines the density profile of the

vortex line in the radial direction r.
Figure 2(a) displays the mass density of a two-dimensional

vortex in the case where the nonlocal interaction potential is
included. The roton minimum introduces some density fluctu-
ations around the center of the vortex which is a well-known
pattern. The effect of a nonlocal potential has already been
studied before, for example its interaction with an obstacle
[24], the dynamics of vortex rings [25], and in reconnection
processes [26]. Figure 2(b) shows the radial dependence of the
density profile of a vortex for different parameters of the gGP
model. Numerical simulations were performed with 40962

grid points with standard numerical methods (see Sec. III B
for details). Even though all curves tend to collapse when
plotted as a function of the healing length ξ , the vortex core
size slightly increases (in units of ξ ) when the nonlinearity
of the system is increased. Note that for the present range
of parameters, ξ0/ξ varies in the range (1,4.4). The relatively
good collapse of the vortex core size thus justifies the choice
of ξ to parametrize the gGP model while varying the beyond
mean field parameters.
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D. Energy decomposition and helicity in superfluids

It is convenient to write the free energy per unit of mass
F of a quantum fluid such that it vanishes when evaluated in
the ground state of the system (ψ = √

ρ0/m = √
n0). For the

gGP model in equation (7), it is given by

F = c2
0

n0V

∫ [
ξ 2

0 |∇ψ |2 + |ψ |2
2n0

(VI ∗ |ψ |2) − (1 + χ )|ψ |2

+ χ |ψ |2(γ+2)

nγ+1
0 (γ + 2)

+ n0

2
+ χn0

γ + 1

γ + 2

]
d3r, (15)

with V the volume of the fluid. Following standard
procedures applied in simulations of GP quantum
turbulence [11], the free energy can be decomposed as F =
EI

kin + EC
kin + Eq + Eint where E I

kin = 1
V ρ0

∫
([

√
ρv]I )2

d3r,

EC
kin = 1

V ρ0

∫
([

√
ρv]C)2

d3r, and Eq = c2ξ 2

V ρ0

∫ |∇√
ρ|2d3r,

with [
√

ρv]I the regularized incompressible velocity
obtained via the Helmholtz decomposition and [

√
ρv]C =√

ρv − [
√

ρv]I the compressible one. The internal energy per
unit of volume is defined in the gGP model as

Eint = c2
0

V ρ0

∫ [
1

2ρ0
(ρ − ρ0)VI ∗ (ρ − ρ0)

+
(

ρ

ρ0

)γ+1
χρ

γ + 2
− χρ + χ

γ + 1

γ + 2
ρ0

]
d3r. (16)

Note that Eint = 0 if ρ = ρ0. The corresponding energy spec-
tra are defined in a straightforward way for the quadratic
quantities [11]. For the internal energy spectrum, it is defined
as follows

Eint (k) = c2
0

V ρ0

∫ [
1

2ρ0

̂(ρ − ρ0)−kV̂I(k) ̂(ρ − ρ0)k

+ χ

γ + 2
ρ̂−k

̂
(

ρ

ρ0

)γ+1

k
+

̂

(
χρ0

γ + 1

γ + 2
− χρ

)
k

]

× d�k, (17)

where d�k is the element of surface of the shell |k| = k where
the hat stands for the Fourier transform defined in the same
way as in the nonlocal potential after equation (4). Note that
this particular choice of the spectrum is not unique and has
been made so that the ground state ρ = ρ0 contributes with no
internal energy to the system. It is also worth noting that with
this definition, the internal energy spectrum may take negative
values.

Besides the energies, there is another quantity in quantum
turbulence that presents a great interest in the dynamics of
quantum vortices [36–38], which is the central line helicity
per unit of volume

Hc = 1

V

∫
v(r) · ω(r)d3r. (18)

Note that V Hc/κ
2 is the total number of helicity quanta. For-

mally, this quantity is ill defined for a quantum vortex as the
vorticity is δ supported on the filaments and the velocity is not
defined on the vortex core. However, in the GP formalism, this

singularity can be removed by taking proper limits [36]. We
use the definition central line helicity proposed in Ref. [36]
as its numerical implementation is tedious but straightforward
and well behaved for vortex tangles.

