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Abstract
The reciprocal energy and enstrophy transfers between normal fluid and superfluid 
components dictate the overall dynamics of superfluid 4He including the generation, 
evolution and coupling of coherent structures, the distribution of energy among 
lengthscales, and the decay of turbulence. To better understand the essential 
ingredients of this interaction, we employ a numerical two-way model which 
self-consistently accounts for the back-reaction of the superfluid vortex lines onto 
the normal fluid. Here we focus on a prototypical laminar (non-turbulent) vortex 
configuration which is simple enough to clearly relate the geometry of the vortex 
line to energy injection and dissipation to/from the normal fluid: a Kelvin wave 
excitation on two vortex anti-vortex pairs evolving in (a) an initially quiescent 
normal fluid, and (b) an imposed counterflow. In (a), the superfluid injects energy 
and vorticity in the normal fluid. In (b), the superfluid gains energy from the normal 
fluid via the Donnelly–Glaberson instability.

Keywords Superfluid · 4He · Thermal counterflow · Energy transfer · Fully-coupled 
dynamics

1 Introduction

The turbulent flow of helium  II (the low temperature phase of liquid 4He) 
consists of a disordered tangle of interacting superfluid vortex lines which move 
in a thermal background of elementary excitations [1–4]. The vortex lines are 
topological defects of the superfluid component [5–7], which is associated with 
the ground state, while the thermal excitations constitute a viscous fluid (the 
normal fluid component). According to the two-fluid theory [8, 9], normal fluid 
and superfluid are inseparable, penetrate each other and comprise of independent 
density and velocity fields. Importantly, since the vortex lines act as scattering 
centres for the elementary excitations, normal fluid and superfluid are dynamically 
coupled [7]. This interaction, called the mutual friction force, transfers kinetic 
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energy, enstrophy and helicity [10–12] between the two fluids. The mutual 
friction therefore controls the generation of normal fluid and superfluid coherent 
structures [10, 13–16] (see Fig. 1), their possible coupling [17, 18], the spectral 
distribution of turbulent kinetic energy [18, 19], as well as the decay [20] and the 
dissipation of turbulent kinetic energy [21]. It is thus responsible for some of the 
observed similarities and differences between classical and quantum turbulence 
[1–4].

Our work focuses on this energy transfer between the two fluids. In all previous 
studies, this topic was investigated in the context of turbulence. In some studies 
the normal fluid was initially turbulent and drove the growth of a superfluid vor-
tex tangle [18–20, 22]); in others, a superfluid vortex tangle excited an initially 
quiescent normal fluid [12, 23]. Unfortunately, the turbulent context, requiring a 
statistical interpretation, complicates the analysis of the results. In order to bet-
ter capture the essential physics of the energy transfer, here we study the simpler 
dynamics (laminar rather than turbulent) of two vortex-antivortex pairs, with each 
vortex perturbed by a single, helical Kelvin wave. We consider two problems (see 
Fig. 2). In the first problem, the vortex lines with Kelvin waves are embedded in 
an initially quiescent normal fluid; in the second problem, they are in the pres-
ence of an imposed counterflow (a configuration which leads to the well-known 
Donnelly–Glaberson instability [24]). Similar vortex configurations, currently 
examined in ongoing experiments [16], are ubiquitous in turbulent flows, but they 
are simple enough that we can relate the temporal evolution of the geometry of 

Fig. 1  Schematic diagram of a single helical superfluid vortex (green) and the normal fluid vorti-
city in the z-direction (red and blue for positive and negative vorticity values respectively). The nor-
mal fluid vorticity �z is normalised by the maximum value �max . Note how the normal fluid structures 
wrap around the superfluid vortex line as a double-helix (the 3D realisation of the normal fluid dipole 
described in the literature). The thickness of the superfluid vortex core (green) is exaggerated for visual 
purposes; in reality it is several orders of magnitude smaller than the normal fluid’s structures shown in 
red and blue
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the vortex line with the injection and the dissipation of energy in the normal fluid 
via the mutual friction force.

The study utilises a recent theoretical model capable of simulating self-consistently 
the coupled motion of normal fluid and superfluid [25]; in particular the model predicts 
quantitatively the experimentally observed shrinking of superfluid vortex rings [26].

