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Capture and release of quantum vortices using mechanical devices in low-temperature superfluids
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We show that the Gross-Pitaevskii equation coupled with the wave equation for a wire (GP-W) provides a
natural theoretical framework for understanding recent experiments employing a nanowire to detect a single
quantum vortex in superfluid 4He. We uncover the complete spatiotemporal evolution of such wire-based vortex
detection via direct numerical simulations of the GP-W system. Furthermore, by computing the spatiotemporal
spectrum, we obtain the vortex-capture-induced change in the oscillation frequency of the wire. We quantify
this frequency shift by plotting the wire’s oscillation frequency versus time and obtain results that closely match
experimental observations. In addition, we provide analytical support for our numerical results by deriving the
dispersion relation for the oscillating wire, with and without a trapped vortex. We show that the Magnus force
opens a gap in the wire dispersion relation. The size of the gap becomes the characteristic frequency of the wire
when a vortex is trapped.
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Introduction. Vortex filaments are rapidly rotating thin lo-
calized structures in fluid flows. They play an important role
in our understanding of such flows and their turbulence [1,2].
They appear as the dissipative structures of turbulent flow,
and their dynamics has fascinated physicists and mathemati-
cians for centuries [3]. Vortex filaments are also crucial in
quantum fluids, such as superfluid helium and atomic BECs,
as they are the most fundamental hydrodynamic excitation.
Given their quantum origin, they are topological defects of the
macroscopic wave function that describes the superfluid; the
circulation of these defects assumes values that are multiples
of the quantum of circulation K = h/m, where h is the Planck
constant and m the mass of the atoms.

The characterization and detection of such vortices is a
challenge for condensed-matter science. The main difficulty
is the vanishingly small core size, which is of the order of 1 Å
in superfluid helium. Since the early experiments by Packard
[4], experimentalists have made enormous progress in the
detection of quantum vortices. Efforts to track and trap single
quantum vortices have been made by groups that employ
particles whose linear size is of the orders of micrometers, so
it is considerably greater than the radius of the vortex core
[5–7]. Such experiments have studied vortex reconnections
[8] and Kelvin waves [9], and they have carried out a direct
and accurate verification of Feynman’s rule that relates the
vortex density to the rotation rate [7].

Recently, a different experimental technique has been pi-
oneered by Guthrie et al. [10], which has been successful
in millikelvin superfluid 4He for studiying signatures of the
interaction, entrapment, and release of quantum vortices from
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nanobeams. These experiments rely on measurements of the
frequency of the nanobeam and its modifications in time [10].
These changes in time have been interpreted as the trapping
and release of a quantum vortex by the nanobeam; however,
so far no theoretical or numerical support has been presented
in support of this interpretation.

In this Letter, we design a model, based on the Gross-
Pitaevskii equation (GPE), that is able to reproduce the results
of the experiments of Guthrie et al. [10]. We show explicitly
how the natural frequencies of a wire, immersed in the super-
fluid, are modified by the trapping and release of a quantum
vortex. Figure 1 summarizes our results via flow visualizations
and the evolution of the temporal spectra. We also provide a
theory that explains the changes in wire frequencies when a
vortex is trapped on it.

Our theoretical model uses the GPE to describe the su-
perfluid via a complex macroscopic wave function ψ and
a solid deformable thin cylindrical object, immersed in this
superfluid, by an external potential. Our approach is similar
to that used in the modeling of large particles in superfluids
[11,12]. In particular, the cylinder is described by classical
degrees of freedom and, for simplicity, we assume that the
dynamics of the cylinder is given by the wave equation [13].
We refer to our model as the Gross-Pitaevskii-wire model
(GP-W). The self-consistent coupled equations are derived by
varying the total action of the system (see the Supplemental
Material [14]). The GP-W system of equations is