III. EVOLUTION OF QUANTUM TURBULENT FLOWS

This section gives a brief overview about the predictions
in quantum turbulence both at large and small scales, and
details of the numerical methods used to run the simulations.
There is also a description of the flow visualization in the
presence of a nonlocal interaction potential, and the results of
the flow evolution at moderate and high resolution are shown.
In particular, it is studied the dependence of the different com-
ponents of the energy and the helicity with beyond mean field
parameters and with the introduction of a nonlocal interaction
potential.

A. A brief overview of cascades in quantum turbulence

Quantum turbulence is characterized by the disordered and
chaotic motion of a superfluid. Energy injected, or initially
contained, at large scales is transferred towards small scales
in a Richardson cascade process [16]. In the context of GP
turbulence, the contribution of vortices to the global energy
can be studied by looking at the incompressible kinetic energy
EI

kin and its associated spectrum. As the system evolves, vor-
tices interact transferring energy between scales. Besides, the
incompressible kinetic energy is transferred to the quantum,
internal and compressible energy through vortex reconnec-
tions and sound emission [17,22]. After some time, acoustic
excitations thermalize and act as a thermal bath providing a
(pseudo)dissipative mechanism, so vortices shrink until they
vanish [8,39,40].

Three-dimensional quantum turbulence presents two main
statistical properties. At scales much larger than the intervor-
tex distance �, but much smaller than the integral scale L0,
the quantum character of vortices is not important and we can
think as the system being coarse grained. At such scales the
system presents a behavior that resembles classical turbulence
with a direct energy cascade, that is the transfer of energy from
large to small structures. As a consequence, in this range, the
incompressible kinetic energy spectrum EI

kin(k) follows the
Kolmogorov prediction [11,16,41,42]

EI
kin(k) = CKε2/3k−5/3, (19)

where CK ∼ 1 and ε is the dissipation rate of the flow, which
in GP quantum turbulence is associated with the rate of change
of incompressible kinetic energy ε = −dEI

kin/dt , that is ex-
pressed in units of [ε] = length2/time3.

In classical three-dimensional inviscid flows, helicity (18)
is also conserved. Associated to this invariant, a second direct
cascade is expected to be also present at large scales, obeying
the scaling [43]

H (k) = CHηε−1/3k−5/3, (20)

where CH ∼ 1 and η = −dH/dt is the dissipation rate of
helicity. This dual cascade has been also observed in quantum
turbulent flows described by the GP equation [44].
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At scales smaller than the intervortex distance, each quan-
tum vortex can be thought as if it were isolated. Hence, its
behavior can be described, in principle, by the wave turbu-
lence theory as such vortices admit hydrodynamic excitations
known as Kelvin waves. Such waves propagate along vor-
tices and interact nonlinearly among themselves. As a result,
energy is transferred towards small scales through a process
that can be described by the theory of weak wave turbulence
[35]. An agitated debate arose some time ago concerning the
prediction of the energy spectrum. Two independent groups
leaded by L’vov and Nazarenko [30] and Kozik and Svistunov
[45], starting from the same equations and applying the same
theory derived different predictions. Even though, today there
is more numerical data supporting L’vov and Nazarenko pre-
diction [46–49], this issue is still debated [50–52]. We present
here the L’vov and Nazarenko prediction as, we will see later,
it was found to be in agreement with our numerical data.
This theoretical prediction is derived for an almost straight
vortex of period Lv and, as discussed in Ref. [50], some care
is needed in order to apply the model to a turbulent vortex
tangle. We partially reproduce here and adapt to our case the
considerations of Ref. [50]. The wave turbulence L’vov and
Nazarenko prediction is

eKW(k) = CLN
κ�ε

1/3
KW

�2/3k5/3
, (21)

with � = log(�/ξ ) and CLN ≈ 0.304 [47]. Here εKW =
−deKW/dt is the mean energy flux per unit of length Lv

and density ρ0. Note their respective dimensions are [εKW] =
length4/time3 and [eKW(k)] = length5/time2. The dimension-
less number � is given by

� = (12πCLN)3/5εKW
1/5

κ3/5k2/5
min

= C3/5
LN �̃, (22)

where kmin is the smallest wave number of the Kelvin waves
that can be associated with the wave number of the intervortex
distance k� = 2π/� in the case of a vortex tangle [50]. �̃ is
defined so that it is independent of the constant CLN.

