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We present a comprehensive study of the statistical features of a three-dimensional (3D) time-reversible
truncated Navier-Stokes (RNS) system, wherein the standard viscosity ν is replaced by a fluctuating thermostat
that dynamically compensates for fluctuations in the total energy. We analyze the statistical features of the
RNS steady states in terms of a non-negative dimensionless control parameter Rr , which quantifies the balance
between the fluctuations of kinetic energy at the forcing length scale �f and the total energy E0. For small Rr , the
RNS equations are found to produce “warm” stationary statistics, e.g., characterized by the partial thermalization
of the small scales. For large Rr , the stationary solutions have features akin to standard hydrodynamic ones: they
have compact energy support in k space and are essentially insensitive to the truncation scale kmax. The transition
between the two statistical regimes is observed to be smooth but rather sharp. Using insights from a diffusion
model of turbulence (Leith model), we argue that the transition is in fact akin to a continuous second-order phase
transition, where Rr indeed behaves as a thermodynamic control parameter, e.g., a temperature. A relevant order
parameter can be suitably defined in terms of a (normalized) enstrophy, while the symmetry-breaking parameter
h is identified as (one over) the truncation scale kmax. We find that the signatures of the phase transition close to
the critical point R�

r can essentially be deduced from a heuristic mean-field Landau free energy. This point of
view allows us to reinterpret the relevant asymptotics in which the dynamical ensemble equivalence conjectured
by Gallavotti [Phys. Lett. A 223, 91 (1996)] could hold true. We argue that Gallavotti’s limit is precisely the
joint limit Rr

>→ R�
r and h

>→ 0, with the overset symbol “>” indicating that those limits are approached from
above. The limit therefore relates to the statistical features at the critical point. In this regime, our numerics
indicate that the low-order statistics of the 3D RNS are indeed qualitatively similar to those observed in direct
numerical simulations of the standard Navier-Stokes equations with viscosity chosen so as to match the average
value of the reversible thermostat. This result suggests that Gallavotti’s equivalence conjecture could indeed be
of relevance to model 3D turbulent statistics, and provides a clear guideline for further numerical investigations
involving higher resolutions.
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I. INTRODUCTION

Describing the irreversible behaviors of macroscopic ob-
servables arising from time-reversible microscopic dynamics
is the central long-standing theme of nonequilibrium statis-
tical mechanics [1–3]. When there exists a wide scale sepa-
ration between the microscopic and the macroscopic scales,
the emergence of irreversibility can in general be formal-
ized using a variety of reduction techniques including but
not limited to stochastic equations, diffusion, or projection
operators formalisms that model the collective evolution of
the fastest variables [4–7]. In general though, and although
the scopes of many promising strategies are the subject of
intense research activity [8–12], no systematic framework
exists that would allow to derive from first principles a

*research.vishwanath@gmail.com

nonequilibrium thermodynamic formalism that could simply
account for macroscopic irreversibility.

In the context of three-dimensional (3D) stationary homo-
geneous isotropic turbulence, whose statistics stem from stan-
dard Navier-Stokes (NS) equations, a hallmark of irreversibil-
ity is the phenomenon of anomalous dissipation, namely, the
fact that the rate of energy dissipation ε becomes finite as the
separation between the injection and the dissipative viscous
scales become infinite. The breaking of detailed balance is
then made apparent through the celebrated four-fifth law (see,
e.g. Ref. [13]), which ties ε to the average of the cube of the
longitudinal velocity increments. This is an anomalous fea-
ture, as in the limit of vanishing viscosity (infinite Reynolds
number) the flow could in principle formally be described by
the time-symmetric Euler equations.

A thorough description of irreversibility in turbulence re-
quires to underpin its precise features and in recent years
this problem has witnessed a renewed interest. In particular,
nontrivial signatures of irreversibility have been identified on
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the Lagrangian statistics: both experiments and large numer-
ical simulations have demonstrated that these depend on the
forward-in-time or backward-in-time conditioning [14–17].
For instance, both fluid and heavy particles tend to gain ki-
netic energy slowly but lose it rapidly along their Lagrangian
trajectories [18–20]: This is a clear example of an irreversible
behavior, whose origin relates to vortex stretching and gener-
ation of small length scales [21], and which persists even in
the limit of vanishing viscosity.

One important difficulty in studying turbulent irreversibil-
ity precisely comes from its asymptotic nature. Even mas-
sive computational effort in numerically integrating the
NS equations may fail in clearly disentangling the finite-
Reynolds-number effects from the truly asymptotic features
[22,23].

An alternative approach is to tweak the governing equa-
tions to make them time reversible, and then study whether
the irreversible signatures of turbulence still emerge under
suitably defined limits. An early example of such dynamics is
that of the “constrained Euler system” considered in Ref. [24],
wherein the energies contained within narrow wave number
shells are held constant in time. The resulting system was
shown to reproduce many among the standard statistical fea-
tures of isotropic turbulence, including intermittency.

In Ref. [25], another time-reversible governing equation
was proposed, based on the assumption that the fluid is
not subjected to the usual viscous dissipation, but rather
to a modified dissipation mechanism, namely, a “reversible
viscosity” that balances exactly the injection statistics, and
tuned so that a prescribed macroscopic observable such as
the total energy or the total enstrophy remains constant in
time. This modification transforms the “dissipative term” into
a “thermostatting term” which is time-reversal invariant. An
equivalence between such above reversible formulations and
the standard NS dynamics was postulated to hold true in
the limit of high Reynolds number [25], as a consequence
of a more general equivalence of dynamical ensembles for
nonequilibrium systems [26]. Should such an “equivalence
conjecture” hold true, at least for suitable choices of ther-
mostat, one would therefore expect that both standard and
reversible dynamics could produce the same statistics for
inertial range dynamics at finite Reynolds number, provided
that both the standard and the averaged reversible viscosity
share the same value.

The use of the reversible formulation opens up the possibil-
ity to explore the implications of the chaotic hypothesis [27]
for the fluctuations of the local observables and the Lyapunov
spectrum. This perspective has motivated many investigations,
including numerical [28–31] and experimental ones [32].

Numerical tests probing equivalence of dynamical ensem-
bles were performed in various settings but so far and to the
best of our knowledge only for models more simple than the
full three-dimensional (3D) NS equations. For instance, time-
reversible versions of shell models of turbulence obtained
by imposing a global constraint of energy conservation were
investigated in [28]. It was demonstrated that as the amplitude
of the external force is varied, from zero to high values,
the system exhibits a smooth transition from an equilibrium
state to a nonequilibrium stationary state with an energy
cascade from large to small scales.

Such models have also been studied in combination with
various kinds of thermostats. Recent results suggest that the
relevance of the equivalence conjecture might crucially de-
pend on which macroscopic observable is chosen to be held
constant [33,34]. Insights on how macroscopic irreversibility
ties to nonequilibrium energy cascade process rather than to
the explicit breaking of the time-reversal invariance due to
viscous dissipation were also reported in Ref. [35].

The validity of the equivalence conjecture along with var-
ious consequences of the chaotic hypothesis were tested for
incompressible two-dimensional (2D) flows [29,31]. Direct
numerical simulations (DNS) of the incompressible 2D NS
equations were compared to their reversible counterpart, in
order to examine the fluctuations of global quadratic quan-
tities in statistically stationary states. Comparative study of
the Lyapunov spectra showed that they overlapped [31], and
this feature provides support in favor of the equivalence
conjecture.

The discussion above suggests that suitably defined re-
versible Navier-Stokes (RNS) systems could perhaps provide
a thermodynamic framework, within which genuine turbulent
statistics would emerge out of a time-reversible dynamics.
This could help at shedding a thermodynamic perspective on
typical anomalous turbulent signatures. To that end, the recent
works [33,35] constitute very promising steps toward both a
systematic assessment and a comprehensive understanding of
Gallavotti’s conjecture. To our knowledge, though, no system-
atic attempt was made so far in order to clearly target the
limit in which the equivalence conjecture could supposedly
hold true, e.g., the limit ν → 0 for the full 3D NS equations.
The obvious reason for this is the fact that this question is
both subtle and a priori heavy to tackle from a numerical
perspective. Any numerical scheme involves a cutoff scale
kmax, and the desired asymptotics is then necessarily a joint
limit kmax → ∞, ν → 0. In principle, those two limits do not
commute. In the context of Gallavotti’s original equivalence
conjecture, one should clearly let kmax → ∞ before letting
ν → 0, and in our view even a phenomenological hint as to
whether the equivalence conjecture should reasonably hold
in that limit is perhaps currently lacking. To gain such an
intuition, one should probably first understand the nature of
the statistical regimes that the RNS dynamics is likely to
generate. Yet, systematic overviews are to this day at best
essentially qualitative or simply lack, such is the case for the
3D RNS. This paper intends to fill this gap.

