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About this HDR manuscript

This Habilitation à diriger des recherches (HDR) manuscript presents a selection of my works realised
after my PhD completion in 2010. It covers different aspects of superfluids on which I have contributed
to the field. I have chosen to present only three topics: Kelvin waves, quantum vortex reconnections and
particle-vortex interactions. Furthermore, I restricted the discussion to low-temperature superfluids, in
particular to those described in the framework of the Gross-Pitaevskii model.

The first two chapters of the manuscript contain a general introduction to superfluid turbulence and its
theoretical description. Chapter 3 presents the physics of Kelvin waves and explains the wave turbulence
cascade associated with it. Two of my contributions to that topic ([Krs12; VPK16]) are integrally included
in this chapter. Chapter 4 gives a brief introduction to vortex reconnections, providing the basic elements
to understand three included publications ([VPK17; VPK20; GK20b]). Chapter 5 discusses the use of
particles for studying superfluid turbulence and quantum vortex dynamics. After a discussion on the
theoretical modelling, I present three of my recent contributions to the field ([GK19; GKN20; GK20a]).

The choice of topics and publications presented in this manuscript left aside many other of my works.
I refer to some of them in the manuscript. For conciseness, I did not include some works concerning the
dynamics of finite temperature superfluids, intermittency, large-scale co-flow and counterflow turbulence.

Since I joined CNRS in October 2013, my works have received the support of different funding agencies,
such as the CNRS/Royal Society International Exchanges with Davide Proment (UEA, Norwich, UK),
the PHC Ulysses with M. Bustamante (UCD, Dublin, Ireland), the Royal Society International Exchanges
with Luca Galantucci (and the Newcastle University team) and the PHC ECOS Sud with Gustavo Düring
(PUC, Chile). It was consolidated with the attribution in 2018 of an ANR Jeune Chercheur. Besides, I
am currently a member of the SIMONS Collaboration on Wave Turbulence. Some of these grants and the
local support of Université Côte d’Azur allowed me to advise the Ph.D students Umberto Giuriato and
Nicolas P. Müller and the postdoctoral researcher Juan I. Polanco. Working with them has been crucial
for my research achievements.

Finally, I would like to mention that my research is not only focused on superfluids. I have devoted
a considerable part of my research to classical turbulence, Lagrangian dynamics and the study of wave
turbulence on different physical systems. I give in the following, a list of publications (not related with
my Ph.D. work) that were not selected for this manuscript. The full list of publications is available in my
web page 1.
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Plate to the Drum. Phys. Rev. E 99, 3 (2019).
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Chapter 1

Superfluid turbulence. From nanometres
to metres

This chapter presents a brief introduction to superfluids. We discuss some of the main theoretical and

experimental achievements, from the discovery of superfluid helium to the first experimental realisation

of a Bose-Einstein condensate. We provide a general description of superfluid turbulence and discuss

the physical phenomena taking place at different length scales.

What are superfluids and where can we find them?

In very general terms, superfluids form a particular category among compressible fluids, distinguished
essentially by the absence of molecular viscosity at very low temperatures. Perhaps, the most famous
one is 4He that becomes superfluid below 2.1768K. The superfluidity of helium was discovered almost
simultaneously by J.F Allen and A.D Misener [AM38] and P. Kapitsa [Kap38] in 1938, and published
in the same issue of Nature. Figure 1.1 (left) shows the phase diagram of 4He. The line separating the
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Figure 1.1: Left: Phase diagram of 4He taken from Low Temperature Laboratory, Aalto University web
page. Right: Normal and superfluid density ρs and ρn, normalised by the total helium density ρ. Data
taken form [BD77].

superfluid and the normal fluid is called the λ-line. Its name comes from the specific heat of helium,
because its curve, as a function of temperature, resembles the Greek letter λ, having a peak at the
transition temperature. This critical temperature is often denoted by Tλ. Its name was suggested by
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CHAPTER 1. SUPERFLUID TURBULENCE. FROM NANOMETRES TO METRES

W.H. Keesom, who first observed that something was going on with helium at Tλ, well before 1938 (see
[Bal04]). He also denoted the two phases of as helium as helium I and II, for temperatures above and
below Tλ, respectively.

The same year that superfluid was discovered, and also in Nature, F. London [Lon38] made the
connection between the λ-transition and Bose-Einstein condensation, a phenomenon well known at that
time:

In his well-known papers, Einstein has already discussed a peculiar condensation phenomenon
of the “Bose-Einstein” gas; but in the course of time the degeneracy of the Bose-Einstein gas
has rather got the reputation of having a purely imaginary existence. Thus it is perhaps not
generally known that this condensation phenomenon actually represents a discontinuity of the
derivative of the specific heat . . .

Though actually the λ-point of helium resembles rather a phase transition of second order, it
seems difficult not to imagine a connection with the condensation phenomenon of the Bose-
Einstein statistics.
. . .
On the other hand, it is obvious that a model which is so far away from reality that it simplifies
helium to an ideal gas, cannot . . .

