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Insight into vortex reconnections in superfluids is presented, making use of analytical
results and numerical simulations of the Gross-Pitaevskii model. Universal aspects of the
reconnection process are investigated by considering different initial vortex configurations
and making use of a recently developed tracking algorithm to reconstruct the vortex
filaments. We show that during a reconnection event the vortex lines approach and separate
always according to the time scaling δ ∼ t1/2 with prefactors that depend on the vortex
configuration. We also investigate the behavior of curvature and torsion close to the
reconnection point, demonstrating analytically that the curvature can exhibit a self-similar
behavior that might be broken by the development of shocklike structures in the torsion.
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I. INTRODUCTION

Reconnections in fluids have been a subject of study for a long time in the context of plasma
physics [1] and both classical [2] and superfluid dynamics [3]. Depending on the physical system
considered, such reconnections are events characterized by a rearrangement in the topology of either
a magnetic field (magnetic reconnections) or vorticity field (vortex reconnections). Such topological
modifications are believed to play a fundamental role in several physical phenomena such as eruptive
solar events [4], energy transfer and fine-scale mixing [5], and turbulent states in superfluids [6].
Despite their physical relevance, reconnections represent also a stand-alone mathematical problem,
related, for instance, to the presence of singularities in the Euler equation [2,7,8].

In classical fluids described by the Navier–Stokes-type equations, reconnecting vortex tubes
stretch and deform, leading to complicated dynamics and the formation of structures like vortex
bridges [5]. In order to understand fundamental aspects of vortex reconnections it is often desirable
to work with a vortex configuration where the vorticity is confined along lines of zero core size. Such
idealization is called a vortex filament. This limit naturally arises in superfluids such as superfluid
liquid helium (He II) and Bose-Einstein condensates (BECs). Superfluids are in fact examples of
ideal flows of quantum mechanical nature characterized by the lack of viscous dissipation and
by a Dirac δ vorticity distribution supported on the vortex filaments. For such fluids, the velocity
circulation is equal to a multiple of the Feynman-Onsager quantum of circulation � = h/m, with h

the Planck constant and m the mass of the superfluid’s bosonic constituents.
Due to Kelvin’s circulation theorem (or Alfvèn’s theorem in magnetohydrodynamics), in a

barotropic ideal flow reconnections should be forbidden since the circulation of vortex lines
transported by the flow is conserved and so their topology is frozen. However, as already suggested
by pioneering works of Feynman [9] and Schwarz [10], vortex reconnections in superfluids do
exist and play a fundamental role in superfluid turbulence. This was indeed confirmed by Koplik
and Levine [3], who performed numerical simulations of reconnecting vortex lines within the
Gross-Pitaevskii (GP) model. They showed that Kelvin’s circulation theorem does not hold in this
context because the superfluid density identically vanishes at the vortex filament. With the progress
of experimental techniques in the past decade, reconnecting superfluid vortices have been visualized
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in He II [6,11] and in BECs [12,13]. From the theoretical side, many works have been devoted to
study the reconnecting vortex filaments in superfluids, by using either the so-called vortex filament
(VF) model introduced by Schwarz [10] or the GP model.

The simplest question to ask, although contradictory answers appear in the literature, is related
to the rates of approach and separation of two reconnecting vortices. Assuming that a reconnection
event is a local process in space and the circulation � is the only relevant dimensional quantity
involved, by simple dimensional analysis it follows that the distance δ(t) between two reconnecting
filaments should scale as

δ(t) ∼ (�t)1/2, (1)

independently if it is measured before or after the reconnection. Such a prediction has been confirmed
by numerical simulations of the VF model [14] and in He II experiments [11]. In the framework of
the GP model, the same scaling was asymptotically derived in Ref. [15], but a number of numerical
studies report disparate scaling exponents that may differ between the before and after reconnection
stages [16–18]. Another fundamental question regards the universality of the geometrical shape
of the vortex filaments at the reconnection. It is expected that vortices become locally antiparallel
during the reconnection process [15]. However, using the VF model, it has been reported that the
reconnection angle may follow a broad distribution that depends on the turbulent regime that is
considered [14]. It has also been observed that during a reconnection event cusps are generated on
the filaments and argument has been given either in favor of those cusps being universal [19] or not
[20]. Finally, a great deal of interest has arisen recently in the generation of Kelvin waves (helical
waves propagating along vortex filaments) [6,21–23] and the evolution of hydrodynamical helicity
[24–28] during reconnection events.