Our work offers a comprehensive study of the statistical
features of a 3D time-reversible NS system, in which the
standard viscosity is replaced by a fluctuating thermostat that
dynamically compensates for fluctuations in the total energy.
To identify different statistical regimes of this system, we
introduce the non-negative dimensionless control parameter
Rr = f0�f/E0, which quantifies the balance between the in-
jection of kinetic energy at the forcing scale �f and the total
energy E0. For small values of Rr, the RNS equations are
found to produce steady states which are characterized by
close-to-equilibrium Gibbs-type statistics for the small scales.
As such, and extending a terminology introduced in [36], we
refer to this type of solutions as being warm. The terminology
is simply meant to convey the idea that the spectra being
partially thermalized at the ultraviolet end, the latter should
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behave somewhat akin to a heat bath, a feature previously
observed in truncated fluid models [37–39]. For large Rr , the
stationary solutions have compact energy support in k space
and are found to be essentially insensitive to the cutoff scale
kmax (later precisely defined) and we refer to those kind of
states as being of hydrodynamic type. The transition between
the two statistical regimes is observed to be rather sharp.
Using insights from a reversible nonlinear diffusion model
of turbulence (Leith model), we argue that the transition is
in fact akin to a continuous second-order phase transition,
and that Rr indeed behaves as a thermodynamic control
parameter, e.g., a temperature. A relevant order parameter can
be suitably defined in terms of a (normalized) enstrophy, while
the symmetry-breaking parameter h is identified as (one over)
the truncation scale kmax. We find that the signatures of the
phase transition close to the critical point R�

r can essen-
tially be deduced from a heuristic mean-field Landau free
energy. This point of view allows us to reinterpret the rele-
vant asymptotics in which Gallavotti’s conjecture could hold
true. Gallavotti’s limit precisely corresponds to the joint limit
Rr

>→ R�
r and h

>→ 0, with overset “>” meaning that the
critical point is approached from above. It therefore relates
to the statistics in the neighborhood of the critical point. In
this regime, our numerics indicate that the 3D RNS steady
statistics mimic their standard NS counterpart, with viscosity
matching the average value of the reversible thermostat. This
result hints toward the validity of the equivalence conjecture.

The remainder of this paper is organized as follows. Sec-
tion II introduces the RNS equations and the control parameter
Rr. We schematically discuss the expected statistical features
of the RNS states in the two opposite asymptotics Rr → 0
and Rr → ∞. Section III describes the outcomes of our RNS
numerics, and presents a detailed overview of the different
statistical regimes which we observe. We identify a small
crossover range of Rr , wherein the RNS states continu-
ously transit from being “warm” to being “hydrodynamic.”
Section IV discusses insights obtained from the analysis of
a suitably defined “reversible Leith model,” the statistical
regimes of which are interpreted within the framework of a
mean-field second-order Landau theory. Section V extends
the discussion back to the RNS system, and reformulates
the equivalence in a thermodynamic framework. We compare
low-order RNS and NS statistics slightly above the candidate
critical point, and argue that this is indeed the relevant regime
to consider. Section VI summarizes our findings and presents
some perspectives.

II. REVERSIBLE NAVIER-STOKES EQUATIONS

A. Formal definitions

The spatiotemporal evolution of the velocity field u(x, t )
describing an incompressible fluid flow within a spatial do-
main D is governed by the Navier-Stokes (NS) equations

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f, (1)

where ν is the kinematic viscosity, p is the pressure field,
and f is the forcing term, acting at large scales, to sustain a
statistically steady state. The incompressibility is ensured by
requiring ∇ · u = 0 and the fluid density is set to 1.

In presence of the viscous dissipation term ν∇2u, the
resulting macroscopic dynamics is clearly irreversible, as the
NS equations (1) are not invariant under the transformation

T : t → −t ; u → −u. (2)

We now follow Ref. [25], and alter the dissipation operator
term to make it invariant under the transformation T . The es-
sential tweak consists in transforming the dissipation operator
into a thermostat, so that a certain macroscopic quantity, such
as the total energy or the total enstrophy, becomes a conserved
quantity. While Ref. [40] discusses several implementations
of this idea, we here choose to follow Ref. [28,29], and
impose a constraint on the total kinetic energy. An elementary
calculation shows that in order for the the energy to be held
constant, the viscosity must fluctuate as

νr[u] =
∫
D f · u dx∫

D (∇ × u)2 dx
. (3)

This reversible viscosity is a functional of u and depends on
the state of the system. We refer to the equations obtained by
replacing the constant in time viscosity ν in the NS equations
(1) with the state dependent νr as the “reversible Navier-
Stokes” (RNS) equations:

∂u
∂t

+ (u · ∇)u = −∇p + νr∇2u + f, (4)

where we still enforce incompressibility as ∇ · u = 0.

B. Reversible control parameter Rr

To characterize the statistical steady states of the RNS
system, we use the dimensionless control parameter

Rr = f0�f

E0
, (5)

where E0 is the total (conserved) energy fixed by the initial
state, f0 is the forcing amplitude, and �f is the energy injection
length scale.

Despite its suggestive name, the control parameter Rr

should not be interpreted as either a “reversible Reynolds
number” or an inverse thereof: neither of the asymptotic
regimes Rr → 0 and Rr → ∞ does indeed describe a fully
developed turbulent state.

This is perhaps slightly counterintuitive as when Rr → 0
the RNS dynamics formally reduces to the freely evolving
Euler equations. There is yet no reason to expect this limit
to produce a “fully developed turbulent” steady state, as it
corresponds to a very specific joint limit, where both the
viscous and the forcing term simultaneously vanish. Fully
developed turbulence is in principle generated from the NS
equations in a different manner, that is by letting the standard
viscosity ν → 0 at fixed value of the forcing f0 [13]. There is
therefore no reason that both limits coincide.

This work relies on numerical integrations of the RNS
equations. As such, the fact that the limit Rr → 0 should be
unrelated to turbulence becomes even clearer. Indeed, any nu-
merical calculation involves a finite resolution or equivalently
a finite number of degrees of freedom. At fixed resolution, the
limit Rr → 0 does not yield the Euler equations but rather
their truncated counterpart. Hence, the numerical integrations
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FIG. 1. A schematic illustration of a candidate (truncated) RNS
phase diagram with two distinct regimes and a crossover region, that
would be compatible with the heuristic description of Sec. II B for
the limits Rr → 0 and Rr → ∞.

of the truncated RNS equations will in the limit Rr → 0
converge toward an absolute equilibrium equipartition state,
describing statistical energy equipartition among the modes.
This equilibrium state has Gaussian statistics and does not tie
to fully developed turbulence. We refer the reader to Appendix
for further details on absolute equilibria and truncated Euler
flows.

By contrast, the limit Rr → ∞ resembles an overdamped
dynamics: in this limit, the forcing is infinitely large compared
to the energy retained in the system. Therefore, any energy in-
jected at scale �f should in principle immediately be removed
by the reversible viscosity, hereby suppressing the nonlinear
transfer of energy. As such, the asymptotic steady state cannot
be sensitive to the number of modes used in the numerical
simulations.

The two asymptotic phases should obviously cross over at
intermediate values of Rr , and this is very schematically sum-
marized by the diagram sketched in Fig. 1. Our numerical sim-
ulations intend to substantiate this crude phenomenological
overview, and in particular provide a detailed characterization
of the RNS statistical regimes when Rr takes a finite value.

III. NUMERICAL EXPERIMENTS

We begin this section with a brief overview of our nu-
merical methods, followed by a comprehensive description
of the results obtained from the numerical simulations of the
RNS equations. We show that the phase diagram depicted in
Fig. 1 is essentially correct. The RNS system indeed has two
distinct statistical regimes separated by a crossover region.
The transition between these two regimes has the character
of a continuous-phase transition.

A. Details of the simulations

1. Numerical schemes

In order to perform the numerical integrations of either
the 3D NS [Eq. (1)] or the 3D RNS [Eq. (4)], we use the
VIKSHOBHA solver, which is an efficient parallel numerical
code, that relies on a highly accurate pseudospectral method
[41].

The velocity field u is solved inside a cubic domain D of
side 2π , and is prescribed to be triply periodic. As such, it is
represented by the Fourier series

u(x, t ) =
∑

k

û(k, t ) exp (ik · x),

where k = (k1, k2, k3), ki ∈ [−Nc/2, Nc/2 − 1] represent the
3D wave numbers and Nc is the number of collocation
points. From the incompressibility condition, the pressure
term is eliminated by using the transverse projection operator
Pi, j (k) = δi, j − kik j/k2, hereby projecting the nonlinear term
u · ∇u onto a plane perpendicular to k. Our pseudospectral
method computes the linear terms in Fourier space and the
nonlinear terms in real space, before transforming them back
to Fourier space. Aliasing errors are removed using the stan-
dard 2

3 -dealiasing rule, so that the maximum wave number in
our simulations has magnitude kmax = Nc/3. Both the NS and
the RNS dynamics are evolved in time using a second-order
Runge-Kutta scheme.

In our RNS numerics, the time step was kept very small
dt = 7.5 × 10−4, and this allowed very accurate conservation
of the energy. Variations are below 0.03% in every one of our
runs.

2. Initial data and forcing

Both RNS and DNS runs are initiated from the following
Taylor-Green velocity field:

ux = u0 sin(x) cos(y) cos(z),

uy = −u0 cos(x) sin(y) cos(z),

uz = 0,

and the coefficient u0 sets the value of the initial energy.
Energy is then injected in the system using the Taylor-

Green forcing:

fx = f0 sin(k̃f x) cos(k̃fy) cos(k̃fz),

fy = − f0 cos(k̃fx) sin(k̃f y) cos(k̃f z),

fz = 0,

where f0 and k̃f are, respectively, the forcing amplitude and
wave number. We write kf := √

3k̃f as the norm of the forcing
wave vector kf = (k̃f , k̃f , k̃f ). As an aside, let us recall that the
Taylor-Green flow has a vanishing total helicity, e.g.,

∫
D u ·

(∇ × u) = 0.

3. Conventional definitions

We compute the isotropic energy spectrum as

E (k, t ) := 1

2

∑
k :

k − 1
2 < |k| � k + 1

2

|û(k, t )|2,

from which both the (total) energy E := ∑kmax
k=1 E (k, t ) and the

enstrophy 	 := ∑kmax
k=1 k2E (k, t ) are estimated.

The nonlinear energy fluxes are defined through


(k, t ) =
∑
|k|�k

T (k, t ), where

T (k, t ) := Re

⎧⎨⎩ ∑
i, j=1, 2, 3

û�
i [k, t]Pi, j (k)[ ̂u×(∇×u)] j[k, t]

⎫⎬⎭
represents the energy transfer function.
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TABLE I. The three sets of runs discussed in this work.