F. London, Nature 1938.

Amazingly, also the same year and again in the same journal, L. Tisza [Tis38] introduced the idea that
two fluids are needed to explain some of the experimental observations made in superfluid helium. Some
years later, L. Landau introduced his famous two-fluid model [Lan41]. In this description, a fraction of the
fluid is superfluid while the remaining part is “normal”. The total density ρ of helium thus decomposes as
ρ = ρn + ρs, where ρn and ρs are the densities of the normal and superfluid components respectively. The
temperature dependence of ρn and ρs is shown in figure 1.1 (right). The history of superfluid helium is
fascinating, I refer to the excellent historical reviews by S. Balibar [Bal04; Bal07], from where the previous
paragraphs were inspired.

Bose-Einstein condensation had to wait almost 60 years to completely clean its reputation “of having
a purely imaginary existence”. In 1995, the first experimental realisation of a Bose-Einstein condensation
was achieved with rubidium atoms [And+95], and soon after their superfluid behaviour was observed.
Since then, many experimental groups around the world perform experiments with Bose-Einstein conden-
sates with different types of atoms and address questions of the most diverse kinds.

The formation of condensates has been observed in very different systems. Classical light propa-
gating in a self-defocusing photorefractive crystal, that is roughly described by the same equations as
Bose-Einstein condensates (BECs), was also observed to go through a (classical) wave condensation pro-
cess [Sun+12]. Moreover, recent experiments with quantum fluids of light, a many-photon system with
photon-photon interactions induced by the optical nonlinearity of the medium, have revealed interesting
hydrodynamic superfluid properties [CC13]. Besides, there is another example of superfluids appearing
in nature. It is believed that the core of neutron stars contains a superfluid part. Such an assumption is
needed to explain some astronomical observations [AI75; Pag+11]. Finally, it is worth mentioning that su-
perfluid helium is commonly used in industrial and technological applications for cooling superconducting
materials and infrared detectors.

The most manifest quantum effect of a superfluid is the presence of quantum vortices, whose circulation
(contour integral of the velocity) is quantised. This quanta is called the Onsager-Feynman quantum of
circulation. Quantum vortices are extremely thin filaments with a core size as small as a couple of
Angstroms (in 4He). They are topological defects of the order parameter that describes the system, and
for this reason, they are incredibly stable. Even though they are purely quantum objects, they advect
each other as classical vortices described by the Euler equations. Such vortices can reconnect despite the
lack of molecular dissipation, a phenomenon that is forbidden in classical ideal (inviscid) fluids because of

2



CHAPTER 1. SUPERFLUID TURBULENCE. FROM NANOMETRES TO METRES

the Kelvin theorem. Reconnections between quantum vortices can lead to the formation of very complex
tangles and turbulent states.

Typical length scales

Let’s first discuss the case of superfluid helium at low temperatures. Current experiments have a typical
size of 0.1 − 1m, which is 1010 times larger than the vortex core size, the smallest intrinsic scale of
the system. When looking at scales much larger than the typical inter-vortex distance `, a classical
hydrodynamic behaviour emerges. Based on the idea that turbulence is a universal phenomenon and
that vortices interact at large scales in a similar manner than classical ones, it is natural to think that at
length scales smaller than the injection scale LI and much larger than `, a classical-like turbulent cascade
transfers the kinetic energy. Indeed, at such scales, the quantum nature of vortices can be neglected, and
small-scale physical processes can be considered as an effective energy sink, ignoring the fine details of the
mechanisms involved. In that vision, we imagine a coarse-grained description of a superfluid, more in the
spirit of the Landau two-fluid model. Such a classical-like scenario was first confirmed by the experimental
work of J. Maurer and P. Tabeling [MT98]. They measured the energy spectrum of superfluid helium and
observed no change when helium is cooled down through the λ-point. The appearance of Kolmogorov
turbulence at scales larger than ` is today a well-established fact [BSS14; VD07].

At scales of the order of the mean inter-vortex distance `, this coarse-grained vision of superfluid helium
breaks down. We can no longer ignore the fact that vortices have a quantised circulation. Energy arrives
from the large scales via the Kolmogorov cascade to the scale `. At low temperatures, dissipation through
viscosity is absent, so that new physical mechanisms are need to take care of this energy input. There
are two main mechanisms responsible for this transfer, the Kelvin wave cascade and vortex reconnections,
both discussed in Chapters 3 and 4 respectively. During vortex reconnections, some energy of the vortex
is dissipated by the emission of sound (phonons), while at the same time, they can also change their size,
redistributing their energy at different scales and excite Kelvin waves [Kiv+01]. Kelvin waves are waves
that propagate non-linearly along quantum vortices. If one considers scales much smaller than `, but
much larger than the vortex core size ξ, the theory of weak wave turbulence can predict that energy is
transferred towards smaller scales through a direct energy cascade. While there are direct visualisations
of quantum vortex reconnections [Bew+08] and Kelvin waves [Fon+14], no experimental confirmation of
the aforementioned energy transfer mechanisms has been achieved.