The paper is organised as follows: Sect.  2 briefly describes the model and the 
parameters used in our simulations; Sect. 3 presents the results; Sect. 4 summarises the 
conclusions.

2  Method

The vortex core radius of superfluid 4 He ( a0 ≈ 10−8cm ) is several orders of magnitudes 
smaller than any length scale of interest in turbulent flows. Following Schwarz [27], we 
hence describe vortex lines as space curves s(�, t) of infinitesimal thickness carrying 
one quantum of circulation � = h∕m4 = 9.97 × 10−8 m2∕s , where h is Planck’s 
constant, m4 = 6.65 × 10−27kg is the mass of one helium atom, � is arclength and t is 
time. The equation of motion of the vortex line is

where s� = �s∕�� is the unit tangent vector at s , vn and vs are the normal fluid and 
superfluid velocities at s , and � , �′ are temperature and Reynolds number dependent 
mutual friction coefficients [25]. The vs

⟂

 term indicates the projection of superfluid 
velocity on a plane orthogonal to s′ . The superfluid velocity at a point x induced by 
the entire vortex configuration T  is determined by the Biot–Savart law:

(1)ṡ(𝜉, t) =
𝜕s

𝜕t
= vs

⟂

+ 𝛽s
� ×

(
vn − vs

)
+ 𝛽

�
s
� ×

[
s
� ×

(
vn − vs

)]
,

Fig. 2  Schematic time evolution of the Kelvin wave in the first problem (left: Kelvin wave in initially 
quiescent normal fluid) and in the second problem (right: Kelvin wave in the presence of counterflow)
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Usually Eqs. (1) and (2) are always meant to be supplemented by a vortex 
reconnection algorithm [28]) to cope with collisions of vortex lines: In this study, 
such collisions do not occur. This model of vortex lines is valid under the condition 
that the discretisation on the lines Δ� is smaller than the average vortex distance � 
and much greater than the vortex core radius a0.

Evolving the vortex lines using Eqs. (1) and (2) gives rise to a one-way model that 
neglects the back reaction of the vortex lines onto the normal fluid. Accounting for 
this back reaction, however, is crucial to understand more accurately the interaction 
between the two fluids. A two-way model is obtained by evolving the normal fluid 
self-consistently [25] according to the Navier–Stokes equation for vn modified by the 
introduction of the mutual friction force per unit volume Fns:

where � = �n + �s is the total helium density, �n and �s are, respectively, the normal 
and superfluid densities, p is the pressure, �n is the kinematic viscosity of the normal 
fluid and fns is the local friction per unit length [29], defined by

where the coefficient D is

where here vn
⟂

 represents the normal fluid velocity lying on a plane orthogonal to s′ , 
and � = 0.5772 is the Euler–Mascheroni constant. The hydrodynamic model of the 
normal fluid is valid under the continuum approximation of the Navier–Stokes equa-
tions; this approximation is valid as the discretisation of the normal fluid grid Δx is 
larger than the roton-roton mean free path �mfp = 3�n∕vG , where vG =

√
2kBT∕(��) 

is the roton group velocity and � = 0.16m4 is the effective mass of a roton. The 
separation of these two length scales is in fact of several orders of magnitude 
Δx∕�mfp ∼ 104 . Methods for fully-coupled dynamics have been used in recent stud-
ies [14, 15, 25, 29, 30]: the results presented here are based on [15, 29]. The coun-
terflow velocity is forced in the normal fluid by imposing the 0-th Fourier mode in 
our spectral code, while in the superfluid component by imposing a constant back-
ground vector.

In this paper, we use the two-way model to solve the two problems described in 
Sect. 1. We solve the governing equations and report input parameters and results 

(2)vs(x, t) =
�

4� ∮
T

s�(�, t) × [x − s(�, t)]

|x − s(�, t)|3
d� .