In order to compare this result with the incompressible
kinetic energy, one can notice that the total energy of Kelvin
waves is Lvρ0

∫
eKW(k)dk, where now Lv is taken as the total

vortex length in the system. As in a turbulent tangle the total
vortex length is related to the mean intervortex distance by
Lv = V �−2, it follows that the mean kinetic energy spectrum
per unit of mass is given by EKW(k) = eKW(k)�−2. The same
logic relates the energy flux εKW of the Kelvin wave cascade
to the global energy flux ε of a tangle by εKW = ε�2. It follows
from (21) and the previous considerations that

EKW(k) = C3/5
LN

κ�ε1/3�−4/3

�̃2/3k5/3
. (23)

Here we have made the assumption that the energy flux in the
Kolmogorov range is the same as in the Kelvin wave cascade.
This strong assumption might be questioned as energy could
be already dissipated into sound by vortex reconnections at
different scales diminishing this value [22,53]. Such extra
sinks of energy are difficult to quantify and we will not take
them into account. Finally, note that the theory of wave turbu-
lence also predicts the value of the constant CLN [47], however

in (23) several phenomenological considerations have been
made and we do not expect an exact agreement. Nevertheless,
the scaling with the global energy flux should remain valid.

B. Numerical methods

We perform numerical simulations of equation (7) using
a pseudo-spectral method for the spatial resolution applying
the “2/3 rule” for dealiasing [54], and a Runge-Kutta method
of fourth order for the time stepping. The nonlinear term is
dealiased twice following the scheme presented in [40] in
order to also conserve momentum. Note that in the case of a
nonlocal potential, this extra step has no extra numerical cost.
All simulations were performed in a cubic L-periodic domain.

To observe a Kolmogorov range in GP turbulence it is
customary to start from an initial vortex configuration with
a minimal acoustic contribution. We prepared the initial con-
dition by a minimization process such that the resulting flow
is as close as possible to the targeted velocity field [11]. In
this work we study the quantum Arnold-Bertrami-Childress
(ABC) flow [44]. It is obtained from the velocity field vABC =
v

(k1 )
ABC + v

(k2 )
ABC, where each ABC flow is given by

v
(k)
ABC = [B cos(ky) + C sin(kz)]x̂ + [C cos(kz)

+ A sin(kx)]ŷ + [A cos(kx) + B sin(ky)]ẑ. (24)

We set in this work (A, B,C) = Vamp (0.9, 1, 1.1)/
√

3, with
Vamp = 0.5 c. Each ABC flow is an L-periodic stationary solu-
tion of the Euler equation with maximal helicity, in the sense
that ∇ × v

(k)
ABC = kv

(k)
ABC. The mean kinetic energy associated

with vABC is EABC
kin = (A2 + B2 + C2) = 0.2517c2. Following

Ref. [44], the wave function associated to this ABC flow is
generated as ψABC = ψ

(k1 )
ABC × ψ

(k2 )
ABC, where each mode is con-

structed as the product ψ
(k)
ABC = ψ

x,y,z
A,k × ψ

y,z,x
B,k × ψ

z,x,y
C,k with

ψ
x,y,z
A,k = exp

{
i

[
A sin(kx)

cξ
√

2

]
2πy

L
+ i

[
A cos(kx)

cξ
√

2

]
2πz

L

}
,

(25)
where the brackets [ ] indicate the integer closest to the value
to ensure periodicity. This ansatz gives a good approxima-
tion for the phase of the initial condition. In order to set
properly the mass density and the vortex profiles, it is nec-
essary to first evolve ψABC using the generalized advected
real Ginzburg-Landau equation (imaginary time evolution in
a locally Galilean transformed system of reference) [11]

∂tψ = − c0

ξ0

√
2

{
− ξ 2

0 ∇2ψ − (1 + χ )ψ + χ
|ψ |2(1+γ )

ρ
1+γ

0

ψ

+ ψ

ρ0
(V ∗ |ψ |2)

}
− ivABC · ∇ψ − (vABC)2

2
√

2cξ
ψ. (26)

This equation is dissipative and its final state contains a
minimal amount of compressible energy. This state is used
as an initial condition for the gGP equation. Unless stated
otherwise, we use a flow at the largest scales of the systems
by setting k1 = 2π/L and k2 = 4π/L throughout this work.

The numerical simulations performed in this work are sum-
marized in Table I and regrouped in two different sets. The
first set of simulations (runs A1–A8) have been performed at a
moderate spatial resolution of N3 = 2563 grid points to study
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TABLE I. Table with the parameters of the different simulations.
N is the linear spatial resolution, χ and γ are the amplitude and order
of the beyond mean field interactions, L/ξ is the scale separation
between the domain size L and the healing length ξ , k̃1 = k1L/2π

and k̃2 = k2L/2π are the two wave numbers where the energy is
concentrated for the initial condition, and a local or a nonlocal
interaction potential is used in each of them.