The VF model is based on Biot-Savart equations that describe a regularized Dirac δ vorticity
distribution field in the incompressible Euler equation; it provides direct information on the vortex
filaments and is widely used to mimic superfluid vortex dynamics and turbulence in He II. However,
due to Kelvin’s circulation theorem in the Euler equation, reconnections here need to be added
by some ad hoc cut-and-connect mechanisms. In addition, the VF model introduces a small-scale
cutoff to regularize Biot-Savart integral divergence and thus cannot explore the vortex dynamics at
the smallest scales where the reconnection events take place. The GP model represents an alternative
in the study of vortex dynamics and reconnections, the main advantages being that it naturally
contains vortex reconnections in its dynamics and that the entire reconnection process is regular
due to the identically zero superfluid density field at the vortex core. Studying such small-scale
dynamics is crucial for understanding how energy is transferred through scales and eventually
dissipated. Unfortunately, no information can be directly inferred from the GP model on the vortex
dynamics because this model described the evolution of an order parameter complex field, which
contains simultaneously sound excitations and vortex lines in the form of topological defects. We
will present here a detailed study of vortex reconnections by exploiting a recently developed tracking
algorithm [29] that is able to track vortex filaments in numerical simulations of the GP model with
a machine epsilon level of accuracy.

In order to understand what is universal in vortex filament reconnection mechanisms, we study
the dynamics of four different initial configurations: (a) perpendicular and (b) almost antiparallel
lines, (c) a trefoil knot, and (d) reconnections occurring in a fully turbulent tangle dynamics. We
will show that reconnecting vortex lines always obey the dimensional analysis scaling (1) (both
before and after reconnection) and they generally separate faster than they approach. In addition, we
report that, regardless of the initial configuration, vortices become antiparallel at the reconnection.
We also report a self-similar behavior of the curvature close to the reconnection point when torsion
does not play an important role and shocklike structures appear in the torsion evolution for some
configurations. Those findings are explained by some asymptotic calculations.
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II. THE GP MODEL AND RECONNECTION CASE STUDIES

The GP model is a dispersive nonlinear wave equation describing the dynamics of the order
parameter ψ of a BEC arising in dilute Bose gases; for the sake of completeness and clarity we
introduce it in Appendix A. When ψ is linearized about a constant value ψ0 = √

ρ0/m, the sound
velocity results in c = √

gρ0/m and dispersive effects take place at length scales smaller than the
healing length ξ = h̄/

√
2ρ0g. This can be easily understood by rewriting the GP model using those

physical parameters

i
∂ψ

∂t
= c√

2ξ

(
−ξ 2∇2ψ + m

ρ0
|ψ |2ψ

)
(2)

and comparing the magnitude of the first and second terms on the right-hand side. Note also that by
a suitable time and space rescaling, the parameters c and ξ can be reabsorbed; in this work length
and time scales are expressed in units of the healing length ξ and its characteristic time τ = ξ/c.

The relationship between the GP equation and a hydrodynamical model is immediately illustrated
by introducing the Madelung transformation

ψ(x,t) =
√

ρ(x,t)

m
ei[ϕ(x,t)/

√
2cξ ], (3)

which relates ψ to an inviscid, compressible, irrotational, and barotropic superfluid of density ρ(x,t)
and velocity v = ∇ϕ. In the domain where the Madelung transformation is well defined (ψ �= 0), the
velocity field is potential. However, vortices may exist as topological defects of the order parameter.
In places where the density vanishes (nodal lines) arg ψ is not defined. The field ψ still remains a
single-value function if the circulation

∮
v · d
 along a nodal line is a multiple of the quantum of

circulation � = h/m = 2
√

2πcξ . For this reason nodal lines of ψ are called quantum (or quantized)
vortices. Their corresponding velocity field v thus decays as the inverse of the distance to the vortex
and their vorticity is therefore a Dirac-supported distribution. Their typical vortex core size is order
of ξ .

The GP equation (2) is numerically integrated with a pseudospectral code. The resolution is
chosen carefully to sufficiently resolve the vortex core in space and the reconnections in time. We
consider four different initial configurations in a cubic box of size L with N collocation points in
each dimension.

(a) Perpendicular lines. The order parameter field is characterized by straight vortex filaments
perpendicular to each other and having an initial distance of 6ξ . This initial configuration is shown
in Fig. 1(a1) for L/ξ = 128 and N = 256.

(b) Antiparallel lines. Vortex filaments with opposite circulation are set at an average distance of
6ξ . In order to trigger a Crow instability [30], a small perturbation is introduced by adding a Kelvin
wave of amplitude ξ and wavelength equal to the system size. The initial configuration is shown in
Fig. 1(b1) for L/ξ = 128 and N = 256.

(c) Trefoil knot. A vortex filament reproducing a torus T2,3 knot (a trefoil) is produced following
[31]; the torus on which the knot is built has toroidal and poloidal radii of R0 = 16ξ and R1 = 4ξ ,
respectively. The initial configuration is shown in Fig. 1(c1) for L/ξ = 128 and N = 256.