Set Nc kmax E0 f0

A64 64 21.3 From 0.06 to 2.2 0.13
A128 128 42.6 From 0.06 to 2.2 0.12
B128 128 42.6 0.12 From 0.012 to 0.12

We finally define the forcing timescale as τ = �f/
√

E0,
with E0 denoting either the prescribed RNS energy or a
suitable time-averaged NS energy. Please observe that in
Fourier space, the reversible viscosity defined in Eq. (3) is
computed as

νr[u] = εinj/	 with 	 the enstrophy,

and εinj := Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

k : |k| � kmax
i = 1, 2, 3

fi(k, t ) · u�
i (k, t )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6)

representing the injected power due to the external forcing.

4. Parameters of the simulations

In order to carry a systematic investigation of the RNS
system at fixed Nc and fixed forcing wave number kf = √

3,
we follow two protocols, either (A) vary u0 so that the runs
have different E0 for fixed f0; or (B) vary f0 using the same
prescribed initial velocity amplitude u0 = 1 (in which case
all the corresponding RNS runs have the same total energy).
Our discussion is based on three sets of runs of resolution up
to 1283, the details and labels of which are summarized in
Table I.

B. Results

We now present the outcome of our sets of numerical
integrations of the RNS dynamics. We show that the charac-
terization of the different statistical steady RNS states can be
identified by tracing the time-averaged behavior of either the
enstrophy or the reversible viscosity, depending on the control
parameter Rr . Those quantities stand out as relevant order
parameters, that clearly demarcate the phase diagram in two
regions Rr < R−

r � 2 and Rr > R+
r � 3.2, in accordance

with the two asymptotic states Rr → 0 and Rr → ∞. Both
regimes have clear spectral signatures. We refer to the low-Rr

regime as being a warm statistical regime as it proves to be
characterized by partial ultraviolet thermalization and there-
fore sensitive to the cutoff wave number kmax. The high-Rr

regime apparently proves blind to this nonphysical artifactory
cutoff, and we hence refer to the corresponding states as
being of hydrodynamic type. The range R−

r � Rr � R+
r is a

crossover region between those two regimes, over which both
order parameters smoothly transit from being nearly vanish-
ing to having finite positive values. This transition region is
further characterized by the presence of strong bursts in the
enstrophy times series, whose origin we tie to a nontrivial
ultraviolet multistable behavior.

1. Statistical states of the RNS system

The enstrophy 	 is a quantity that naturally ties to small-
scale structures and as such it is particularly sensitive even to
early onsets of ultraviolet thermalization. For our purpose, it
proves convenient to normalize the enstrophy as 	̃ := 	/	eq,
using the equilibrium value 	eq = 3k2

maxE0/5 (see Appendix
for details).

Naturally, sensitivity to small scales is also monitored by
the (nonsigned) reversible viscosity νr = εinj/	. Averaging
those values in time, one therefore naturally obtains two
natural order parameters, which trace the different statistical
regimes that the RNS system falls into. The asymptotic values
of both parameters stems from the definition of Rr . The fully
thermalized asymptotics Rr → 0 has 〈νr〉 → 0 and 〈	̃〉 → 1,
while the overdamped asymptotics Rr → ∞ corresponds to
〈νr〉 → ∞ and 〈	̃〉 → 0.

The values of 〈νr〉 and 〈	̃〉 for finite values of Rr measured
from our simulations are shown in Figs. 2(a) and 2(b), where
the crudely depicted “crossover” of Fig. 1 between the large-
Rr hydrodynamical and the small-Rr thermalized regimes can
indeed be identified as the close vicinity of R�

r = 2.75.
This information can be refined by monitoring the dy-

namical behavior of the parameters, rather than their sole
averaged values. To simplify the discussion, we choose to only
comment on the time fluctuations of the normalized enstrophy,
which we infer from Figs. 2(c) and 2(d). Specifically, Fig. 2(c)
displays the dynamical evolution 	̃ for representative values
of Rr corresponding to the RNS set B128, while Fig. 2(d)
displays the time variance of 	̃ for every set of runs as a
function of Rr . Combining insights from both the averaged
and the dynamical behaviors of 	̃, we then identify three
ranges for the parameter Rr , corresponding to the three types
of RNS regimes hereafter described.

a. Hydrodynamic range. Rr > R+
r � 3.2. In this range,

the time-averaged reversible viscosities 〈νr〉 reach finite pos-
itive values. The data collapse observed in Fig. 2(a) suggests
that those values are prescribed by an increasing function
of Rr , independent from both the chosen protocol and the
cutoff scale kmax. This feature is compatible with the nor-
malized enstrophy 〈	̃〉 being nearly vanishing and behaving
as a decreasing function of Rr . Note that 〈	̃〉 has some
dependence on kmax. This is evident from the observation that
its profile for set A64 in Fig. 2(b) lies above those for sets A128

and B128.
Furthermore, the enstrophy time series indicates that in this

range of parameters, typical steady states have low fluctua-
tions of the enstrophy. Empirical fits shown in Fig. 2(d) reveal
that the normalized time variance of the enstrophies is reason-
ably well described as [Var(	̃)]1/2 � A+〈	̃〉/(Rr/R�

r − 1),
with A+ = 0.05 and R�

r = 2.75, independently from kmax.
b. Warm range. Rr < R−

r � 2. In this range of Rr , the
order parameters show some dependence on kmax, as visible
in Figs. 2(a) and 2(b). For the reversible viscosity, this can be
accounted using Kubo dissipation theorem to estimate 〈εinj〉 ∼
f 2
0 τeq in the limit Rr → 0. The timescale τeq ∼ �f E

−1/2
0 is

the equilibrium velocity correlation time at forcing scale,
and is here prescribed by the fully thermalized statistics of
truncated Euler flows [42,43]. Combining this estimate with
the definitions (5) and (6), and using Eq. (A2) found in
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FIG. 2. Signatures of the RNS phase transition. (a) Time-average reversible viscosity νr vs Rr . Dotted lines represent the scaling νr ∼ R2
r ,

prescribed by the asymptotics Rr → 0 (see text for details). For Rr > R�
r , the reversible viscosity becomes independent on the cutoff kmax.

This signals that the regime is of hydrodynamic type. (b) Time average of the normalized enstrophy 	̃ vs Rr , exhibiting a smooth transition in
the vicinity of R�

r � 2.75. 	̃ ∈ [0, 1] acts as an order parameter. (c) Time series of the normalized enstrophy (	̃ := 	/	eq) for representative
values of the control parameter Rr from set B128. (d) Time variance of 	̃ vs Rr showing the enhancement of the enstrophy fluctuations near
Rr ∼ R�

r . In every figure, the gray-shaded area indicates a transition range delimited by R−
r � 2 and R+

r � 3.2.

Appendix, one obtains

〈νr〉 ∼ R2
r E3/2

0

	eq�f
∝ R2

r

k2
max

as Rr → 0. (7)

This asymptotics indeed accounts for the scaling behaviors
observed in the numerics, which in fact extend through the
entire warm range of Rr .

For the normalized enstrophy, the time average 〈	̃〉 ob-
served for the higher resolved sets of runs proves to be
very accurately fitted by the square-root profile 〈	̃〉 = (1 −
Rr/R�

r )1/2. The representative time series of Fig. 2(d) indi-
cates that warm dynamics quickly reaches steady states char-
acterized by vanishing levels of fluctuations for the enstrophy.
As a function of Rr , those are fairly well described with the
fit [Var(	̃)]1/2 � A−〈	̃〉/(1 − Rr/R�

r ), with A− = 0.025.
At the present stage, the specific shapes of the fitting

profiles are to be considered as mere observations. Clearly, the
fitting laws have mean-field flavors and hint toward unveiling
a potential second-order phase transition. Yet, we postpone
any further informed comments related to mean-field matters
up until Sec. IV C 3, where similar behaviors will again appear
but in a somewhat simplified setting, hence easier to insight
from.

c. Transition range. R−
r < Rr < R+

r . Within this narrow
range of Rr , the order parameters sharply but smoothly transit

between their warm and their hydrodynamic behaviors: this
precisely corresponds to the crossover region anticipated in
Fig. 1. Let us observe that the critical value R�

r � 2.75
previously obtained as a fitting parameter lies in that range.
In fact, the mixed phase is essentially identified from the
dynamical behavior of the enstrophy, which becomes bursty
and characterized by successive peaks [cf. Fig. 2(c)]. Those
do not eventually die out, and were found to remain up to
the maximal integration time that we considered. The bursty
behavior implies that the enstrophy fluctuations get drastically
enhanced with respect to their the mean enstrophy values
when approaching R�

r from either the warm or the hydrody-
namic side, and this is indeed the main signature of Fig. 2(d).
At Rr = R�

r , for example, we observe [Var(	̃)]1/2/〈	̃〉 ∼ 1
for every set of runs, meaning that the time fluctuations
are of the order of the time averages. Again, this behavior
resembles a finite-size signature of a potential phase transition
of finite order, that could perhaps appear in the limit of infinite
resolution, that is to say, as kmax → ∞.