(3)
�vn

�t
+ (vn ⋅ ∇)vn = −

1

�

∇p + �n∇
2
vn +

Fns

�n

(4)Fns =∮
T

fns(s)�(x − s)d�, ∇ ⋅ vn = 0

(5)fns(s) = −Ds� ×
[
s
� × (ṡ − vn)

]
− 𝜌n𝜅s

� × (vn − ṡ),

(6)D =
4𝜋𝜌n𝜈n[

1

2
− 𝛾 − ln

(|vn⟂−ṡ|a0
4𝜈n

)] ,
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using dimensionless units. We use a characteristic length scale �̃� = D∕L , where 
D3 = (0.1cm)3 is the dimensional cube size, L3 = (2�)3 is the size of the non-
dimensional cubic computational domain and time scale 𝜏 = �̃�

2
𝜈
0
n
∕𝜈n , where �0

n
 

is the dimensionless viscosity set to properly resolve the small scales of the nor-
mal fluid [25]. For this simulation, they are �̃� = 1.59 × 10−2cm , �0

n
= 0.04 and 

𝜏 = 4.58 × 10−2s.
In both problems, we consider a L3 = (2�)3 cube with periodic boundary condi-

tions at temperature T = 1.9K . Four helical vortex lines aligned in the z-direction 
with amplitude A = 0.1 and wavenumber k = 5 are initialised in a chess-board like 
configuration, such that each vortex (with anti-clockwise rotation) is exactly L/2 
away from an anti-vortex (with clockwise rotation) and is left to evolve in time. 
This vortex configuration, unlike a single centralised vortex line, preserves a net-
zero circulation under periodic boundary conditions. This one-vortex configura-
tion could lead to inconsistencies due to boundary conditions not being satisfied. 
However due to the simple nature of the simulation, this effect is not significant. 
In the first problem the normal fluid is initially at rest, while in the second prob-
lem an imposed mean counterflow velocity vns = 1 in the z-direction fuels the 
Donnelly–Glaberson instability (see Figs. 1 and 2). The Lagrangian discretisation 
along the vortex lines has size � = 0.02 (corresponding to an initial number of 
vortex discretisation points equal to 1872) with timestep Δt

VF
= 6.25 × 10−5 . To 

solve Eq. (3) for the normal fluid we use an Eulerian discretisation with N = 2563 
mesh points and timestep Δt

NS
= 40Δt

VF
 . The analysis of the results presented 

relate to a single vortex line, and global normal fluid quantities are computed 
across the quadrant in which the vortex resides.

3  Results

3.1  Kelvin Wave in Initially Quiescent Normal Fluid

The initial condition of the first problem consists of a Kelvin wave on a vortex 
line in an initially quiescent normal fluid. At small amplitudes, the Kelvin wave 
rotates with angular frequency � ∝ k2 , neglecting logarithmic corrections. The 
relative motion between the vortex line and the normal fluid induces a mutual 
friction that creates a dipole pattern in the normal fluid around the vortex line, as 
previously reported in the literature for a single vortex ring [10], a single vortex 
line [11]) and a bundled vortex structure [15]. In our case the dipole pattern is 
twisted in a helical shape, as illustrated in Fig. 1. As the Kelvin wave propagates, 
it injects vorticity and energy into the normal fluid. Consequently the superfluid 
loses energy, corresponding to a decrease of the amplitude of the Kelvin 
wave. This decrease can clearly be observed in Fig.  3a (blue curves), where 
the numerically computed temporal evolution of the Kelvin wave’s amplitude 
according to the two-way model is reported along with the prediction of the one-
way model in the local induction approximation (LIA), which can be calculated 
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analytically. We observe that the two-way coupled decay of the Kelvin wave is 
slower, prolonging the lifetime of the Kelvin wave. This effect has also been 
observed in recent numerical [15] and experimental [26] studies of vortex rings.

The decay of the Kelvin wave towards a straight vortex line can also be observed 
in Fig.  3b (blue curves) where we report the temporal evolution of the anisotropic 
parameters I∥ and I

⟂
 [31, 32]. The parameters quantify the anisotropy of the vortex 

configuration in the directions parallel and perpendicular to the counterflow direction, 
which are obtained by

where r̂∥ is the unit vector parallel to the z-direction, r̂
⟂
 is the unit vector parallel to 

the x-direction, L′ is the vortex line density (vortex length per unit volume) defined 
by L� = (1∕Ω) ∮

T
d� , and Ω is the volume of the computational domain. The decay 

of the Kelvin wave into a straight vortex in fact implies that I∥ → 0 and I
⟂
→ 1.