Interaction
N χ γ L/ξ k̃1, k̃2 potential

A1 256 0 1 171 1,2 local
A2 256 1 1 171 1,2 local
A3 256 3 1 171 1,2 local
A4 256 5 1 171 1,2 local
A5 256 1 2.8 171 1,2 local
A6 256 3 2.8 171 1,2 local
A7 256 5 2.8 171 1,2 local
A8 256 0.1 2.8 171 1,2 nonlocal

B1 512 0 1 341 1,2 local
B2 512 0.1 2.8 171 1,2 nonlocal
B3 512 0.1 2.8 341 1,2 nonlocal
B4 512 0.1 2.8 341 2,3 nonlocal
B5 512 0.1 2.8 341 3,4 nonlocal
B6 1024 0.1 2.8 683 1,2 nonlocal

the effects introduced by the beyond mean field interactions
and a nonlocal potential. Each of them has a different value
of χ and γ with a local potential and were compared with a
single simulation with a nonlocal interaction potential. The
second set (runs B1–B6) has been performed to study the
scaling of the energy spectra. In these runs, we used a spa-
tial resolution of 5123 and 10243 grid points, different scale
separations, and initial conditions. These results were also
compared with the GP model.

C. Flow visualization

The introduction of a nonlocal potential, as mentioned in
Sec. II C, allows the system to reproduce the roton minimum
in the excitation spectrum (see Fig. 1). As a consequence,
the density profiles close to the quantum vortices have some
fluctuations around the bulk value ρ0 (see Fig. 2). These oscil-
lations have been studied for the profile of a two-dimensional
vortex [25,29] and have been also observed in three di-
mensions during vortex reconnections [26]. In the case of
a helical vortex tangle, the roton minimum induces a re-
markable pattern of density fluctuations around a vortex line.
A visualization of the initial condition ψABC for run B6 is
displayed in Figs. 3(a) and 3(b). The red structures are iso-
surfaces of low density values ρ = 0.1ρ0 and thus represent
the vortex lines. The greenish rendering displays density fluc-
tuations of the field above the bulk value ρ0, that are only
observed in the case of a nonlocal potential. In Fig. 3(a) we
recognize the large scale structures of the ABC flow accom-
panied by some density fluctuations around the nodal lines.
Figure 3(b) displays a zoom of the tangle where such fluc-
tuations are clearly observed. Unlike the (local) GP model,
density variations around a vortex line have a very specific
pattern, rolling around the nodal lines in a helicoidal manner.

FIG. 3. (a)-(b) Visualization of an ABC flow at t = 0 and (c)-
(d) for t = 1.25τL and t = 0.4τL respectively, for a resolution of
10243 grid points with a nonlocal potential. The isosurfaces of a
small value the mass density shown in red correspond to the vortex
lines, and in green are the values of the density fluctuations above ρ0.

Such a pattern is a consequence of the maximal helicity initial
condition produced by the ABC flow. Indeed, we have also
produced a Taylor-Green initial condition [11] that has no
mean helicity, and such helicoidal patterns in the density fluc-
tuations are absent, although they are nevertheless developed
after some vortex reconnections, as observed in Ref. [26]
(data not shown). Finally, in Figs. 3(c) and 3(d) we display
visualizations of the field for times t = 1.25τL and t = 0.4τL ,
respectively. Time is expressed in units of the large-eddy

turnover time τL = L0/vrms with vrms =
√

2EI
kin(t = 0)/3 and

L0 its integral length scale given by L0 = 2π/k2 with k2 the
largest wave number used to generate the initial condition. t =
1.25τL corresponds to a time when turbulence is developed
and t = 0.4τL to an early stage of the turbulent development
for a better insight of the flow. As the system evolves, acoustic
emissions are produced and the density fluctuations increase.
In Fig. 3(c) we observe a turbulent tangle where a large scale
structure is predominant. Figure 3(d) displays a zoom where
reconnections and Kelvin waves propagating along vortices
are clearly visible.