2. Spectral signatures of the RNS states

We here document the RNS energy spectra and fluxes
observed in the different regimes, aiming at further charac-
terizing the phase portrait of the RNS system per se, that
is, without directly tying them to their NS counterpart or to
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FIG. 3. Warm spectra vs hydrodynamic spectra. Main panels show the suitably normalized time-averaged energy spectra observed in
the higher resolved RNS runs at Nc = 128 for various representative values of (a) Rr > R+

r corresponding to the hydrodynamic regime and
(b) Rr < R−
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dependence of kth with Rr , and suggests kth → kf � 1 as Rr → 0. The runs are taken from set A128 for Rr > 3.48 and from set B128 otherwise.

the equivalence conjecture, at least for now. Let us recall
that the RNS dissipative term relies on an intrinsic direct
dynamical coupling with the forcing scale. It is therefore
highly nonlocal in Fourier space, at sharp contrast with the
standard NS viscous damping, which is local in k space. As
such, the spectral signatures of the different RNS states are not
obvious. A priori, it is unclear whether we should at all expect
the RNS system to at least mimic standard NS phenomenology
for prescribed ranges of Rr .

a. Warm spectra vs hydrodynamic spectra. The analysis
of Sec. III B 1 revealed that within the warm and the hy-
drodynamic phases, RNS dynamics reaches nonequilibrium
steady states characterized by very low enstrophy fluctations.
In both of those phases, it is therefore natural to focus on
time-averaged quantities. We define the (stationary) energy
spectrum as the time average E (k) := 〈E (k, t )〉, where the
angle brackets indicate an average over the total duration of
the simulations. As shown in Fig. 3, both the warm and the
hydrodynamical phases have clear spectral signatures, which
naturally tie to the behavior of the order parameter studied in
Sec. III B 1.

In the hydrodynamical phase, that is for Rr > R+
r , the

energy spectra have compact support in k space, as shown on
Fig. 3(a). For Rr � R+

r , the supports are narrow, the spectra
being contained within a small-k range around the forcing
scale. This means that the effective scale-by-scale damping
mechanism generated from the reversible viscosity is large
and dominates over the nonlinear transfer, somewhat akin to
the standard laminar regime of textbook hydrodynamics. As
Rr decreases down to R+

r , energy spreads toward the higher
wave numbers k > kf . The system is then in a nontrivial
nonequilibrium steady state, with nonzero flux of energy, and
multiscale statistics essentially independent from kmax: this
could as well be taken as a heuristic defining statement of
a turbulent state [44]! From this qualitative point of view,
the RNS statistics observed at Rr = 3.48 � R+

r do indeed
describe turbulent motion.

At this stage though, the rather modest resolution of our
numerics compared to current state-of-the-art NS simulations
precludes us from drawing any conclusion as to whether

higher-resolved RNS simulations would indeed produce fully
developed turbulent statistics, e.g., akin to those found in
numerical and experimental data sets related to extreme
regimes of fluid motion [45,46]. This issue precisely relates
to Gallavoti’s conjecture and we will discuss it in details in
Sec. V A, in connection with a discussion on turbulent limits.

In the warm phase, here identified as Rr < R−
r � 2, the

spectra are contaminated by the finite cutoff, as shown in
Fig. 3(b). Specifically, they resemble some of the transients
commonly observed in numerical simulations of the truncated
Euler dynamics [37,38,47], in the sense that a seemingly
infrared traditional hydrodynamic scaling at small k coexists
with a nearly equilibrium ultraviolet power law scaling, that is
E (k) ∼ kα , where α progressively increases toward the Gibbs
exponent α = 2 as Rr decreases toward 0. The separation
between the two regions is identified in terms of a thermal
wave number kth, defined as the local minimum of the energy
profile. The inset of Fig. 3(b) shows that as Rr → 0, kth

decreases linearly toward a value close to the forcing scale
kth = √

3, e.g., close to the smallest wave number k0 = 1. This
is compatible with the fact that at Rr = 0, the RNS steady
state in fact corresponds to a fully thermalized equilibrium
state of the truncated Euler equations, as previously explained
in Sec. II B. Naturally, the approximate ultraviolet thermal-
ization at k > kth accounts for the fact that the warm phase
has a nonvanishing order parameter 〈	̃〉, as indeed observed
in Fig. 2, and explained with more technical details in the
Appendix.

b. Energy spectra in the transition range. In the transition
region, as evidenced by the violent fluctuations observed in
the enstrophy time series, it is unclear whether the system
genuinely reaches a steady state. It proves therefore more
instructive to comment on the dynamics of the instantaneous
energy spectra E (k, t ), rather than on their time-averaged
values. In fact, the peaks observed in Fig. 2(c) clearly relate
to oscillations of the ultraviolet behavior near kmax. Let us
illustrate this by picking the RNS run of set B128, corre-
sponding to Rr = 2.76, a value close to the identified crit-
ical point R�

r = 2.75 at which the fluctuations are the most
enhanced. Figure 4(a) reports the dynamical evolution of the
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FIG. 4. Spectral multistability in the transition region R−
r < Rr < R+

r . (a) Shows duly normalized instantaneous energy spectra from the
RNS run Rr = 2.76 of set B128, observed at selected times, so as to trace one of the enstrophy burst revealed in Fig. 2(c). Inset zooms into the
fluctuation time series. (b) Displays time averages of the energy spectra, conditioned on specific magnitudes of the normalized enstrophy, as
specified by the inset.

energy spectra E (k, t ) on a short time interval 18τ < t < 22τ ,
over which the normalized enstrophy abruptly varies from
	̃ � 0.03 at t � 18.3τ to 	̃ � 0.3 at t � 19.7τ back to 	̃ �
0.01 at t = 21.2τ . Over this time interval, the infrared energy
profile near the forcing scale remains essentially unchanged,
but the ultraviolet profile drastically varies. It transits between
being exponentially damped and being algebraic, with time-
dependent scaling E (k, t ) ∝ kα(t ), over a scaling range whose
size increases with the exponent α.

As the enstrophy increases in time toward its peak value,
the exponent α(t ) itself switches from negative to positive val-
ues, and the scaling range develops on a gradually increasing
range. Let us observe that the maximum value reached by the
scaling exponent is 1.4 and not 2, as would be expected if the
system was partially thermalized.

It is an expected fact that enstrophy be particularly sen-
sitive to small-scale behaviors. This is further illustrated in
Fig. 4, where time averages of the energy spectra condi-
tioned on prescribed enstrophy values are indeed observed to
yield very different ultraviolet scaling ranges. For example,
conditioning on 	̃ < 0.05 yields a close-to-hydrodynamic
type spectrum, while conditioning on the highest values 	̃ >

0.2 produces ultraviolet scaling reminiscent of a warm one.
Again, a closer inspection reveals that the relevant scaling
exponent is only 1.2 and not 2.

This implies that while a finite kmax indeed produces
nonzero values for the order parameter 〈	̃〉, the latter should
vanish in the limit kmax → ∞. This naturally hints that the
crossover range should disappear in that limit. This would
imply R−

r = R+
r = R�

r asymptotically, and strongly suggests
that the transition between the warm states and the hydrody-
namics states become a genuine finite-order phase transition
in the limit kmax → ∞.

c. Energy fluxes. In order to conclude our overview of
the RNS states, let us briefly comment on the RNS energy
fluxes, whose profiles for set B128 are represented in Fig. 5,
in which they are normalized by the time-averaged injected
power 〈εinj〉. The transition from the hydrodynamic to the
warm regime is reflected by the k-space profiles of the time-
averaged fluxes 
(k) := 〈
(k, t )〉, as shown in Fig. 5(a).

The flux profiles observed within the hydrodynamic range
clearly mirror the energy spectra observations of Sec. III B 2 a.
For large Rr > R+

r , fluxes are indeed nonzero only in a small
range of wave numbers k � kf . As Rr decreases down to R+

r ,
the spectral extension of the fluxes increases. For example,
at Rr ≈ 3.48, where the energy spectra suggest that RNS
dynamics is multiscale, we observe an energy flux that is
significant up to k ≈ 10 kf : this is in qualitative agreement
with standard NS phenomenology at low Reynolds number.
In particular, there is here no signature on the fluxes that the
reversible dissipation is defined as a nonlocal operator in k
space.

Within the warm range Rr < R−
r , the fluxes follow a

universal profile, that is seemingly independent of the specific
value of Rr, as indicated by the data collapse observed for
0.58 � Rr � 1.89. This is a clear signature of the warm
statistical regime, yet also perhaps counterintuitive.

On the one hand, and except from their abrupt fall down
to zero at the ultraviolet end, the fluxes are mostly constant
over the entire k range above the forcing scale, e.g., here
2kf � k � 20kf : this signals an out-of-equilibrium state, that
should imply Kolmogorov scaling for the spectra. On the
other hand, the corresponding energy spectra do not show this
Kolmogorov spectra: Fig. 3(b) indicates close-to-equilibrium
statistics, with a “distance” toward full thermalization mon-
itored by the scale kth becoming arbitrarily close to 1 as
Rr → 0. This gradual convergence toward the equipartition
state is not reflected by the flux profiles.

A qualitative explanation could be that the energy flux
is an integrated quantity (see Sec. III A 3). Hence, if the
range k > kth is indeed nearly thermalized and prescribed by
equipartition statistics, then the latter do not contribute to the
flux. An impatient and puzzled reader can, however, jump
to the discussion of Eq. (16) at the end of Sec. IV C 1 to
find that this kind of profile is in fact fully compatible with
near-equilibrium and partially thermalized statistics.

As an aside, let us here point out that in the “warmest
range” Rr � 0.5, which is here not shown, 
(k) begins to
fluctuate wildly from the ultraviolet end. The amplitude of the
normalized fluctuation grows with decreasing Rr and destroys
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FIG. 5. RNS energy fluxes. Panels show the k-space profile of the energy fluxes 
(k) normalized by the time-averaged injected power
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within the crossover region, at the same specific times considered in Fig. 4(a) tracing the enstrophy burst indicated in the corresponding inset.

the plateau behavior. The amplitude of the non-normalized

(k), however, correctly goes to zero and this is compatible
with the truncated Euler limit with E (k) ∼ k2 across the full
k range.