(d) Turbulent tangle. We prepare an initial condition consisting of several large-scale vortex rings
that replicates a Taylor-Green flow as in Ref. [32]. The initial condition then evolves in time: The
rings reconnect, breaking the initial symmetry and creating a dense turbulent tangle displayed in
Fig. 1(d1) (see [33] for a complete description of the field evolution). We study four successive vortex
reconnection events occurring in a small volume [Fig. 1(d2)] at stages when the tangle density is
higher for L/ξ = 256 and N = 256.

The time stepping scheme for cases (a) and (b) is a Strang-splitting method, whereas for cases (c)
and (d) it is a second-order Runge-Kutta method. In each case, the time step is chosen to be smaller
than the fastest linear time scale of the system. Conservation of the invariants has been carefully
checked.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1)
the turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized
vortices are considered, the quantum of circulation � can be used to formulate an extra length scale.
Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be

δ±(t) = A±ξ 1−2α± |�(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after
(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting
filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of
the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases
the approach and separation rates follow the same dimensional t1/2 scaling. For each event we
estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic
mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight
deviations are observed in some cases. Perhaps this fact could explain the different results for
the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after
the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and
α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on
the initial vortex filament configuration. In these works the time asymmetry was interpreted as a
manifestation of the irreversible dynamics due to sound emission; we will return to this interesting
point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex
distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate
sound at all scales) and no asymmetry concerning the exponent is observed.

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with
respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating
the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity
but are not universal. Moreover, we observe that the vortex filaments usually separate faster than
they approach (A− � A+).
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FIG. 2. Temporal evolution of the distance between the reconnecting vortex filaments before (blue) and
after (red) the estimated reconnection time tr for the (a) perpendicular, (b) antiparallel, (c) trefoil knot, and
(d) turbulent tangle configurations. For the turbulent tangle four different reconnection events have been tracked.
(a2)–(d2) Same plots as in (a1)–(d1) but on a log-log scale.

The tracking algorithm we use follows the pseudovorticity and naturally provides the orientation
of the filament with respect to the circulation. It thus allows us to compute the tangent vectors to
the lines and infer the orientation of the filaments by evaluating the cosine of the angle θ between
the vectors at the two closest points as illustrated in Fig. 3(b) and in Ref. [34]. By approaching

FIG. 3. (a) Fitted values of the prefactors A± corresponding to (4). (b) Example of reconnecting filaments
(trefoil knot case). The black dots represent the points of minimal distances and are used to compute δ(t), the
arrows are the tangents of the filaments at those points, and the reconnection angle θ is defined by using the
scalar product of the tangents. The coloring is proportional to the filament curvature (low in red and high in
green and blue). (c) Temporal evolution of the cosine of the reconnecting angle. The inset displays the same
plot on a log-log scale.
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the reconnection point each vortex filament develops a cusplike structure characterized by high and
localized values of the curvature (displayed in green and blue). The temporal evolution of cos θ

for all the case studies is presented in Fig. 3(c). It is apparent that, independently of the initial
configurations, vortices are always antiparallel at the reconnection point. This behavior appears to
be time symmetric about the reconnection time and is smooth, as highlighted in the inset of Fig. 3(c),
where we show cos θ in log-lin coordinates for a better view of the short times before and after
reconnection.

IV. ANALYTICAL PREDICTIONS USING A LINEAR APPROXIMATION

The results presented in Figs. 2 and 3 support the analytical predictions obtained by Nazarenko
and West in Ref. [15]. Their seminal calculations consider a planar reconnection of two vortex
filaments having a hyperbolic configuration at times close to tr . As we will observe in the following,
vortex reconnections do not always fully lie in a plane and the local torsion of the filament can play an
important role. We generalize here the calculations performed in Ref. [15], including torsion of the
vortex lines to understand its effect during the reconnection. Let us assume that at the reconnection
time tr and close to the reconnection point the order parameter of two reconnecting nonplanar vortex
lines is given by

ψr (x,y,z) = z + γ

a
(x2 + y2) + i(az + βx2 − y2), (5)

with a �= 0 and β−γ

γ+1 > 0 (the Nazarenko-West reconnecting vortex profile is recovered by setting
γ = 0). In the vicinity of the vortex filaments, ψ is small and the nonlinear term in Eq. (2) can be
neglected. Within this approximation the pre- and postreconnection solution is given by ψ(x,y,z,t) =
e[i(t−tr )�/4π]∇2

ψr (x,y,z). By solving ψ(x,y,z,t) = 0 we can explicitly obtain the temporal evolution
of the vortex lines. Equation (4) is obtained with

α+ = α− = 1

2
,

A+

A− =
√

1 + γ

β − γ
(6)

for a > 0 and β < 1 − 2γ /a2 (refer to Appendix C for a figure of the vortex profiles, details on the
above calculations, and different choices of a and β). Interestingly, the angle between the asymptotes
of the hyperbolic vortex configuration close to reconnection is found to be φ = 2 tan−1(A−/A+).