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ + Vext (r − R)ψ, (1)

q̈ = − 1

ρw

∫
dxdyVw∇|ψ (x, y, ζ )|2 + c2

w

∂2q
∂ζ 2

, (2)

where r = {x, y, z} is the three-dimensional (3D) spatial co-
ordinate, g > 0 is the strength of the interaction between the
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FIG. 1. Isosurface plots of the density |ψ |2 showing the spatiotemporal evolution of two quantum vortices (in cyan) interacting with the
oscillating wire (in gray), which is depicted via the isosurface of the wire’s potential Vw , in our GP-W model (see text), at five representative
times that increase from left to right: (a) a vortex-free state labeled by α; (b) a vortex-capturing state β; (c) a vortex-captured state γ ; (d) a
vortex-disentangled state δ; and (e) a vortex-recaptured state ζ . These isosurface plots are superimposed on volume plots of |ψ |2, in which
sound waves appear as red clouds. (f) Filled contour plot of the absolute value of the continuous wavelet transform (CWT), which we obtain
via the windowed Fourier transform in MATLAB, of the wire’s position q = (qx, qy ) as a function of the normalized frequency 
/
0

M of the wire
and time t/τ . The noteworthy changes in 
/
0

M are associated with the configurations in (a)–(e) are labeled α, β, γ , δ, and ζ , respectively.

bosons, μ the chemical potential, and Vw the potential that
accounts for the wire, whose centerline is parametrized by
R(ζ ) ≡ {qx(ζ ), qy(ζ ), ζ }, where ζ is the parameter that varies
along the central axis of the wire. Equation (2) governs the
dynamics of the wire, with q ≡ (qx, qy) the transverse dis-
placement of the wire of density per unit length ρw, and speed
of sound cw. Specifically, Eq. (2) describes a vibrating string
with the linear dispersion relation. We model the wire by a
Gaussian potential

Vext (r − R) = lim
ε→0

∫
Vw

e− (z−ζ )2

2ε2

√
2πε2

dζ , (3)

with

Vw = V0 exp

(
− [x − qx(ζ )]2 + [y − qy(ζ )]2

2a2

)
, (4)

where V0 and a are, respectively, its strength and width. In
Eq. (3), the Gaussian function along the z direction, which be-
comes the delta function as its width ε → 0, is used to derive
Eq. (2) from the Hamiltonian (see the Supplemental Material
[14]). The GP-W system conserves the number of particles
N = ∫ |ψ |2dr, the total energy E , and the total momentum P
(see the Supplemental Material [14]).

The wire, with mass M0
w, length Lw, and radius aw,

displaces some superfluid, whose (added) mass is Mw =
m

∫
(|ψ∞|2 − |ψw|2)dr, where ψ∞ and ψw are, respectively,

the steady-state wave functions without and with the wire. The
radius of the wire is calculated using the displaced mass as
aw = ( 3Mw

ρ4π
)1/3, where ρ ∼ |ψ∞|2. The mass ratio and effec-

tive mass

M ≡ M0
w

Mw

and Meff
w = M0

w + Mw (5)

help us to distinguish between light (M < 1) and heavy
(M > 1) wires. The frequency of the wire, when a vortex is
trapped on it, is obtained by a balance of its inertia and the
Magnus force [15] and is


0
M = ρ�Lw

Meff
w

, (6)

where � = nvh/m is the quantized circulation with nv being
the multiplicity of the vortex and ρ is the superfluid density.

Models of the type (1) and (2) account naturally for the
processes of vortex trapping and release by solid boundaries,
without recourse to any ad hoc rule, so they have been used
with great success, numerically and theoretically, to study
the dynamics of particles in superfluids [11], the interaction
of particles and quantum vortices [12,15,16], vortex recon-
nections with trapped particles [17], and active Lagrangian
superfluid turbulence [18]. The GPE is derived for weakly
interacting Bose-Einstein condensates (BECs). Even though
4He is a strongly interacting system, GPE-type models re-
produce its observed hydrodynamical behavior well, at least
qualitatively. Therefore, our GP-W model provides a powerful
framework for the development of a theoretical understanding
of the experiments [10] that use nanomechanical devices to
study vortex dynamics in superfluid 4He.