Within the transition range R−
r < Rr < R+

r , Fig. 5 indi-
cates that the large enstrophy fluctuations reflect in the fact
that the instantaneous fluxes 
(k, t ) oscillate in time between
a narrow-band hydrodynamic-type profile (at t = 21.2τ for
example) and a zoology of full-band profiles, that for instance
include the constant profile at t = 20.5τ or the nonmonotonic
bumpy profile peaked at k � 10kf in the vicinity of kmax at t =
19.7τ , and corresponding to the local maximum monitored in
the enstrophy time series.

IV. INSIGHTS FROM A REVERSIBLE
LEITH-TYPE TOY MODEL

Our numerical analysis so far shows that the RNS sys-
tem undergoes a continuous phase transition at Rr , whereby
steady RNS solutions transit from being hydrodynamic to be-
ing warm, in the sense that their ultraviolet statistical features
become affected by truncation scale and eventually thermal-
ize. The smoothness of the transition is, however, a necessary
consequence of our RNS runs having a finite resolution. While
the behaviors of the order parameter of Fig. 2 strongly hint at
the presence of a second-order transition with critical point
R�

r � 2.75, the numerical evidence is only suggestive: our
runs have finite resolutions and this in principle precludes true
divergence of any first derivative of the control parameter at
the candidate critical point. For a similar reason, while we ar-
gued that the RNS equations at Rr � Rr

� produce multiscale
steady states fitting a heuristic definition of “turbulence,” we
are well aware that such a statement is only qualitative, due
to the modest resolutions of our RNS runs. Consequently, it
cannot provide a firm assessment regarding the validity of the
equivalence conjecture. This is the reason why no quantitative
comparison with NS runs has been commented on so far.

While runs at higher resolutions could be desirable, further
insights on the nature of the transition can be obtained at
smaller numerical cost from a simplified nonlinear diffusion
spectral model of turbulence, namely, a modified Leith model
of turbulent cascade [48], naturally tweaked to produce “re-

versible” statistics in the spirit of RNS dynamics. Such model
proves simple to analyze because it has steady solutions that
can be semianalytically determined, extending an approach
previously used to characterize anomalous exponents found
in the associated freely decaying dynamics [36,49–51]. As
an aside, let us here point out that the terminology warm
solutions used in this paper stems from the concept of warm
cascades introduced by [36], which are explicit stationary
solutions to the inviscid Leith model with simultaneous Kol-
mogorov infrared scaling and thermalized Gibbsian ultravio-
let statistics.

Our analysis of the reversible Leith model suggests that
its steady solutions indeed undergo a second-order phase
transition, that separates hydrodynamic scaling from warm
solutions. The transition is controlled by an order parameter
RL akin to the RNS order parameter Rr , so that the phase di-
agram at finite value of kmax closely matches the one observed
in the RNS simulations. The truncation scale kmax is found to
play the role of (one over) a symmetry-breaking parameter,
analogous to the magnetic field in statistical condensed mat-
ter. As such as kmax → ∞, the system undergoes a genuine
second-order phase transition, that is identified from a suitably
defined susceptibility becoming infinite. We show that the
statistical signatures of the phase transition can be captured
from a heuristic mean-field Landau free energy. We conjecture
that the picture extends to the RNS system, and this has
practical implications regarding the equivalence conjecture.

A. Description of the reversible Leith model

The inviscid Leith model [36] consists in approximating
dynamics of the energy spectrum in k space using a well-
chosen second-order nonlinear diffusive operator. We here
combine this nonlinear evolution for the energy profile E (k, t )
with a thermostat. The reversible Leith (RL) dynamics is then
simply prescribed by

∂E (k, t )

∂t
= −∂π (k, t )

∂k
− νLk2E (k, t ),

where π (k, t ) = −Ck11/2E1/2(k, t )
∂

∂k

[
E (k, t )

k2

]
(8)
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represents an energy flux and C is a dimensional constant that
can be set to 1 for the sake of the present matter. The wave
numbers k range from prescribed k0 to the truncation wave
number kmax. In analogy with the RNS system, the parameter
νL is to be interpreted as a reversible viscosity, that guarantees
the time conservation of the total energy, that is∫ kmax

k0

E (k, t ) dk = E0 (prescribed). (9)

We seek to characterize the nonequilibrium steady energy
profiles E (k) and associated flux π (k), generated by the RL
dynamics (8), when the following fluxes are prescribed at the
boundaries:

π (k0) = ε0 and π (kmax) = 0. (10)

Combining the stationarity condition

−∂π (k)

∂k
= νLk2E (k), (11)

with the boundary flux conditions (10), the reversible vis-
cosity can be explicitly tied to the stationary energy profile
E (k) as

νL = ε0∫ kmax

k0
k2E (k) dk

. (12)

The independent parameters that control the behavior of
the steady energy profile are k0, kmax, E0, together with the
infrared boundary flux ε0. Letting kmax → ∞ and νL → 0
allows the possibility for nonvanishing constant flux solutions,
characterized by the Kolmogorov scaling E (k) ∼ k−5/3. Such
Kolmogorov solutions have finite capacity spectra, namely,∫ +∞

k0
E (k) dk < ∞. In other words, the value of the total

energy is independent from kmax when kmax → ∞, and it is
therefore natural to define a dimensionless number indepen-
dent from kmax, such as

RL = ε
2/3
0 �

2/3
0 E0

−1, with �0 = 2π/k0. (13)

The factor 2π entering the definition of the small scale �0 is
purely cosmetic. Although it is defined in terms of a flux rather
than in terms of a forcing intensity, the dimensionless number
RL is the Leith analog of our previously defined Rr for the
RNS system. It is the ratio between the injected energy at scale
�0 and the total energy present in the system.

B. Construction of RL steady solutions

1. Grebenev parametrization

In order to construct steady solutions for the RL dynamics
without resorting to direct numerical simulations of Eq. (8),
we resort to the general strategy described in [51]. The gen-
eral idea is to introduce a suitable parametrization (hereafter
referred to as the “Grebenev parametrization”) of the energy
profile, that transforms the defining stationary condition (11)
into an autonomous bidimensional dynamical system.

The specific form of the Grebenev parametrization is not
particularly intuitive, but proves highly efficient. It consists
in describing the steady energy profile using the change of

0 1
f

−1.0

−0.5

0.0

g

π̃ = 0

π̃0 = 0.2

Hydro-
dynamic

Warm

FIG. 6. Phase portrait of the dynamical system (15) obtained
from the Grebenev parametrization of the Leith stationary profiles.
Blue lines represent orbits and solid red lines are two examples of
parametrizing trajectories with the same non-normalized infrared
flux π̃0. A warm solution with vanishing end-point energy flux
follows a typical orbit up until the black line, while a scaling
solution follows the single orbit that ends at (0,0). Note that the two
represented solutions have different kmax.

variables k, E (k), E ′(k) → τ, f (τ ), g(τ ) defined through

τ : = ν
1/2
L

∫ k

k0

dκ (κE (κ ))−1/2,

f (τ ) : = (E (k)ν−1
L k−1)1/2, and g(τ ) := f ′/ f − f . (14)

In these variables, the stationary condition (11) transforms
into the dynamical system

f ′(τ ) = f ( f + g),

g′(τ ) = −2( f + g)2 − 7
2 f ( f + g) + 2 f 2 + 1

2 f . (15)

The system admits the stable fixed point (0,0) and its phase
portrait is shown in Fig. 6.

2. Practical use of the Grebenev parametrization

For a practical use of the Grebenev parametrization (14), it
is convenient to work with the non-normalized energy spectra
and fluxes, respectively defined as

Ẽ (k) := E (k)/ν2
L = k f 2(τ ),

and π̃ (k) := −π (k)/ν3
L = k4 f 2( f + 2g).

For given k0 and kmax, we can then obtain RL steady solutions
by integrating the sytem (15) from τ = 0 with initial condi-
tions f0, g0 until time τmax, implicitly defined from Eq. (14)
as τmax = ∫ kmax

k0
dk/(k f (τ )). To construct the admissible solu-

tions satisfying boundary conditions of type (10), we proceed
in the following steps:

(1) Pick an initial value π̃0 for the non-normalized flux at
point k0. Initial admissible ( f0, g0) are then such that π̃0 =
k4

0 f 2
0 ( f0 + 2g0).
(2) Find ( f0, g0), such that f (τmax| f0, g0) + 2g(τmax| f0,

g0) = 0. This ensures that π (kmax) = 0 (up to some some
prescribed threshold).

(3) Compute νL = (
∫ kmax

k0
dk Ẽ (k))

−1/2
.

(4) Deduce ε0 = ν3
Lπ̃0.
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FIG. 7. Transition between warm and hydrodynamic states in the Leith model. Top panel shows the evolution of the steady profiles of
(a) fluxes and (b) energies, for fixed values of k0 = 1/�0 = 10−2 and kmax = 1. Above R�

L ∼ 5.4, the energy spectra have compact support
and exhibit inertial range Kolmogorov scaling as RL � 5.4. Below R�

L, both Kolmogorov and equipartition scalings coexist: this is the warm
regime. The corresponding energy fluxes are then constant throughout the scales and their normalized profile becomes independent of RL.
Bottom panel shows the behavior of the RL viscosity as a function of RL for various choices of kmax, with (c) a suitable normalization
illustrating the warm asymptotics νL ∼ R3/2

L /	eq�0 or (d) without normalization, illustrating universality of the hydrodynamic regime with
respect to kmax.

The resulting solution is a steady solution for the RL dy-
namics, with infrared flux ε0. Examples of trajectories in the
( f , g) plane that parametrize either a hydrodynamic solution
or a warm solution are represented in Fig. 6.