The linear approximation also allows for computing the curvature and torsion of the vortex lines.
As pointed out by Schwarz in Ref. [10], the curvature κ±(s,t) should present a self-similar behavior
close to the reconnection point of the form κ±(s,t) = κ±

max(t)�±(ζ±), where ζ± = (s − sr )κ±
max(t),

sr is the coordinate of the reconnecting point, and κmax is the maximum value of curvature. The
present calculations predict

κ±
max(t) ∝ |t − tr |−1/2,

κ+
max(t)

κ−
max(t)

=
(

A+

A−

)3

. (7)

Note that the t−1/2 scaling could be directly inferred by dimensional analysis arguments but not
the scaling of the dimensionless prefactors. Moreover, these self-similar functions �±(ζ±) can be
expressed in compact forms for small values of γ and t − tr as

�±(ζ ) = 1{
1 + [(

A∓
A±

)2 + 1
]
ζ 2

}3/2 + O

(
η±γ 2 (t − tr )

τ

)
, (8)

with η± = (A∓/A±)2 − 1. This function corresponds to a cusp in the vortex filament at t = tr and
s = sr . The dependence on the coefficient (A∓/A±)2 + 1 multiplying the self-similar variable ζ±
is unexpected and could not also be guessed by dimensional arguments. We also remark that the
self-similarity is only exact when γ = 0 or η± = 0.
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FIG. 4. (a) Curvature normalized by κmax close to (just before) the reconnection time for all reconnection
events explored as a function of (s − sr )κmax. (b) Same data represented using the scaling suggested by the
self-similar form (8). The black dashed line displays the theoretical prediction.

Finally, the torsion T ±(s,t) of the vortex line can also be computed within this approximation.
When γ �= 0 torsion is not identically null but it vanishes at sr , thus confirming that reconnections
occur locally on a plane. Also, it can be proved that it changes sign linearly at sr with a slope
that diverges as γ |t − tr |−1/2, creating shocklike structures. The slope ratio before and after the
reconnection satisfies the relation dT +

ds
/ dT −

ds
|s=sr

= A+/A−.
We observe that in the context of Euler and Navier-Stokes flows, dynamical equations for torsion

and curvature have been derived in Ref. [35]. These nonlinear equations do not allow for predicting the
generation of curvature cusps and shocklike torsion structures. It would be interesting to investigate
if the scaling laws reported above also remain valid in classical fluids and MHD flows.

V. NUMERICAL MEASUREMENTS OF THE CURVATURE AND TORSION

Motivated by the previous asymptotic results, we analyze the data coming from simulations. We
start by looking at the curvature at a fixed time very close to the reconnection. In Fig. 4(a) the
curvature just before tr normalized using κmax is shown for all configurations. We indeed observe the
formation of a cusp at the reconnection point sr in all cases. Note that, strictly speaking, no universal
function of the curvature is observed. This is actually expected from the calculations of the curvature
(8), which shows a dependence on the values A+/A− that differ from case to case. However, (8)
suggests that if the variable

√
1 + (A+/A−)2(s − sr )κmax is used instead, a universal form should be

recovered. As shown in Fig. 4(b), the data indeed collapse into one universal function when using
this new variable. The theoretical prediction (8) is also plotted with a dashed black line to appreciate
the remarkable agreement.

We now study the temporal evolution of the curvature to determine if a self-similar evolution
is observed. Figure 5(a) shows how the trefoil knot curvature curves, rescaled by their maximum
values, almost perfectly collapse into a single plot, demonstrating the self-similar behavior for this

044701-7



VILLOIS, PROMENT, AND KRSTULOVIC

FIG. 5. (a) Self-similar evolution of the curvature close to the reconnection point for the trefoil vortex. Blue
lines (from light to dark) correspond to times before reconnection and red lines (from dark to light) to times after
reconnection. The inset displays the temporal evolution of the maximum value of the curvature on a log-log
scale before and after, normalized as suggested in Eq. (7). (b) Same plot as in (a) but for the reconnection
occurring in the antiparallel case. In both figures we consider times such that |t − tr | < 0.5τ and the dashed
line shows the t−1/2 scaling. In both figures the black dashed line displays the theoretical prediction (8).

configuration. In the inset we plot the maximum value of the curvature as a function of time on
a log-log scale. The predicted t−1/2 scaling of (7) is clearly observed. In Fig. 5(b) we present the
same analysis done for the antiparallel case where a clear breakdown of the self-similar behavior is
observed. This can be explained by assuming a non-negligible value of γ , hence a strong torsion,
that breaks the validity of the expansion done to obtain (8), only recovered when times are very
close to tr , as evident when comparing with the theoretical prediction displayed as a dashed black
line. The temporal evolution of the maximum of curvature, shown in the inset of Fig. 4(b), still
confirms the relations presented in Eq. (7), namely, the scaling t−1/2 scaling normalized by the
ratio of the prefactors is confirmed. Note that the agreement is very good given the large value
(A+/A−)3 = 4.153. For all other cases except tangle 2, self-similarity is observed (data not shown).