D. Temporal evolution of global quantities

In this section we study the behavior of the global quan-
tities of an ABC flow driven by the gGP model (7) with
both local and nonlocal potentials corresponding to runs A
in Table I. Figure 4 shows the time evolution of the (a) in-
compressible kinetic energy and (b) the sum of the quantum,
internal, and compressible kinetic components to the total
energy. We notice that in Fig. 4(a) the values of amplitude
and exponent of the beyond mean field interaction and the
inclusion of roton minimum (runs A1–A8) have a negligible
impact on the incompressible energy of the initial condition,
and their effect is very small during the temporal evolution.
On the other hand, as the fluid can be considered to be more
incompressible due to stronger interactions, the density vari-
ations with respect to the bulk value ρ0 yield larger values
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FIG. 4. Time evolution of the (a) incompressible kinetic energy,
(b) the sum of the internal, quantum, and compressible kinetic en-
ergy, and (c) the dissipation rate of incompressible energy for runs
A in Table I. The inset in (c) shows the evolution of the central
line helicity. The green area corresponds to the window where the
dissipation achieves a maximum and where the time averages were
performed.

of the other energy component between the initial time and
t ≈ 3τL as displayed in Fig. 4(b). In particular, for the case of a
nonlocal potential their values remain larger for the whole run.
Nevertheless, for all runs during the first large-eddy turnover
times the main contribution to energy comes from vortices. At
later times, energy from vortices is converted into sound. As
stated in Sec. III A, the decay of the incompressible energy can
be used to estimate the energy dissipation rate ε. Its temporal
evolution is displayed in Fig. 4(c). As in classical decaying
turbulent flows, for quantum flows the Kolmogorov regime
is more developed at times slightly after the maximum of
dissipation is reached. The green zone in the figure depicts
the temporal window where the system is considered to be in

FIG. 5. Time evolution of the intervortex distance of the system
in units of the healing length. All curves correspond to the runs A
in Table I. The green area corresponds to the window where the
dissipation achieves a maximum and where the time averages were
performed.

a quasisteady state and a temporal average can be performed
to improve statistics. The inset of Fig. 4(c) displays that the
decay of the central line helicity is independent of the param-
eters of the gGP model and is consistent with the one reported
in Ref. [44].

As a turbulent flow evolves, the total vortex length Lv

varies in time in a competition between the vortex line
stretching and the reconnection process. This quantity can be
obtained from the incompressible momentum density of the
flow JI (k) and of a two-dimensional point-vortex J2D

vort (k) as
Lv = 2π

∑
k<kmax

k2JI (k)/
∫ kmax

0 k2J2D
vort (k)dk [11].

Figure 5 shows the time evolution of the intervortex
distance � = √

V/Lv. In the cases of a local and a nonlo-
cal interaction, the intervortex distance achieves a minimum
around one τL. The vortex line density of the system L = �−2

is expected to decay in time following either the Vinen’s decay
law [55] L ∼ t−1, when flow is dominated by random rings,
or the “quasiclassical” L ∼ t−3/2 regime, when it is saturated
by the container size [56]. In the GP framework, the Vinen’s
law has been clearly observed at very late times, where only
a few rings are left [49]. To perform a clean study of the
decay of the vortex line density, it is necessary to study the
evolution of the system for much longer times that the ones
presented in this work. In addition, the method implemented
for the computation of the vortex length of the system is just
an estimation and a more precise method needs be used to
determine the scaling of the vortex length decay. Such a study
is left for a future work.

Finally, in Fig. 6 we display the energy spectra for different
runs of set A. Figure 6(a) shows the spectra of the incompress-
ible kinetic energy and the sum of all the other components
for different runs. Even though the range of scales is rather
limited for this set of simulations, a Kolmogorov-like power
law at large scales is observed in the incompressible kinetic
energy. The spectra of the sum of the other energy components
can be considered as the contribution of excitations that do not
arise from vortices. Phenomenologically, we can consider that
dynamics of the system is governed by vortices and is thus al-
most incompressible for scales down to the crossover between
the two spectra plotted in Fig. 6(a). Such crossover wave
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FIG. 6. (a) Time averaged spectra of the incompressible kinetic
energy and the sum of the internal, quantum, and compressible ki-
netic energy for runs A1 (blue), A7 (red), and A8 (yellow) in Table I.
(b) Compensated incompressible energy spectra for all the set of runs
A. The filled blue area indicates the intervortex wave numbers k�ξ for
the different simulations.

number is decreased while introducing beyond mean field
terms and a nonlocal potential. Figure 6(b) displays the in-
compressible energy spectra compensated by the Kolmogorov
prediction EI

kin ∼ ε2/3k−5/3, where large scales collapse to
values close to one. Remarkably, for the nonlocal potential
run, a secondary plateau appears at smaller scales, below the
intervortex distance (intervortex wave numbers for each run
vary within the blue area). This range can be associated to
the presence of Kelvin waves and it will be studied at higher
resolutions in the next section.