C. Transition between warm and hydrodynamical steady states

1. Qualitative overview

Using the Grebenev parametrization, we generate the RL
steady energy and flux profiles for fixed k0 = 10−2, and vari-
ous kmax ranging from 5k0 to 1000k0. For each pair (k0, kmax),
we typically vary the non-normalized infrared flux π̃0 from
10−10 to 1010. The total energy E0 is set to unity. We observe
that at fixed k0 and kmax, the steady RL solutions are uniquely
determined by the value of the infrared-boundary flux ε0. The
corresponding values of the reversible viscosity are then also
uniquely determined.

Figure 7 provides a qualitative overview of the various RL
statistical regimes generated by our algorithm, depending on
the value of the reversible parameter RL. To comment on
those, let us here use k0 = 10−2, kmax = 1 as a representative
example. In Figs. 7(a) and 7(b) we show the profiles for the
energy and corresponding stationary fluxes for various values
of RL. It is apparent that the RL statistics exhibit a transition

somewhat akin to the one observed in RNS. Because of the
broader range of scales, and probably because of the intrinsic
simplicity of RL dynamics compared to RNS equations, clean
scaling regimes here appear, which considerably refine the
overall picture. In particular, the transition region is hardly
visible and we do not identify its pertaining states.

Essentially, at large values of RL, the energy profile has
compact support in k space and is therefore of hydrodynamic
type. For RL � 29.3, the highest value here represented, the
energy spectrum E (k) lacks any scaling region and is concen-
trated around the smallest wave number k0. Such is also the
case for the energy flux: this corresponds to an overdamped
regime, where the nonlinear terms prove unable to propagate
the injected energy across the scales.

As RL decreases down to RL � 5.4, the solutions develop
Kolmogorov inertial ranges with E (k) ∼ k−5/3 over almost
the full range of wave numbers. This feature goes along
with the associated energy flux essentially becoming constant
across an increasing range of wave numbers. Still, the energy
profiles eventually drop down to zero at the highest wave
numbers with an exponential rate. Let us remark that the
development of a pure Kolmogorov scaling range in this
hydrodynamic regime is less evident than it could seem at
first thought: In particular, this contrasts with the anomalous
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scaling solutions that typically appear in freely decaying
infinite-range Leith models, whose infrared scaling exponents
are known to be systematically larger than the constant-flux
exponents [36,50].

Further decreasing RL below 5.4, the RL statistics sharply
transit toward a warm regime. For RL � 1.5 down to 0, both
Kolmogorov scaling E (k) ∼ k−5/3 and equipartition scaling
E (k) ∼ k2 indeed coexist within the energy profile. As RL de-
creases down to 0, the equipartition scaling gradually invades
the entire scaling range. We note that the warm energy fluxes
are then nonvanishing and mostly constant over the range of
wave numbers, regardless of the size of the equilibrium range.
This exactly mimics the counterintuitive behavior observed in
the RNS case and reported in Fig. 5.1

In the Leith case, this puzzling but robust signature of the
warm regime can, however, be accounted for. Let us first note
that at fixed k0 and E0, it stems from the definition of RL that
ε0 → 0 as RL → 0. As such, while the normalisation used in
Fig. 7(b) implies that the flux profile is constant in the RL

regime, it should not misguide the reader into thinking that
the flux is nonvanishing in the limit RL → 0. This is not the
case, and this nonanomalous feature is in due agreement with
the statement that RL → 0 corresponds to fully thermalized
statistics. One can also remark that RL → 0 also implies that
νL → 0, as shown in Figs. 7(c) and 7(d).

The fact that the flux is constant across the scales is then a
direct consequence of the stationarity condition (11), which
reduces to ∂kπ (k) = 0 in the limit of vanishing reversible
viscosity νL. Solving for the corresponding energy profiles up
to an overall normalization constant, one obtains

E (k) ∝
[

5

(
k

kth

)3

+ 6

(
k

kth

)−5/2
]2/3

, (16)

where kth is the wave number at which E (k) reaches its min-
imum and which depends on the initial conditions (ε0, k0). It
is readily checked that E (k) ∼ k−5/3 for k � kth and E (k) ∼
k2 for k � kth: Eq. (16) provides an explicit example of a
RL warm solution! There is therefore no contradiction in
observing a constant flux simultaneously to a warm spectrum.
Although the diffusion approximation is not valid in the RNS
system, we believe that the property carries through for the
RNS equations. While perhaps counterintuitive, the constant
fluxes observed at low Rr in Fig. 5 are fully compatible with
the statement that the RNS statistics are warm in that regime.

2. Reversible viscosity and second-order phase transition

The previous description of the statistical regimes of RL
dynamics at fixed values for (k0, kmax) proves very generic
and is mostly insensitive to the specific choice of kmax, at least
provided that kmax/k0 is taken sufficiently large. This can be
directly inferred by monitoring the behavior of the reversible
viscosity as a function of RL, which we represent in Figs. 7(c)
and 7(d) for our various choices of kmax. The partitioning

1The same feature is actually also observed in simulations of the
truncated NS equations in the vanishing viscosity limit [56]. This
result came to our knowledge during the final completion of this
work.

between the warm and the hydrodynamic regimes appears
clearly, and the transition value is to first order independent
of kmax. The sharpening of the reversible viscosity profile as
kmax → ∞ suggests ∂RLνL|RL=R�

L
→ ∞ as kmax → ∞, and

suggests that the system undergoes a genuine phase transition
at RL = R�

L � 5.4. The observed continuity of the reversible
viscosity at RL ≈ R�

L indicates the phase transition is con-
tinuous and of second order. The warm and the hydrodynamic
regimes can therefore be identified as genuine thermodynamic
phases.

In the warm phase RL < R�
L, the scaling behavior of νL

for finite kmax is easily deduced from the definitions (12)
and (13). As RL → 0, one indeed obtains νL ∼ ε0/	eq ∼
(E0RL)3/2/(�0	eq ), with 	eq denoting the value of the en-
strophy when the energy spectrum is fully thermalized and
∝k2. Figure 7(c) shows that the scaling in fact extends up
until RL

<→ R�
L. Please observe that the dependence of νL

on the cutoff parameter through 	eq ∝ k2
max signals partial

thermalization of the small scales, and implies that νL → 0
as kmax → ∞.

In the hydrodynamic phase, by contrast, the reversible
viscosity is independent of kmax as shown by Fig. 7(d). This
reflects the fact that the statistics observed at finite νL > 0
should be mostly independent of kmax as kmax → ∞. Continu-
ity of the reversible viscosity implies νL → 0 as RL

>→ R�
L.

3. A candidate mean-field Landau free energy

The interpretation of the RL “warm-hydro” transition in
terms of a continuous transition can in fact be further substan-
tiated and described in terms of a heuristic Landau theory (see,
e.g., [52]) involving the parameters

r : = RL/R�
L − 1 (“reduced temperature”),

μ : = 	̃1/2 = (	/	eq )1/2 (“magnetization”),

h : = k0/kmax (“magnetic field”). (17)

Our choice of parameters is essentially data driven and mo-
tivated by successions of empirical tries. From Eq. (12), one
can observe that the quantities νL and 	−1 coincide in the
steady state regime. As such, the order parameter μ could as
well be defined from the reversible viscosity as μ ∝ ν

−1/2
L

up to some appropriate normalization. This hydrodynamic
magnetization is sensitive to ultraviolet thermalization and
takes value 1 at RL = 0. In the hydrodynamic phase, it is
nonvanishing for finite kmax, but converges to 0 as kmax → ∞.
This feature together with the fact that the transition is smooth
for finite values of kmax is the main indication as to why (one
over) kmax may be suitable as a smoothing symmetry-breaking
parameter. Let us now consider the mean-field Landau free
energy

φL(μ, h, r) := −3hμ + 1
2 r2μ2 + 1

4μ4,

defined for μ � 0, h � 0, r � −1. (18)

The prefactor 3 in front of the symmetry-breaking term is data
driven. In spite of its simplicity, Fig. 8 reveals that the mean-
field free energy φL captures the essential signatures of the RL
transition between the warm and the hydrodynamics phases.
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FIG. 8. Mean-field signatures of the RL transition. (a) Shows the spontaneous RL magnetization μ as a function of Rr for h = k0/kmax

ranging from 0.2 to 0.001. The color scale is indicated by the dot colors in (b). In (b), the main figure shows the RL magnetization at critical
point μ(r = 0, h) as a function of h. The inset shows the corresponding susceptibility χ (r, h) about the critical point estimated through finite
differences. As such, no estimates are provided for h = 0.2. In every figure panel, the dashed lines indicate the mean-field predictions (19).

In particular, it predicts the following magnetization profiles:

μ(r, h = 0+) = √
1 − r if r > 0 and 0 otherwise,

μ(r = 0, h) = (3h)1/3,

χ (r, h) : = ∂μ

∂h
= 3

r
if r > 0 and

3

2r
otherwise. (19)

Figure 8 shows that the first-order predictions for the mag-
netization are in excellent agreement with the RL data. The
spontaneous magnetization μ(r, h) indeed seems to converge
toward the mean-field prediction as h is decreased toward 0.
At the critical point, the scaling with h is close to perfect
over two decades. This rationally suggests that as h → 0,
the susceptibility χ (r = 0, h) indeed genuinely diverges, and
that the RL transition is of second order. Deviations from our
mean-field prediction seem to occur for the susceptibility. The
mean-field exponent is compatible with the data, but a finer as-
sessment would probably require reaching higher resolutions.
We remark, that as predicted by (19), the behavior of χ (r, h)
in the hydrodynamic phase is seemingly independent from h.
Such is not the case in the warm case, and this is a deviation
from our heuristic mean-field predictions.