To study Eqs. (1)–(4), we perform direct numerical sim-
ulations (DNSs) via a Fourier pseudospectral method on a
periodic cubical domain of side L = 2π , with N3 = 2563 or
N3 = 5123 collocation points, and the 2/3 rule for dealiasing
[19–21], i.e., spectral truncation of Fourier modes for wave
numbers k = |k| > kmax = N/3. In our DNSs, lengths are
normalized by the healing length ξ and time by τ = ξ/cs.
We set the speed of sound to be cs = 1; and the healing
length is ξ = 2dx, where dx = L/N . For time marching, we
use the fourth-order Runge-Kutta scheme RK4 for Eq. (1)

L100504-2



CAPTURE AND RELEASE OF QUANTUM VORTICES … PHYSICAL REVIEW B 111, L100504 (2025)

and the exponential time differencing RK4 scheme [22] for
Eq. (2), because the ratio cw/cs is large. In our study, the
radius and the length of the wire are, respectively, aw � 3ξ

and Lw � 256ξ ; the corresponding numbers in the nanobeam
experiments [10] with 4He are aw � 100ξ and Lw � 104ξ .
Thus, the ratio aw/Lw in our DNSs is comparable to that
in experiments, so our study should be able to capture the
essential properties of the wire-vortex interactions that have
been observed in these experiments [10].

We use an initial condition ψvw (see the Supplemental Ma-
terial [14] and Ref. [23] therein), in which a vortex-antivortex
pair is positioned away from the wire; furthermore, we include
a small perturbation on q. As time t progresses, the wire
oscillates, the vortex-antivortex pair moves towards the wire,
one of them gets captured by it, whereupon the frequency of
the wire changes. An illustrative sequence of vortex capture,
disentanglement, and recapture events is shown via pseudo-
color plots in Figs. 1(a)–1(e). In Fig. 1(f), we show a filled
contour plot of the absolute value of the continuous wavelet
transform (CWT) of the wire’s position q = (qx, qy) as a
function of the normalized frequency 
/
0

M of the wire and
time t/τ . Note the changes in 
/
0

M that are associated with
the configurations in Figs. 1(a)–1(e) that are labeled α, β, γ , δ,
and ζ , respectively. Clearly, our DNS reproduces the observed
experimental behaviors of the nanobeam in Ref. [10], and it
confirms that the changes in 
/
0

M arise from vortex trapping
or disentangling. Furthermore, we observe the frequency of
the wire, when the vortex is trapped on it, corresponds to the
one given by the Magnus force (6). It is also important to
note that, when the vortex is not trapped, the frequency of
the wire is �0.4
0

M, which depends on the initial perturbation
around the mean position of the wire and corresponds to the
frequency of the dominant mode of vibration.

We now develop a theory that allows us to understand the
modification of the wire’s natural frequency because of its
interaction with the vortex.

In the absence of quantized vortices and with Vw = 0, we
can linearize the GPE in Eq. (1) about the uniform equilib-
rium state |ψ |2 = n0 to obtain the Bogoliubov dispersion [24]
relation


B(k) = cs|k|(1 + 1
2ξ 2|k|2)1/2

, (7)

where cs = √
gn0/m is the speed of sound, k is the wave vec-

tor of the excitation, and the healing length ξ = h̄/
√

2gmn0,
which yields the vortex-core radius. Fluctuations of quantum
vortices include Kelvin waves (KWs). The frequency spec-
trum 
KW for Kelvin waves was derived by Kelvin for a
hollow vortex in an incompressible Euler fluid [3],


KW(k) = �

2πa2
0

⎡
⎣1 −

√
1 + a0k

K0(a0k)

K1(a0k)

⎤
⎦, (8)

where Kn(x) is the order-n modified Bessel function and k
is the magnitude of the wave vector. Roberts [25] showed
that the dispersion relation in Eq. (8) is also valid for a
quantum vortex in GPE at small wave numbers and obtained
a0 � 1.1265ξ . Because of the lack of a full analytical dis-
persion relation of vortex excitations in the GPE, we use the

following fit to the dispersion relation in our simulations [15],


fit
v = 
KW

[
1 + ε 1

2
(a0k)

1
2 + ε1(a0k) + 1

2 (a0k)
3
2

]
, (9)

where ε 1
2

= −0.20 and ε1 = 0.64 are dimensionless parame-

ters. For a small wave number, 
fit
v → 
KW, while for a large

wave number, 
fit
v ∝ k2, which is a free-particle dispersion

relation, applicable for small-scale excitations of a superfluid
vortex.