The breakdown of self-similarity is predicted by (8) when A+/A− �= 1 and γ �= 0. A nonzero
value of γ is related, as we have seen, to torsion close to the reconnection point and a shocklike
structure formation (see Appendix C). In Fig. 6(a) we show the temporal evolution of the torsion
T for the antiparallel case. The shocklike structure formation, as well as the linear behavior close
to the reconnection point, is clearly visible, thus explaining the breakdown of the self-similarity in
Fig. 5(b). The inset shows that the temporal evolution of the slope of the torsion at sr obeys the
scaling |t − tr |−1/2 with the correct normalization A+/A− suggested by the analytical calculations.
For completeness, in Fig. 6(b) we show the torsion normalized by the maximum value of the
curvature for all the configurations close to the reconnection time. In all the other cases except for
tangle 2, the slope of torsion is almost zero at the reconnection point. Remarkably, tangle 2 and
antiparallel configurations correspond to the cases where vortices separate much faster than they
approach [see Fig. 3(a)]. We remark finally that measuring quantities such as curvature and torsion
is numerically very challenging as they involve high-order derivatives.
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FIG. 6. (a) Temporal evolution of the torsion T as a function of the arc length in the antiparallel case. Blue
lines (from light to dark) correspond to times before reconnection and red lines (from dark to light) to times after
reconnection. The inset displays the temporal evolution of the slope of torsion computed at the reconnection
point sr on a log-log scale before and after, normalized as A+/A−. (b) Torsion T as a function of the arc length
close to (just before) the reconnection for all configurations (same legend as in Fig. 4).

VI. DISCUSSION

The reconnection of quantized vortex filaments within the Gross-Pitaevskii model displays both
universal and nonuniversal phenomena. We found that close to the reconnection the approach
and separation rates follow the same scaling δ ∼ (�t)1/2 and the vortex filaments always become
locally antiparallel. Previous numerical studies reported scaling rates in the form of a power law
with exponents depending on the configuration. By dimensional analysis, any scaling different from
α = 1/2 would introduce necessarily a new time or length scale to the problem that needs to be made
explicit. The discrepancies in previous studies might be due to the fact that (i) the computational
domain is not big enough, hence introducing a non-negligible system size length scale, (ii) the
initial condition contains a considerable amount of sound waves such that the rms value of the
compressible kinetic energy can be used to construct an extra time scale, or (iii) the observed
scaling corresponds to dynamical regimes occurring much farther or later than the reconnection
event and is thus driven by the specific vortex configuration and therefore is nonuniversal. In that
spirit, reconnections within Navier-Stokes flows, a modified version of the model GP with nonlocal
potential and/or high-order nonlinearities to better replicate superfluid liquid helium, or coupled GP
equations modeling multicomponent or spinorial BECs could indeed lead to different scalings.

Our findings demonstrate that the prefactors A± are not universal in the GP method. However,
once measured case by case, their ratio determines many properties of the reconnection dynamics.
Note that the easiest way to determine this ratio is to look at the medium- to large-scale reconnection
angle φ between the hyperbola asymptotes, which should be an accessible quantity in superfluid
experiments [11,13,36]. Let us also remark that the t1/2 scaling we observed extends beyond the
distance ξ . This suggests that the linear approximation might be used as a matching theory in
order to relate measurements done well before and far from the reconnection events. Bose-Einstein
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condensate experimentalists are able today to study vortex dynamics and reconnections [13,36]. Our
predictions should directly apply to those systems.

Finally, let us underline that understanding the dynamics of the reconnection events is crucial
to provide a full comprehension of the dissipative processes occurring in superfluids in the low-
temperature limit. It is largely believed that Kelvin waves play a fundamental role carrying the
energy to the smallest scales where it finally gets dissipated by sound radiation. The cusps arising
in the vortex filaments due to reconnection events are responsible for a rapid and efficient excitation
of Kelvin waves at all scales. Here we provided an analytical formula for the dynamical formation
of the cusps and we aim to use this result in further theoretical studies to estimate the rate of
radiation during reconnection. Also, we have shown that non-negligible torsion of the reconnecting
filaments implies the breakdown of self-similarity, resulting in the formation of shocklike structures
of the torsion. This phenomenon seems to be linked to the large difference observed in the A±
prefactors, hence to extreme events where vortices separate much faster than they approach, and to
the irreversibility of the reconnection events. We do not have yet a theoretical understanding of this
fact and more data would be desirable to perform a detailed statistical analysis.
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APPENDIX A: THE GROSS-PITAEVSKII EQUATION