Our partial conclusion at this point is that in spite of the
warm second-order deviations from the mean field, Fig. 8
hints that the RL transition between warm and hydrodynamic
states indeed fits into a general thermodynamic framework
and corresponds to a second-order continuous phase transi-
tion. It is unclear whether specific properties of the transition
could be deduced from first principles, but those considera-
tions go beyond the scope of this work.

D. From reversible Leith to reversible Navier-Stokes dynamics

While the RL model has a very simple dynamics, it is
naturally tempting to infer that the RNS statistics fits into a
similar general thermodynamic framework as the one identi-
fied in the Leith case. We shall not refrain from doing so in
Sec. V, in order to explore a thermodynamic formulation of
Gallavotti’s conjecture that could have practical implications
for its rigorous numerical assessment. Prior to that, let us,

however, briefly point out at some salient differences between
the RL and the RNS formulations.

a. RL vs Rr . The specific definition of the reversible pa-
rameter differs between the RNS and the RL cases, due to the
specific respective formulations of the reversible dynamics.
As such, one should not expect the specific RL free energy
(18) to account for the finite-size effects observed in our RNS
numerics. Naturally, one could decide to investigate the RNS
system in terms of a newly defined reversible parameter

R̃r := 〈εinj〉2/3�
2/3
f E−1

0 , (20)

and this would provide an exact analog to the definition (13).
Such a definition is natural, and would probably be the correct
one to consider if one was to compare between different
RNS forcing schemes. In fact, the only drawback of such
a definition is that it relies on a data-driven measurement,
namely, that of 〈εinj〉. In this work, we see this only as a minor
issue, with no relevance for the forthcoming discussion. In
our view, this is one of the reasons why the RNS mean-field
description does not, strictly speaking, carry through to the
RNS statistics. However, upon defining the RNS hydrody-
namic magnetization as μRNS := 	̃ rather than the square-root
RL definition (17), and upon using rRNS := Rr/R�

r − 1 as the
RNS reduced temperature, it is apparent that the mean-field
free energy prescribed by Eq. (18) correctly accounts for the
phenomenological square-root fit of Fig. 2. One would require
higher-resolved runs to analyze the RNS transition in terms of
kmax.

b. Dynamical behavior within the transition region. Another
difference between the present RNS and RL formulations
relates to the fact that the injected power fluctuates in time
in the first case but not in the second case. We think that this
feature prevents the RL dynamics to have a noticeable transi-
tion region at finite kmax. Specifically in the Leith model, for a
given input flux ε0 and prescribed finite kmax, only one steady
solution exists. It is either a warm solution or a hydrodynamic
solution: in other words, there is no multistability of solutions.
This could as well be the case in the RNS system, if the
injected power could be held constant in time. However, in our
RNS formulation the injected power εinj is only constant on
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average. In fact, it is unclear whether a forcing scheme could
be implemented, that would inject energy at a constant rate
in the RNS system without simultaneously breaking time re-
versibility. As such, insights from the Leith model necessarily
relate to time averages rather than fluctuations. For example,
at fixed total energy, the input parameter f0 only imposes the
upper bound: |εinj| � 2E0| f0|. The enstrophy fluctuations ob-
served in the transition region for the RNS simulations could
therefore be simply due to power fluctuations, selecting either
a warm solution or a hydrodynamic solution as a function of
the instantaneous value of εinj. Those fluctuations therefore
are not captured by the mean-field Landau description (17).
Further intuitions on that matter could perhaps be obtained by
generalizing the RL deterministic framework to a stochastic
one, but again this goes beyond our present scope.

At any rate, and in spite of the intrinsic differences between
the RNS and the RL formulations, it is natural to draw from
the RL analysis, and interpret the RNS transition as a genuine
second-order phase transition in the limit kmax → ∞. This has
practical implications for Gallavotti’s conjecture, and those
are substantiated in the next section.

V. TURBULENT LIMIT, CRITICAL POINT, AND
GALLAVOTTI’S CONJECTURE

Our discussion has so far focused on the RNS statistics
per se, that is, without reference to NS statistics, except for
some very qualitative comments. Yet, as explained in the
Introduction, the essential motivation in studying reversible
dynamics in the first place is to assess whether Gallavotti’s
equivalence conjecture holds true. In essence, the conjecture
states an identity between RNS and NS invariant measures,
hereafter respectively written 〈·〉E0

and 〈·〉ν . Directly quoting
from Ref. [33], we here state the equivalence as an (asymp-
totic) statistical identity valid for a suitable class of observable
O, e.g.,

〈O〉ν = 〈O〉E0
[1 + ◦(1)], (21)

where ◦(1) denotes a vanishing quantity in a suitable joint
limit ν → 0, kmax → ∞.2 We shall not here attempt to further
comment on the notion of a “suitable class of observables,”
except that the latter must contain the energy E , so that the
following reflexivity property holds:

〈E〉ν = E0 [1 + ◦(1)]. (22)

The notion of a “suitable joint limit” ν → 0, kmax → ∞,
however, needs further substantiation. In Ref. [33], the authors
consider the limit ν → 0 at fixed value of kmax. This limit is
particularly relevant in the perspective of the many interesting
recent developments related to Galerkin-truncated dynamics
[37,38,47,53–55]. In this limit, it is now known that the NS
equations generate quasiequilibrium flows [56]. It is therefore
not the relevant asymptotics in the context of describing fully

2Asymptotic statistical identities such as (21) are exactly the kind
involved in modern treatments of the equivalence between the canon-
ical and the microcanonical statistical ensembles, known to be valid
for a wide class of systems in equilibrium statistical mechanics (see,
e.g., [57] and references therein).

developed turbulence, which the (truncated) NS equations in
principle generate in the joint ordered limit

kmax → ∞ first, ν → 0 then, (23)

at fixed forcing statistics. Within the turbulent limit (23),
the statistical identity (21) describes a candidate dynamical
equivalence between the full RNS and the full NS statistics.
To our understanding, this also corresponds to the original
formulation of the equivalence conjecture [25,40].

Let us now explicitly assume that the RNS steady statistics
are described by a second-order continuous phase transition at
R�

r as h := k0/kmax → 0. One can then precisely identify the
turbulent limit as the critical point asymptotics, approached
from the hydrodynamic phase.

A. Turbulent limit and critical point asymptotics:
Rr → R�

r and h → 0

The identification of the turbulent limit as the critical
point asymptotics is a consequence of the transition being
continuous. Indeed, recalling the warm behavior 〈νr〉 ∝ h2 →
0 illustrated in Figs. 2(a) and 7(c), we infer that the reversible
viscosity is uniformly vanishing for Rr < R�

r in the limit h →
0. Assumed continuity of the transition then yields 〈νr〉 = 0
at Rr = R�

r . Besides, assuming say constant energy E0 as
Rr → R�

r , the forcing amplitude converges toward a finite
limit, so that f0 → f �

0 := R�
r E0/�f : We have recovered the

turbulent limit (23).
Let us here comment on two salient features of this ther-

modynamic reformulation of a candidate RNS turbulent limit.
a. Order of the limits. In the limit h → 0, the warm

states are strictly speaking ill defined as a consequence of
the ultraviolet catastrophe, as partially explained in Appendix.
Hence, approaching the critical point from below necessarily
requires taking the limit Rr

<→ R�
r before h → 0. By contrast,

the hydrodynamic states are well defined even as h → 0: We
have extensively argued throughout our exposition that the
statistics are independent from the cutoff in this phase. We
therefore conjecture that approaching the critical point from
above can therefore also be done by taking the thermody-
namic limit before the critical limit: in other words, the limits
h

>→ 0, and Rr
>→ R∗

r should in principle commute. We can
therefore unambiguously refer to the (unordered) joint limit
h

>→ 0, Rr
>→ R∗

r as the “turbulent limit.”

b. Anomalous dissipation. In the limit h
>→ 0, Rr

>→ R∗
r ,

we could in principle expect anomalous dissipation from
the RNS statistics. This is yet better seen if the alternative
definition R̃r of Eq. (20) indeed could be used as a valid
reversible order parameter. One would then obtain 〈εinj〉 →
ε� := �fE

3/2
0 R̃�

r
3/2 < ∞. This argument hints that scale-by-

scale energy budget and associated 4
5 laws could be de-

duced following the exact same steps as for the standard NS
equations [13], hinting at the equivalence between those two
dynamics at the critical point.

B. RNS vs NS near criticality: Illustrative numerics

As a final illustration of the relevance of the joint limit
kmax → ∞, Rr

>→ R�
r , let us here explicitly compare the
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FIG. 9. RNS vs NS at Rr � R�
r . (a) Superimposes the times series of the normalized enstrophy (main panel) for the B128 RNS run at

Rr = 3.48 and a corresponding NS run, with same Taylor-Green forcing and standard viscosity set to ν = 〈νr〉. Inset shows the corresponding
data for the energy time series, showing the approximated validity of the reflexivity property (see text). The dashed red lines indicate NS time
averages. (b) Compares the time-averaged energy spectra (main panel) and fluxes (inset) for both the RNS and NS runs. Kolmogorov scaling
is candidly indicated. E0 is the conserved total energy of the RNS run.

RNS statistics from set B128 to their NS counterpart at Rr ∼
3.48 > R+

r , a value which corresponds to the lower end of the
hydrodynamic regime for our resolution. As previously stated,
the RNS system then produces a nontrivial statistical state,
which involves a multitude of length sacles and timescales. To
generate corresponding NS steady states, we integrate the NS
equations with the same Taylor-Green forcing f0 and standard
viscosity set to ν = 〈νr〉. The main results are summarized in
Fig. 9. The inset of Fig. 9(a) shows that the NS energy fluc-
tuates around the imposed RNS value, e.g., 〈E〉ν � 0.99 E0,
and this reflects the approximate validity of the reflexivity
condition prescribed by Eq. (22). The main panel shows that
the NS and the RNS enstrophy time series fluctuate around
a similar mean value. The fluctuations are commensurate to
each other, yet slightly larger for the RNS run.