If we consider the wire in the superfluid without vortices,
then, in the long-wavelength limit, the dispersion relation for
the wire frequency is [26]


±
w (k) ∼ ±cwk

(
1

1 + 1
M

)1/2

, k → 0, (10)

where cw is the speed of sound in the wire and the effect of the
superfluid appears via M, which accounts for the added mass
[Eq. (5)]. The dispersion relation in Eq. (10) is the solution
of Eq. (2) in the long-wavelength limit. In the following, we
verify it using our DNS of the GP-W model. To study the
wire’s dispersion in Eq. (10) without a vortex, we use an
initial condition ψw (see the Supplemental Material [14]) in
which all the modes of the wire are excited with a small
amplitude such that the amplitude is inversely proportional
to the wave number k. So, the lowest mode is excited with
the highest amplitude (see the Supplemental Material [14]). In
our DNS for the GP-W model, we obtain the spatiotemporal
spectrum Sq(k, ω) ∼ |q(k, ω)|2, where q is the magnitude of
the displacement of the wire [see Eq. (2)]. In Fig. 2(a) we
show a representative plot of the wire (in gray) superimposed
on a volume plot of |ψ |2, whose fluctuations indicate sound
waves. The dispersion relation (10) is in good agreement with
the low-k part of high-intensity regions in the filled contour
plot of Sq(k, ω) [Figs. 2(b) and 2(c) for two values of M = 2
and M = 5]; these high-intensity regions yield the complete
dispersion relation for all values of k.

To study how the wire’s dispersion relation changes when
a vortex is trapped on it, we use an initial condition with a per-
turbed wire enrobed by a vortex (see Supplemental Material
[14]). For convenience, we chose � < 0, so that Kelvin-wave
excitations lie in the upper part of the dispersion relation.
The measured dispersion relation for this system is presented
in Fig. 3(b). Remarkably, the vortex modifies the excitation
spectrum of the wire; in particular, it lifts the degeneracy, at
k = 0, as is apparent in Fig. 3(c). We chose a different set of
parameters in Fig. 3(b) as compared to that in Fig. 2(b) so
that the gap in Fig. 3(b) is much more enhanced, leaving the
physics unchanged. The measured dispersion relation matches
with the analytical dispersion form in Eq. (13), which we
derive in the following section.

To understand this perturbed spectrum, we derive an ef-
fective equation that governs the dynamics of the wire in the
presence of a vortex. First, we write the wire displacement
in complex form q = qx + iqy. Then, following the ideas of
Ref. [15], a simple equation for q is obtained by balancing
the Magnus force i
0

M(q̇ − vsi ), the tension c2
w∂zzq, and wire

inertia. Here, vsi is the self-induced velocity at position q,
which depends on the model. For the sake of simplicity, we
first employ the local-induction approximation (LIA) [27],
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FIG. 2. (a) One level contour plot of wire immersed in GP-W
system, showing small-amplitude oscillations; this is superimposed
on a volume plot of |ψ |2. (b) Filled contour plot of the spatiotemporal
spectrum Sq(k, ω) (see text) of the wire on log scale; the cyan dashed
line represents the linear dispersion relation of Eq. (10) with M = 2,
cs/cw = 1/3.3, and the radius of the wire aw = 2.50ξ . The white
dashed line shows the Bogoliubov dispersion curve of Eq. (7), and
the sold red line shows the dispersion relation cwk without account-
ing for added mass effects. (c) is the same as (b) but for M = 5 with
other parameters fixed.

in which the superfluid flow velocity can be approximated
by vsi = i �

4π
� ∂2

∂z2 R(z, t ), where � is a constant in this ap-
proximation of the order of log(�/ξ ), with � the intervortex
distance. Note that in the LIA framework, Kelvin waves have
the dispersion relation 
LIA = −��k2

4π
. The dynamics of the

wire is governed by

q̈(z, t ) = i
0
M

[
q̇(z, t ) − i

�

4π
�

∂2

∂z2
q(z, t )

]
+ c2

w

∂2

∂z2
q(z, t ).