In the limit of very low temperature a weakly interacting Bose gas can be described using a mean
field approximation in terms of a complex order parameter (or condensate wave function) ψ . Such
a system is governed by a dispersive nonlinear wave equation called the Gross-Pitaevskii equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ, (A1)

where m is the mass of the bosons and g = 4πah̄2/m, with a the boson s-wave scattering length.
The chemical μ can in principle be absorbed by a global phase shift. Although formally derived for
BECs, the GP model qualitatively reproduces many aspects of superfluid liquid helium too. It can
be used to model classical vortex dynamics in situations where a large-scale separation between the
vortex core and the size of such a vortex is present.

The GP equation possesses a Hamiltonian structure and conserves the total number of particles

N =
∫

|ψ |2d3x, (A2)

the total energy

H =
∫ (

h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
d3x, (A3)

and the total momentum

P = h̄

2i

∫
[ψ∗∇ψ − ψ∇ψ∗]d3x. (A4)
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The speed of sound for such a model is given by c = √
gρ0/m. This value can be derived by

linearizing (A1) about a constant value ψ = √
ρ0/m = √

μ/g. It is also possible to identify a
characteristic length ξ = h̄/

√
2ρ0g, called healing length, representing the scale where the linear

contribution in Eq. (A1) equals the nonlinear one. Dispersive effects will then take place for length
scales smaller than ξ . Equation (A1) can be rewritten in term of the two physical quantities c and ξ as

i
∂ψ

∂t
= c√

2ξ

(
−ξ 2∇2ψ − ψ + m

ρ0
|ψ |2ψ

)
. (A5)

By using the Madelung transformation

ψ(x,t) =
√

ρ(x,t)

m
ei[ϕ(x,t)/

√
2cξ ], (A6)

it possible to relate the order parameter ψ to a compressible, irrotational, and barotropic superfluid
having density ρ(x,t) and velocity v = ∇ϕ. Indeed, plugging the transformation (A6) into (2), we
directly obtain

∂ρ

∂t
+ ∇ · (ρv) = 0, (A7)

∂φ

∂t
+ 1

2
v2 = c2 ρ0 − ρ

ρ0
+ c2ξ 2 ∇2√ρ√

ρ
. (A8)

Equations (A7) and (A8) are the continuity equation and the Bernoulli equation, respectively, except
for the last term in Eq. (A8), which is called quantum pressure and has no analog in classical fluid
mechanics.

Although the velocity field defined by the Madelung transformation (A6) is potential, solutions
with nonzero circulation can exist in the form of topological defects of the order parameter ψ .
For such vortex solutions the vorticity is supported on the curves (nodal lines) where the density
field vanishes and the phase is not defined. In order to ensure that the order parameter stays single
valued, the circulation around such nodal lines must be constant and equal to a multiple of the
Onsager-Feynman quantum of circulation � = h/m = 2

√
2πcξ . For this reason, nodal lines of

the order parameter are called quantum (or quantized) vortices. The region around the topological
defect where the density drops to zero is called the vortex core and its size is of the order of the
healing length ξ . The hydrodynamical interpretation of superfluids is thus the one of a compressible
(dispersive) flow where vorticity is a distribution (a superposition of Dirac δ’s) supported on the
vortex filament.

We would like to remark that often quantum vortices are misleadingly referred to as the
singularities of the system, as the velocity field diverges as 1/r , where r is the distance to the
filament. This divergence is just a consequence of the change of coordinates given by the Madelung
transformation. At the vortex position, the order parameter solution of the GP equation is a smooth
field. We can thus precisely track vortices finding the zeros of ψ as described in Appendix B.

APPENDIX B: VORTEX TRACKING ALGORITHM

We have recently developed a robust and accurate algorithm to track vortex lines of the order
parameter ψ in arbitrary geometries. The details of the algorithm and accuracy of the method can
be found in Ref. [29]. We recall here the basic ideas. A quantized vortex line in three dimensions
corresponds to a nodal line defined by

Re[ψ(x,y,z)] = Im[ψ(x,y,z)] = 0. (B1)

The algorithm is based on a Newton-Raphson method to find zeros of ψ and on the knowledge of the
pseudovorticity field W = ∇ Re[ψ] × ∇ Im[ψ], always tangent to the filaments, to follow vortex
lines [18]. Starting from a point x0 where the density |ψ |2 is below a given small threshold (therefore
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w

û1

û2
×x0

FIG. 7. Sketch of the plane on which the Newton-Raphson method is implemented.