E. Numerical evidence of the coexistence of Kolmogorov and
Kelvin wave cascades

The Kelvin wave cascade discussed in Sec. III A is for-
mally derived from an incompressible model in a very
simplified theoretical setting. In the context of the GP model,
the Kelvin wave cascade was first observed in Ref. [46] where
a setting close to the theoretical prediction was used. In the
case of turbulent tangles, there was first an indirect obser-
vation of the Kelvin wave cascade by making use of the
spatiotemporal spectra [57]. In that work, the Kelvin wave dis-
persion relation was glimpsed and a space-time filtering of the
fields was performed yielding a scaling in the energy spectrum
compatible to the Kelvin wave cascade. Then, by using an
accurate tracking algorithm of a turbulent tangle, in Ref. [49]
the L’vov-Nazarenko prediction was clearly observed in the

FIG. 7. (a) Helicity and energy spectra of the different compo-
nents for the simulation with 10243 grid points (run B6). Vertical
dotted lines indicate the wave numbers associated with the inter-
vortex distance k� and the roton minimum krot . (b) Helicity spectra
compensated by Eq. (20) for runs B1–B3 and B6 shown in Table I.

spectrum of large vortex rings extracted from the tangle. Later,
in Refs. [13,44], by using high-resolution numerical simula-
tions of the GP model, and by superposing different runs, a
secondary scaling range compatible with Kelvin wave cascade
predictions was observed. In this section, we focus on the
scaling of the incompressible energy spectra and helicity for
the case with a nonlocal potential (set of runs B) as it seems
to present a much clearer scaling at scales smaller than the
intervortex distance. We vary different parameters so the range
of scales (system size, intervortex distance, healing length)
and energy fluxes take different values.

The spectra for the different components constituting the
kinetic energy and the helicity of the simulation with 10243

grid points are shown in Fig. 7(a). Clear power laws for the
Kolmogorov and Kelvin wave range are observed simulta-
neously at large and small scales. A fit k−α using the least
squares method was performed for each cascade. We obtain
a scaling α = 1.73 in the range between kξ = 0.02 and kξ =
0.12, associated with the Kolmogorov cascade, and a scaling
α = 1.65 in the range between kξ = 0.33 and kξ = 1.64,
associated with a Kelvin wave cascade. These two scaling
laws are separated by the intervortex wave number k�. At
this scale, a bottleneck between a strong and a weak cascade
takes place and a plateau in the incompressible kinetic energy
is observed. According to the warm cascade ideas [58], this
bottleneck should display a k2 scaling associated with the
thermalization of the system. However, this behavior is not
observed probably due to the fact that the separation of scales
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TABLE II. Values of integral scale L0, the quantum of circula-
tion κ , the energy dissipation rate ε, and the intervortex distance,
expressed in units of the box size L = 2π , and the speed of sound is
fixed to c = 1.

Run vrms L0 κ ε �

B1 0.395 L/2 0.163 0.012 0.412
B2 0.377 L/2 0.327 0.013 0.494
B3 0.398 L/2 0.163 0.012 0.255
B4 0.406 L/3 0.163 0.020 0.235
B5 0.403 L/4 0.163 0.029 0.227
B6 0.392 L/2 0.081 0.011 0.139

in the Kelvin wave range is not large enough. We will come
back to this point later.

Concerning other energy components, the quantum energy
shows a maximum at the scale associated with the roton min-
imum, whereas its contribution is negligible at large scales.
The helicity spectrum also displays a Kolmogorov-like behav-
ior at large scales, while at scales between the intervortex dis-
tance and the roton minimum it flattens. This flat range of the
helicity spectrum appears in the range where the Kelvin wave
cascade is dominant. Whether a direct relationship between
the Kelvin wave cascade and the flattening of the central line
helicity spectrum exists is still unclear. Figure 7(b) displays
the compensated helicity spectrum according to (20) for dif-
ferent runs displaying different scale separations and with
local and nonlocal potentials. The parameters of these simula-
tions correspond to the runs B1–B3 and B6 shown in Table I.
At large scales all curves collapse to a constant CH ∼ 1, while
at smaller scales the system with a wider scale separation
displays that the helicity contribution is more intense.