(11)

The previous equation is a natural generalization of the model
introduced in Ref. [15].

We now seek solutions of Eq. (11) of the form q(z, t ) =
q0ei(
±

Mt−kz) and then obtain their frequency


±
M(k) = 
0

M

2
± 1

2

√(

0

M

)2 +
(


0
M��

π
+ 4c2

w

)
k2. (12)

We can go beyond the LIA by following Ref. [15] to obtain
the following dispersion relation for the waves along the wire,


±
M(k) = 
0

M

2
± 1

2

√(

0

M

)2 − 4
0
M
v + 4c2

wk2, (13)

where 
v is a model-dependent bare vortex frequency. If we
use the LIA, 
v = 
LIA, so Eq. (13) becomes Eq. (12); to go
beyond the LIA we use 
v = 
fit

v , which is given by Eq. (9).

FIG. 3. One level contour plots depicting the wire in gray loaded
with a vortex (a) at an intermediate time. The cyan cloud in
(a) represents the sound waves, which is a volume plot of |ψ |2.
(b) The spatiotemporal spectrum Sq(k, ω) ∼ |q(k, ω)|2 of the wire
on a log scale placed at the location of a bare vortex, featuring
small-amplitude Kelvin waves. The white dashed curve represents
the dispersion relation from Eq. (7), whereas the cyan dashed line
corresponds to the analytical dispersion relation in Eq. (13). The
green dotted-dashed line shows the Bogoliubov dispersion curve of
Eq. (7). (c) A closer examination of (b) that focuses on the central
region. Here, we have used M = 4.0, cs/cw = 1/2.7, and the radius
of the wire is aw = 1.84ξ .

In the absence of a vortex, the wire’s frequency spectrum (10)
exhibits a gapless mode with 
±

w (k = 0) = 0. This mode de-
velops a gap, i.e., 
+

M(k = 0) − 
−
M(k = 0) = 
0

M > 0, when
a vortex is introduced [see Eqs. (13) and Fig. 3(c)]. The
gap observed in our GP-W simulations is well explained by
our theoretical prediction. Furthermore, the whole dispersion
relation is reproduce by our theory without any adjustable
parameter, when we use the bare Kelvin-wave dispersion-
relation fit 
fit

v .
Conclusions. Superfluid turbulence is often envisioned as a

tangle of quantum vortices [28–35]. It is important, therefore,
to detect such vortices unambiguously, which has been the
goal of several experiments [4,5,7,8,10,36,37]. The use of
wires or nanobeams [10,37] has led to very promising results
that have shown how a vortex interacts with a wire. We have
carried out a GPE study that has been designed to uncover
such wire-vortex interactions and is therefore of direct rele-
vance to the experiments of Refs. [10,37]. In particular, we
have obtained various signatures of the capture of a superfluid
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vortex by a wire using our DNS of the GP-W system. In
the absence of any quantized vortices in the system, the wire
oscillates with a frequency characterized by the initial ran-
dom disturbance. We quantify how the wire-vortex interaction
changes the oscillation frequency of the wire. In particular, we
monitor the temporal evolution of the normalized frequency

/
0

M to identify (Fig. 1) of vortex-free, vortex-trapping,
and vortex-trapped states as in the experiments of Ref. [10].
Our computation of the spatiotemporal spectrum allows us to
obtain dispersion relations [Figs. 2(b) and 3(b)] without and
with vortices on the wire. In particular, without a vortex, the
transverse displacements of the wire, along two perpendicu-
lar directions, lead to a degeneracy in the excitation spectra
(Figs. 2 and 3). If the vortex is present, a Magnus force acts
on the wire because of the circulation of the vortex; this lifts
the degeneracy in the frequency spectrum and leads to a gap.
This Magnus force produces two circularly polarized modes
that are separated by the frequency 
0

M. This frequency thus

becomes dominant for sufficiently large-scale perturbations,
explaining the jumps observed on the inset of Fig. 3. We show
that our DNS results are in good agreement with our simple
linear theory. Finally, our model is easily generalizable to de-
scribe different types of mechanical devices, or the dynamics
of several devices connected by vortices.
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