very close to a vortex), we define the orthogonal plane to the vortex line using W(x0). The plane is
then spanned by the two directors û1 and û2, as illustrated in Fig. 7. A better approximation for the
vortex position xv on the plane is then given by x1 = x0 + δx. Here the increment δx is obtained
using the Newton-Raphson formula (the linear approximation)

0 = ψ(x0 + δx) ≈ ψ(x0) + J (x0)δx, (B2)

where J (x0) is the Jacobian matrix expressed as

J =
(∇ Re[ψ] · û1 ∇ Re[ψ] · û2

∇ Im[ψ] · û1 ∇ Im[ψ] · û2

)
. (B3)

The increment can be therefore calculated using δx = −J−1(x0) · {Re[ψ(x0)],Im[ψ(x0)]}T . Suffi-
ciently close to the line, the Jacobian matrix is always a nonsingular 2 × 2 matrix, so its inverse can
be computed. We underline that the method requires the evaluation of the Jacobian (B3) at intermesh
points. Making use of the spectral representation of ψ , we can precisely compute those values using
Fourier transforms. This process can be iterated until the exact location xv is determined upon a
selected convergence precision.

To track the following vortex point of the same line we use as a next initial guess x0 = xv + ζW,
which is obtained evolving along W by a small step ζ . The process is reiterated until the entire line
is tracked and closed and then repeated with another line until the whole computation domain has
been fully explored.

APPENDIX C: DETAILED CALCULATIONS OF THE LINEAR APPROXIMATION

An analytical study of a reconnection event in the GP model was provided by Nazarenko and West
[15], where it is shown that two vortices are antiparallel during a reconnection and their distance
scales as δ(t) ∼ t1/2. In the same spirit as [15], we assume that inside the vortex core the nonlinear
term of the GP equation can be neglected and so a reconnection event should be governed by the
(linear) Schrödinger equation. For the sake of simplicity, in dimensionless units this equations reads

i∂tψ + 1
2∇2ψ = 0. (C1)

Note that we absorbed the parameters c and ξ in Eq. (2) by a suitable time and space rescaling. We
remark that in Ref. [15] reconnections are studied just on a plane, whereas here we consider vortex
filaments with nonzero torsion. At the reconnection time tr we use as the initial condition the ansatz

ψr (x,y,z) = z + γ

a
(x2 + y2) + i(az + βx2 − y2). (C2)

Looking for ψr = 0, one can recover the vortex profile, given by the curves

R(s) =
(

s, ± s

√
β − γ

γ + 1
, − s2 γ (β + 1)

a(γ + 1)

)
, (C3)
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FIG. 8. Plot of the initial condition using γ = 0.01, β = 1/2, and a = 1. The vortex filaments are shown
in blue while their projection on the x-y is shown in orange. The arrows identify the circulation around each
vortex.

where s is the parametrization of the curve. We note that (C3) requires that

β − γ

γ + 1
> 0. (C4)

In Fig. 8 we plot the vortex filaments R(s) (blue lines) for our initial condition.
The vortices projected on the x-y planes form two hyperbola (orange lines) crossing at the

reconnection point. We note that the values β and γ fix the angle

φ = 2 tan−1

(√
1 + γ

β − γ

)
(C5)

between the two hyperbola. The arrows identify the circulation around each vortex.
The formal solution of Eq. (C1) is given by

ψ(t) = ei[(t−tr )∇2/2]ψr, (C6)

where tr is the time when the reconnection occurs. The choice of a second-order polynomial for ψr

allows us to find the exact solution of (C1):

ψ(t) = z + γ

a
(x2 + y2) − 2t(β − 1) + i

(
az + βx2 − y2 + 4(t − tr )

γ

a

)
. (C7)

Assuming a > 0 and γ < β <
a2−2γ

a2 , the vortex lines before the reconnection (t < tr ) are given by

R−
1,2(s,t) =

(
s, ±

√
(tr − t)(a2(1 − β) − 2γ ) + as2(β − γ )

a(γ + 1)
,

(t − tr )(a2(β − 1) − 2γ 2) − aγ (β + 1)s2

(γ + 1)a2

)
, (C8)
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no solutions

A+

A− < 1A+

A− > 1
A+

A− > 1

β =
a2 − 2γ

a2
β = 1 + 2γβ = γ0

φ− > φ+φ− < φ+ φ− < φ+

FIG. 9. Dependence of the ratio A+
A− and the angles φ− and φ+ on different values of β.

while after the reconnection (t > tr )

R+
1,2(s,t) =

(
±

√
(t − tr )(a2(1 − β) − 2γ ) + as2(1 + γ )

a(β − γ )
,s,

(t − tr )(a2(β − 1) + 2γ 2) − aγ (β + 1)s2

(β − γ )a2

)
. (C9)

From the above curves we observe that the two vortices approach along the y direction and separate
along the x direction. It follows that