To analyze further the incompressible energy spectra, we
have performed two runs varying the integral length of the ini-
tial condition so that the dissipation rate also changes (runs B4
and B5). We recall that in classical turbulence, the energy flux
ε is fixed by the inertial range and varies as ε ∼ v3

rms/L0. Our
initial condition ψABC keeps fixed, by construction, the value
of vrms. In Table II we present the values of different physical
quantities relevant for a turbulent state. Such quantities are ex-
pressed, as customary in classical turbulence, in units of large
scale quantities. In particular, the system size is L = 2π and
the speed of sound is c = 1. With such definitions, large scale
quantities remain almost constant when increasing the scale
separation between the box size and the smallest scale of the
system, but the quantum of circulation takes smaller values.

Figure 8(a) shows the incompressible energy spectra com-
pensated by k−5/3. Two plateaux are clearly observed: one
corresponding to the large scales Kolmogorov scaling and the
other small-scale Kelvin wave cascade. It can be seen that the
values of these plateaux differ by a factor of 3. By following
the procedures introduced in Ref. [58], but using prediction
of Eq. (23) for the Kelvin wave spectrum, the ratio between
these two plateaux is expected to scale as

EKW /EK41 ∼ �22/15, (27)

where we recall that � = log �/ξ . The previous derivation
assumes that � � 1. In our simulations, this quantity takes a

FIG. 8. Compensated incompressible kinetic energy spectra by
(a) k−5/3 scaling, (b) Kolmogorov scaling (19). and (c) L’vov-
Nazarenko scaling for Kelvin waves (23).

value of � ≈ 2.7, which cannot be considered large to apply
the previous formula safely. It is nevertheless expected that
if the inertial range of the Kelvin wave cascade is extended,
the bottleneck joining the two regimes should be enhanced,
eventually leading to a thermalized k2 zone.

The energy spectra shown in Fig. 8(b) have been com-
pensated by the Kolmogorov law (19) and displayed as a
function of k/k0, with k0 = 2π/L0 in order to emphasize
the Kolmogorov regime. Once properly normalized, all runs
present a plateau at large scales that collapse to values that
fluctuate around a Kolmogorov constant CK ∼ 1, in agree-
ment with previous simulations of the GP model [13,44].
In order to emphasize the Kelvin wave cascade, we make
use of the L’vov and Nazarenko wave turbulence predic-
tion (23). Figure 8(c) displays the incompressible energy
spectra compensated by this theoretical prediction as a func-
tion of k/k�, with k� = 2π/�. The collapse of the Kelvin wave
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cascade is remarkable. All runs having a nonlocal potential
display a plateau around a value C3/5

LN ≈ 0.36, which recovers
a constant of CLN ≈ 0.18. Such a value is relatively close
to the predicted one CLN = 0.304, in particular considering
all the phenomenological assumptions made in Sec. III A to
adapt the theoretical prediction (21) to the case of a turbulent
tangle in Eq. (23). It is also important to remark that Eq. (21)
is obtained from the Biot-Savart model, while the dynamics
studied in this work corresponds to the gGP model, with a
nonlocal interaction potential and beyond mean field correc-
tions. The GP run (with local interaction potential) displays
a good Kolmogorov scaling at large scales. However, it does
not clearly exhibit a Kelvin wave cascade range at the highest
resolution used in this work for this model (5123 grid points).
Note that previous works reporting a secondary k−5/3 range
in local GP model after superposing different runs have used
resolutions of 20483 and 40963 collocation points [13,44]. For
the sake of completeness, the incompressible kinetic energy
spectrum compensated by the Kozik and Svistunov prediction
[45] is displayed in Appendix.

IV. CONCLUSIONS

We studied the properties of the freely decaying quantum
turbulence of the generalized Gross-Pitaevskii (gGP) model
(7) that includes beyond mean field corrections and considers
a nonlocal interaction potential between bosons. This model
pretends to give a better description of superfluid helium as it
reproduces a roton minimum in the excitation spectrum.

The visualization of the flow with a nonlocal potential al-
lowed us to observe the formation of helical structures around
the vortices produced by density fluctuations, exhibiting the
intrinsic property of maximal helicity of an ABC flow. These
structures were not observed at initial times in a flow with
no helicity like a Taylor-Green flow, but they develop as the
system evolves (data not shown). However, it was seen that
the behavior of the helicity is independent of the interaction
potential. At large scales the helicity develops a spectrum that
satisfies prediction (20), while at scales between the inter-
vortex distance and the healing length a plateau is observed.
This range is usually associated with the Kelvin wave cascade
regime, but it is still not clear whether the formation of this
plateau is associated with Kelvin waves or not.