Figure 9(b) shows that the RNS and the NS dynamics
in that regime have in fact similar large-scale features. In
particular, both the spectra and the fluxes show excellent
agreement up to a decade (k < 10kf ) before deviating in
the ultraviolet range k > 10kf . This is a consequence of our
simulations having finite resolution, and those would probably
disappear upon taking larger kmax for same f0, along with the
expected decrease for the enstrophy fluctuations.

VI. CONCLUDING REMARKS

Time-reversible formulations of forced-dissipative hy-
drodynamical equations, addressing Gallavotti’s equivalence
conjecture of (hydro)dynamical ensembles, have emerged in
recent years as an important candidate framework to provide
an out-of-equilibrium thermodynamic perspective on the issue
of turbulent irreversibility. Yet, in spite of many promising
recent numerical results using reduced models, circumstances
under which the equivalence conjecture might hold true re-
main unclear. As such, attention has recently shifted into
analyzing reversible models where thermostats may preserve
various quadratic quantities, and not necessarily the energy. In
that context, the equivalence of ensemble has been assessed
in the near equilibrium regime, corresponding to taking the
vanishing viscosity at finite resolution [33–35].

In this work, we have followed a completely different
route, in order to provide intuition on the potential validity
of the equivalence conjecture for the full 3D dynamics, in
the limit kmax → ∞, ν → 0. To that end, our analysis has
focused on studying a reversible dynamics which preserves
the kinetic energy. This defined the RNS dynamics. Rather
than a systematic comparison of RNS statistics to NS statis-
tics, we have carried out an extensive numerical study to fully
explore the statistical regimes of the RNS system per se.
To our knowledge, this approach reverses the philosophy of
most of the previous numerical work related to Gallavotti’s
conjecture, and proved particularly insightful.

To summarize our results, our numerics hint that the RNS
system undergoes a phase transition controlled by a non-
negative dimensionless control parameter Rr , which quanti-
fies the balance between the fluctuation of kinetic energy at
the forcing length scale �f and the total energy E0.

For the presentation of our numerics, we explicitly used
the definition Rr = f0�f/E0,with f0 parametrizing the forc-
ing amplitude. We believe that alternative control parame-
ters could as well be used that would not alter the overall
picture, an example of which includes the data-driven R̃r =
〈εinj〉2/3�f

2/3/E0, with 〈εinj〉 the stationary value of the injected
power.

For small Rr , the RNS equations produce warm stationary
statistics, e.g., characterized by the partial thermalization of
the small scales and an intrinsic dependence on the cutoff
kmax. For large Rr , the stationary solutions have a hydrody-
namic behavior, characterized by compact energy support in
k space. The statistics are then essentially insensitive to the
truncation scale kmax.

The transition between the two statistical regimes was
observed to be smooth but delimited within a narrow range
of Rr in the vicinity of R�

r � 2.75. It is characterized by a
highly bursty dynamical behavior for the enstrophy, which is
then found to fluctuate commensurately to its mean. In this
regime, the system exhibits apparent multistability: it oscil-
lates between a hydrodynamic-type low-enstrophy regime and
a high-enstrophy regime, whose small-scale statistics are yet
far from being thermalized and exhibit nontrivial power law
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scalings. The enhancement of the enstrophy fluctuations in
this transition region hints toward a second-order phase transi-
tion between the warm regime and the hydrodynamic regime,
that would in a strict sense occur in the limit kmax → ∞,
with both the time-averaged reversible viscosity and the time-
averaged (normalized) enstrophy emerging as two natural
order parameters. In our view, the smoothness of the transition
is then a necessary consequence of the finite resolution of our
numerics.

To substantiate this idea, we relied on a simple one-
dimensional nonlinear “Leith-type” diffusion model, tweaked
in such a way as to become a stylized energy-preserving
reversible imitation of the RNS system. The main difference
between such a reversible Leith dynamics (RL) and the RNS
system is the forcing scheme, which in the previous case is
imposed by requiring constant energy fluxes at the boundaries.
Within this formulation, the RL steady states can be computed
without relying on direct numerical integrations of the RL
dynamics, but rather using a nontrivial parametrization and
ideas from the theory of dynamical systems. Similarly to
the RNS analysis, the RL steady regimes were classified
depending on a dimensionless control parameter RL akin to
Rr and mimic the smooth transition between warm states and
hydrodynamics states observed in RNS.

The simplicity of the RL formulation allowed us to inves-
tigate in details the finite-size effects and related influence of
the cutoff kmax. This asymptotic analysis substantiated the idea
of a second-order phase transition: In fact, we found that the
signatures of the phase transition close to the critical point
R�

r could essentially be deduced from a heuristic mean-field
Landau free energy. In this picture, Rr indeed behaves as
a thermodynamic control parameter, e.g., a temperature, the
relevant order parameter is defined in terms of a suitably nor-
malized enstrophy, while the symmetry-breaking parameter h
is identified as (one over) the cutoff scale kmax.

Naturally, the RL dynamics only reproduces idealized fea-
tures of the RNS transition and has some important differ-
ences with the RNS system. In the Leith model, the critical
control parameter is exclusively identified from the properties
of the average steady state, and therefore does not account for
the dynamical signatures of the transition found in the RNS
system, namely, the enhancement of enstrophy variance near
the transition. Besides, the small-scale energy in the high-
enstrophy region RL < R�

L remains up until R�
L close to being

exactly thermalized, E (k) ∼ k2. This is at contrast with the
RNS observations, in which close to the critical value R�

r ,
the power-law exponents of the energy spectrum at small
scales are observed to fluctuate and are bounded by 2. This
signals a clear departure from Gibbsian equipartition in the
RNS system, and this is not captured by the simplified model.
In our view, those differences can for the most part be traced
back to the fact that the injected energy fluctuates in the RNS
system but is kept a constant in our formulation of the RL
dynamics.

In spite of the differences, it is natural to conjecture that
such a second-order transition also exists for the RNS dynam-
ics, so that a candidate RNS phase diagram could for example
be akin to the one sketched in Fig. 10. If such was indeed
the case, one could formulate the turbulent limit in which

FIG. 10. A refined candidate phase diagram for the RNS steady
state. Our numerical simulations suggest R�

r ≈ 2.75.

one would ultimately desire to test Gallavotti’s conjecture
in terms of the critical point asymptotics Rr

>→ R�
r , h

>→ 0,
with the overset symbol “>” indicating that those limits are
approached from the hydrodynamic regime. In that limit,
we have argued that the RNS states should have anomalous
energy dissipation and formally vanishing thermostat, hinting
at the validity of the equivalence conjecture. The sugges-
tive comparison of RNS and NS numerics in that regime
indeed hints toward the validity of this approach. Besides, we
strongly believe that the limits Rr

>→ R�
r and h

>→ 0 should
commute: Compared to standard formulation of the turbulent
limit as kmax → ∞, ν → 0 in the NS equations, this would
then constitute a major simplification, and hopefully paves
the way to future systematic assessment of the equivalence
conjecture.

In this work, we have indeed restricted ourselves both to
numerical simulations involving rather modest numbers of
grid points (up to N3

c = 1283) and to statistical descriptions
based on one point statistical quantities. The complete char-
acterization of the statistical regimes of the RNS system with
larger grid sizes is computationally very demanding, given
that many of the runs require long temporal evolution. Yet, our
results suggest to study the asymptotic behavior of RNS only
at the transition, namely, by letting Nc → ∞ at fixed Rr �
R�

r . While we have provided evidence that in this regime the
RNS system correctly reproduces the macroscopic properties
of the NS equations, a systematic asymptotic analysis would
at this point be desirable, to investigate the nature of the
agreement at higher Reynolds number. Moreover, a careful
investigation of more refined statistical properties beyond the
relatively low-order statistics considered here is needed to
complete the picture, but we leave it for future investigations.
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APPENDIX: ABSOLUTE EQUILIBRIA OF THE
TRUNCATED EULER EQUATIONS

For Rr = 0, the numerical integration of the RNS equa-
tions exactly reduces to integrating the so-called “truncated
Euler” equations. Those are in fact obtained by perform-
ing a Galerkin truncation of the full Euler dynamics at a
maximum cutoff wave number kmax. In practice, Galerkin
truncations consist in suppressing all the triadic interactions
involving wave numbers larger than kmax, hereby yielding
a high-dimensional conservative set of nonlinear ordinary
differential equations. Truncated Euler flows exactly preserve
the quadratic invariants of the original equations and satisfy
a Liouville theorem. Hence, they typically converge toward
thermal statistical states with Gibbsian statistics known as
“absolute equilibria” [58–60], and the thermalization process
usually exhibits interesting transients [37,38,47]. For the non-
helical 3D truncated Euler flows that we consider in this
paper, the relevant absolute equilibrium state is particularly
simple and prescribed by each Fourier velocity mode having

independent centered Gaussian statistics with variance ∝
E0/N3

c . This equilibrium state describes an equipartition of the
total kinetic energy E0 among the different modes. Assuming
a continuous distribution of wave numbers, the corresponding
energy spectrum can be estimated as

Eeq(k) = 3E0

k3
max

k2, (A1)

and the absolute equilibrium enstrophy is then

	eq :=
∫ kmax

1
k2Eeq(k) dk ∼

kmax→∞
3

5
E0k2

max. (A2)

In the limit kmax → ∞, the absolute energy equilibria
become ill defined, as the resulting energy spectra cannot
be normalized, unless they are trivial and the total energy
is vanishing. This phenomenon is the so-called “ultraviolet
catastrophe,” which also prevents the warm RNS states to be
properly defined in the limit kmax → ∞.
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