The decaying amplitude A(t) of the Kelvin wave also implies that the magnitude 
of the velocity difference ṡ − vn decreases with time, reducing the magnitude of the 
mutual friction fns : this effect is reported in Fig. 4a. In the first approximation, in fact, 
we have |fns| ∝ |ṡ − vn| ≈ |ṡ| ∝ 𝜁 ∝ A , where � = |s��| is the curvature of the vortex 
line at s.

To monitor the transfer of energy between the two fluids, we compute the energy 
injected per unit time by the superfluid vortex into the normal fluid, defined as

(7)I∥ =
1

ΩL� ∮T

[1 − (s� ⋅ r̂∥)
2]d𝜉,

(8)I
⟂
=

1

ΩL� ∮T

[1 − (s� ⋅ r̂
⟂
)2]d𝜉,

Fig. 3  Left: Evolution of the Kelvin wave’s amplitude: comparison between two-way model (solid lines 
with red/blue symbols) and one-way model in the LIA (dashed lines). The blue symbols refer to the first 
problem (Kelvin wave in initially quiescent normal fluid), and the red symbols to the second problem 
(Kelvin wave in the presence of counterflow). Right: Anisotropic parameters I∥ and I

⟂
 computed using 

the two-way model corresponding to the first problem (blue symbols) and the second problem (red sym-
bols)



1 3

Journal of Low Temperature Physics 

coinciding with the effective work per unit time performed by the mutual friction 
force on the normal fluid. This energy injection generates velocity gradients (i.e. 
vorticity, see Fig. 1) into the normal fluid, hence induces the viscous dissipation

The temporal evolutions of �inj and �diss are reported in Fig. 4b, where we observe 
that the energy injected is rapidly dissipated by viscosity. In the initial transient 
phase, the injection of normal fluid energy dominates, until dissipation takes over.

3.2  Kelvin Wave in the Presence of Counterflow

In the second problem, we impose a background counterflow along the z axis; the 
average normal fluid velocity is in the positive z direction (hence parallel to the 
superfluid vorticity). Provided that vn > vc

n
 where vc

n
 is a critical velocity, the imposed 

normal flow feeds energy into the superfluid, hence the amplitude of the Kelvin wave 
grows (Donnelly–Glaberson instability). The critical velocity vc

n
 can be determined 

analytically in the one-way model under constant vn and the LIA. The resulting 
temporal evolution of the amplitude of the Kelvin wave is A(t) = A0e

�t , where A0 is 
the initial amplitude, � = �k(vns − �k) is the growth rate, � = �∕(4�) ln(1∕(�a0)) , � 
is the friction coefficient in the one-way model, and k the Kelvin wave’s wavenumber. 
Hence, the Kelvin wave grows in amplitude if the amplitude of the imposed normal 
fluid is larger than vc

n
= (�s∕�)(�∕(4�))k ln(1∕(�a0)) [33]. If we choose vn > vc

n
 then 

(9)�inj = ∫Ω

Fns ⋅ vnd
3
x ,

(10)�diss = �n�n ∫Ω

�
2d3x ,

Fig. 4  Temporal evolution of the average mutual friction fns(s) (left) and of the injection/dissipation per 
unit mass of normal fluid (right). The blue symbols refer to the first problem (Kelvin wave in initially 
quiescent normal fluid) and the red symbols to the second problem Kelvin wave in the presence of coun-
terflow). Note here that unlike the amplitude, fns in the quiescent case does not decay to 0, but rather 
a finite value. The vortices in the configuration do in fact move with a small but nonzero translational 
velocity induced by the other vortices, stirring the normal fluid
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the amplitude of the Kelvin wave grows, as shown in Fig.  3a (red curves). If we 
compare the growth rate of the two-way model with the one obtained analytically 
with LIA employing the one-fluid model, we obtain a substantial difference, as 
expected. In fact, LIA is a too simple framework to describe accurately the evolution 
of the Kelvin wave, neglecting the relevance of the logarithmic correction. In 
addition, LIA is a good approximation only if A(t)k ≪ 1 and furthermore the friction 
coefficients of the two-way model are different from the coefficients of the original 
one-way model of Schwarz.