δ±(t) = |R±
1 (0,t) − R±

2 (0,t)| =
√

2πA±|t − tr |1/2, (C10)

where the ratio of prefactors satisfies

A+

A− =
√

1 + γ

β − γ
> 1. (C11)

From Eq. (C5) we can see how the quantity A+
A− is related to the angle φ. Calling φ− the angle

of the approaching vortices and φ+ the angle of the separating vortices, we can conclude that for
β <

a2−2γ

a2 , φ− > φ+. On the other hand, when β >
a2−2γ

a2 the two vortices approach along the x

direction and separate along the y direction with A+
A− =

√
β−γ

1+γ
. For the sake of completeness, in

Fig. 9 we show the values of the ratio A+
A− and the angles φ− and φ+ for different values of β. We

note that A+
A− < 1 for a2−2γ

a2 < β < 1 + 2γ , while A+
A− > 1 for β > 1 + 2γ .

As a final remark, we note that changing the sign of a corresponds to looking at the reconnection
back in time, hence each value of A+

A− in Fig. 9 will then be reversed. The linear approximation also
allows for computing the curvature

κ(s,t) = |R′(s,t) × R′′(s,t)|
|R′(s,t)|3 (C12)

and torsion

T (s,t) = [R′(s,t) × R′′(s,t)] · R′′′(s,t)
|R′(s,t) × R′′(s,t)|2 (C13)

of the vortex lines.
The curvature can be directly evaluated. Its maxima as a function of time before and after

reconnection are given by

κ−
max(t)

√
4γ 2(1 + β)2[a2(β − 1) + 2γ ](t − tr ) + a3(β − γ )2(1 + γ )

a2(1 + γ )2[a2(β − 1) + 2γ ](t − tr )
(C14)

044701-14



UNIVERSAL AND NONUNIVERSAL ASPECTS OF . . .

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

s/ξ

T
+
ξ

 

 

t − tr = 0.4τ
t − tr = 0.2τ
t − tr = 0.1τ
t − tr = 0.05τ
t − tr = 0.025τ

−0.2 0 0.2
−0.1

0

0.1

 

 

FIG. 10. Plot of the torsion versus the y coordinate, for different time steps using γ = 0.01, β = 1/2, and
a = 1.

and

κ+
max(t) =

√
4γ 2(1 + β)2[a2(β − 1) + 2γ ](t − tr ) − a3(β − γ )2(1 + γ )2

a2(β − γ )[a2(β − 1) + 2γ ](t − tr )
, (C15)

respectively. The present calculation predicts κ±
max(t) ∝ |t − tr |−1/2, which also corresponds to a

dimensional analysis prediction. In addition, the linear approximation predicts that κ+
max/κ

−
max =

(A+/A−)3 in the limit of t → tr . This nontrivial result cannot be found by dimensional arguments.
Moreover, one can show that κ± presents a self-similar behavior close to the reconnection point
of the form κ±(s,t) = κ±

max(t)�±(ζ±), where ζ± = (s − sr )κ±
max(t) and sr is the coordinate of the

reconnecting point. For small values of γ , these self-similar functions can be found to be

�±(ζ ) =
1 ± 3

2
(β±1+1)ζ 2

1+(β±1+1)ζ 2 γ

[1 + (β±1 + 1)ζ 2]3/2
+ O(γ 2) = 1{

1 + [(
A∓
A±

)2 + 1
]
ξ 2

}3/2 + O

(
η±γ 2 (t − tr )

τ

)
,

(C16)

where η± = (A∓/A±)2 − 1. Remarkably, once the ratio A+/A− is reintroduced, γ only appears as
a quadratic correction to the self-similar form. Note that within this approximation, self-similarity
is destroyed when η±γ 2(t − tr )/τ is of order 1.

We note that if one chooses β >
a2−2γ

a2 , then A+
A− =

√
β−γ

1+γ
and

[�±(ζ )]β>(a2−2γ )/a2 = [�∓(ζ )]β<(a2−2γ )/a2 . (C17)

The former calculations were evaluated using symbolic computation software.
Finally, the torsion T ±(s,t) of the vortex line can be also computed within this approximation.

It vanishes at sr (suggesting a locally planar reconnection); however, it changes sign linearly at this
point. Its slope is given by

dT +

ds
= −γ

3
√

2(1 + β)√
a(β − γ )

√
(t − tr )[a2(1 − β) − 2γ ]

(C18)

and it diverges as γ |t − tr |−1/2. The torsion thus develops shocklike structures as displayed in Fig. 10.
The inset in Fig. 10 shows the linear behavior close to the reconnection point. It is possible to

prove analytically that the ratio of the slopes is given by dT +
ds

/ dT −
ds

|s=sr
= A+/A−. The full formulas

for the torsion are too long to be presented here.
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