By studying numerically the freely decaying quantum tur-
bulence of an ABC flow, we observed that the statistical
behavior of the system does not depend much on the param-
eters of the beyond mean field correction in the presence of a
local interaction potential between bosons. This is manifest in
the evolution of quantities such as the energy, the helicity, and
the intervortex distance of the system. The introduction of a
nonlocal potential does not modify significantly the behavior
of the system at large scales, exhibiting a Kolmogorov-like
scaling law for the incompressible kinetic energy. However,
the situation changes at smaller scales when a nonlocal poten-
tial is implemented, between the intervortex distance � and the
healing length ξ , the range associated with the Kelvin wave
cascade. Here, the nonlocal potential enhances a second scal-
ing of the incompressible energy spectrum. This is observed
even at a moderate resolution of 2563 grid points, while in the
case of a local GP model an energy spectrum compatible with

k−5/3 scaling law begins to be recognizable from resolutions
of 20483 collocation points [44], and even in this case the
range of scales where it takes place is less than a decade.
This stronger manifestation of the Kelvin wave cascade may
be very useful for numerical and theoretical studies of wave
turbulence. This clear difference with the local GP model may
be used to compare if effectively this model better describes
the dynamics of superfluid helium. However, experimental
observation at scales smaller than the intervortex distance still
remains a challenge.

We also studied the scaling of the Kelvin wave spectrum
with the energy flux ε and the intervortex distance by varying
the integral scale of the initial flow and its healing length.
We observed that the different spectra tend to collapse to
a constant according to L’vov and Nazarenko spectrum for
Kelvin waves (23). The observed value of the constant is
CLN ≈ 0.18 which is close to the predicted one CLN ≈ 0.304.
This is surprising given that the theory is constructed using
a Biot-Savart model considering a single vortex line, while
here it is extended to a vortex tangle in the framework of the
gGP model with a nonlocal interaction potential and including
several phenomenological assumptions. The Kozik and Svis-
tunov spectrum for Kelvin waves was also studied for these set
of simulations, however, by compensating the energy spectra
by this theory no clear plateau is observed (see Appendix).
Furthermore, in the range of the Kelvin wave cascade the
Kozik-Svistunov cascade would take values of CKS ≈ 0.06
which is not of order one, so it might imply that the energy
spectrum is not described by this theory.

The overall results of this work show that both GP and gGP
models describe a similar behavior at large scales, exhibiting
a classical Kolmogorov law for the incompressible kinetic
energy and helicity spectra. However, at small scales, the gGP
model includes the roton minimum in the excitation spectrum,
and the Kelvin wave cascade range is enhanced, showing
an apparent discrepancy with the local GP model. In sum-
mary, the simulations of this generalized model allow for a
simultaneous observation of the Kolmogorov and Kelvin wave
cascades, at resolutions at which the (standard) GP model
barely exhibit a Kelvin wave range. Further studies are needed
to understand the effect of nonlocal interactions deeply.
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APPENDIX: KOZIK-SVISTUNOV KELVIN SPECTRUM

The original Kozik and Svistunov prediction for the Kelvin
wave cascade [45] was done with the same geometrical
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FIG. 9. Compensated incompressible kinetic energy spectra by
the Kozik and Svistunov prediction for Kelvin waves.

considerations of L’vov and Nazarenko and it is also expressed
in units of length5/time2. Applying the same considerations
of Sec. III A to adapt this prediction to a turbulent three-

dimensional flow leads to the following Kelvin wave energy
spectrum

EKS
KW(k) = CKS

κ7/5�ε1/5�−8/5

k7/5
, (A1)

where the constant CKS could be in principle determined by
the theory if some integrals in the associated kinetic equation
are convergent, but its value is still unknown. Figure 9 displays
the incompressible kinetic energy spectrum compensated by
prediction (A1). All the curves tend to collapse in the range
associated with Kelvin waves, showing a proper scaling with
the energy flux ε, the intervortex distance �, and the quantum
of circulation κ . However, although the Kelvin wave range
is limited, a plateau is not clearly observed if the spectra are
compensated by (A1), and even though a constant cannot be
well defined, the energy spectra collapse to a mean value of
CKS ≈ 0.06, which is not of order one.
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