The growth of the Kelvin wave’s amplitude with respect to time leads tangent 
vectors to the vortex line to progressively lie on a horizontal xy plane. For large 
times, the amplitude of the Kelvin wave becomes comparable to the wavelength, 
A ≃ 2�∕k , and the behaviour of the helix becomes similar to that of stacked vortex 
rings. At large amplitude, the vortex effectively lies on the xy plane (orthogonal to 
the counterflow velocity vns ), such that in time I∥ → 1 and I

⟂
→ 1∕2 , as it can be 

observed in Figs. 3b and 5 (see Appendix A).
The increase of the angle between the counterflow direction and the tangents to 

the superfluid vortex is responsible for the observed stronger intensity of the mutual 
friction force as time increases, see Fig. 4a. The increasing magnitude of |fns| leads 
to an increase of |�inj| reported in Fig. 4b. The negative value of �inj confirms that the 
energy is globally transferred from the normal fluid to the superfluid vortex. As in 
the previous numerical experiment where the normal fluid is initially quiescent, the 
motion of the superfluid vortex lines injects vorticity in the normal fluid resulting 
in the onset of viscous dissipation. It is worth noting that compared to the quiescent 
case, the magnitudes of energy injection and dissipation exhibit a completely differ-
ent character: both quantities do in fact increase with time.

4  Conclusion

We have studied the transfer of energy between normal fluid and superfluid 
numerically in two simple problems in which the motion of the fluids is laminar 
and the vortex configuration is simple. The main feature of our study is the use of 
a recently-developed two-way model [25] capable of accounting for experimental 
results reported in literature about mildly turbulent bundles of vortex rings [26, 34]. 
We have related the evolution of the geometry of the vortex line to the normal fluid 
energy injection and dissipation. In the first problem (a Kelvin wave propagating 
in a normal fluid background initially at rest) energy is transferred from the 
superfluid into the normal fluid and eventually dissipated into heat. In the second 
problem (a Kelvin wave in the presence of an imposed thermal counterflow) both 
energy injection and dissipation increase with time. When compared to analytical 
results obtained using the one-way Local Induction Approximation (LIA), in 
the counterflow case the self-consistent nature of the two-way model drives a 
significantly more rapid amplitude growth, while in the quiescent case, with respect 
to LIA, the Kelvin waves are less attenuated by motions induced in the normal fluid 
around the vortex line. The analytic derivation of LIA is based on the amplitude 
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being much smaller in comparison with the wavelength, an approximation 
which becomes invalid as the amplitude increases. As this occurs, the non-local 
interactions which are neglected in LIA become significant in the dynamics, and 
hence LIA is not a valid approximation. As expected, LIA is a too simplified model 
for the systems investigated in this work.

These results strengthen our understanding of two-fluid hydrodynamics, which 
will be soon tested in on-going experiments [16] on decay and amplification of 
Kelvin waves in a rotating cryostat.

Appendix

Extended Anistropic Parameters Figure

For consistency, the time duration of the plots in Figs. 3 and 4 was constrained to 
t ∼ 4.5 , such that the re-meshing [25] of vortex filaments did not factor into the 
analysis. In particular, the mutual friction in Fig. 4a is affected by the re-meshing 
algorithm, and therefore our analysis is only relevant in the duration up to the 
re-meshing of the vortex filaments in the counterflow case. Since the anisotropic 
parameters I∥ and I

⟂
 are dependent on the geometry of the vortex configuration only, 

they are not affected by the re-meshing algorithm (see Fig. 5).
In the counterflow case, as the amplitude of the Kelvin wave becomes sufficiently 

large Ak >> 1 , the non-local interaction dominates the local interaction. The 
resulting configuration resembles a stack of k vortex rings. A vortex ring of radius 
R can be parameterised by the arclength � to give s(�) = (R cos(�∕R),R sin(�∕R), z) . 
The parallel anisotropic parameter gives I∥ = 1 , while the perpendicular gives

In the later stages of Fig. 5, it can be seen that the parameters in the counterflow 
case begin to asymptote to the values as calculated for a single vortex ring. This 
confirms the geometry of the vortex configuration, resembling stacked vortex rings.

(11)I
⟂
=

1

ΩL� ∫
2�R

0

1 − (s� ⋅ r
⟂
)2d� =

1

2�R ∫
2�R

0

cos2(�∕R)d� =
1

2
.

Fig. 5  The full time evolution of 
the parameters I∥ and I

⟂
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