At the crossover scales, where the Kolmogorov cascade reaches the mean inter-vortex distance, the
situation is less clear. The natural scenario, proposed by L’Vov et al. [LNR07], is that as the Kolmogorov
cascade is “strong” and the Kelvin wave cascade is “weak”, a bottleneck will form, eventually leading to a
thermalised zone joining the classical and quantum ranges. Such a scenario is far from being confirmed by
experiments, and numerical simulations are challenging. In a recent numerical work [MK20], we observed
a clear Kolmogorov and relatively well established Kelvin wave range. We indeed found a bottleneck but
far from exhibiting a thermalised spectrum, although this could be explained by the limited inertial range
of the Kelvin wave cascade. The phenomenology of low-temperature superfluid turbulence is summarised
in figure 1.2.

If we now consider superfluid helium at finite temperatures, the description becomes more complex
as new degrees of freedom are introduced. At finite temperatures, one needs to consider the interaction
between the superfluid component and the normal fluid. The normal fluid dissipates energy through
molecular dissipation, as any classical fluid. Depending on the temperature, both components are more
or less coupled and can be locked to each other. Besides, a very different turbulent state, with no classical
analogous, can emerge from this two-fluid description in the case that the two components have a non-zero
mean relative velocity. Such state is known as counterflow turbulence [Don91]. Counterflow turbulence
typically develops in channels where a heat source is placed in one of its ends. In this situation, the normal
component carries the heat away from the source, while the superfluid flows in the opposite direction in

3
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Length scales of superfluids

SHREK (France)

XZ10259F PRFLUIDS March 17, 2017 5:8

VILLOIS, PROMENT, AND KRSTULOVIC

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1) the
turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES139

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized140

vortices are considered, the quantum of circulation " can be used to formulate an extra length scale.141

Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be142

δ±(t) = A±ξ 1−2α± |"(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after143

(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting144

filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of145

the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases2 146

the approach and separation rates follow the same dimensional t1/2 scaling. For each event we147

estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic148

mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight149

deviations are observed in some cases. Perhaps this fact could explain the different results for150

the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after151

the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and152

α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on153

the initial vortex filament configuration. In these works the time asymmetry was interpreted as a154

manifestation of the irreversible dynamics due to sound emission; we will return to this interesting155

point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex156

distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate157

sound at all scales) and no asymmetry concerning the exponent is observed.158

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with159

respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating160

the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity161

but are not universal. Moreover, we observe that the vortex filaments usually separate faster than162

they approach (A− ! A+).163
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FIG. 1. (a)-(c) Sequences of 20 images of the density distri-
bution of the atoms extracted from three BECs; frames are
taken every �t = 84 ms, each after a 13 ms expansion. (a)
Static vortex. (b)-(c) Vortices precessing with di↵erent am-
plitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)-(i) Sequences with two and
three vortices, with �t = 28 ms; here frames are not to scale
and vertically squeezed to enhance visibility. (j)-(m) Destruc-
tive absorption images of the whole BEC taken along the ax-
ial direction z after 120 ms of expansion, showing (j) a single
vortex filament crossing the condensate from side to side and
(k)-(m) two vortices with di↵erent relative orientation and
shape. All images show the residuals after subtracting the
fitting TF profile.

tion sequence the remaining condensate evolves in trap,
only weakly a↵ected by atom number change, provided
�N/N(t) is su�ciently small. We can then identify the
axial position of the vortex in each image of the outcou-
pled atoms and analyze its oscillation as a faithful rep-
resentation of the in-trap dynamics. Typical examples
are shown in Figs. 1(a)-1(i) . Alternatively we image the
full BEC along the axial direction after a long expan-
sion with a destructive technique as in [22] and directly
see the shape and orientation of the vortex lines as in
Figs. 1(j)-1(m).

We first choose an evaporation rate of 525 kHz/s, yield-
ing one vortex in each BEC on average. From the se-

quence of radial images we extract the axial position of
each vortex z(t). Frames are recorded every �t = 84 ms.
Figures 2(a) and 2(b) show two examples corresponding
to the raw images of Figs. 1(b) and 1(c), respectively.
The observations are consistent with a vortex precession
around the trap center, as the one observed in oblate
BECs [16, 33]. In a nonrotating elongated condensate,
a straight vortex line, oriented in a radial plane, is ex-
pected to follow an elliptic orbit in a plane orthogonal to
the vortex line, corresponding to a trajectory at constant
density [34]. The observed motion of each dark stripe in
Figs. 1(a)-1(c) is the axial projection of such a precession.
Given ro = zmax/Rz = ymax/R? the in-trap amplitude of
the orbit normalized to the TF radii R? =

p
2µ/(m!2

?)

and Rz =
p

2µ/(m!2
z) [32], the precession period is pre-

dicted to be

T =
4(1 � r2

o)µ

3~!? ln(R?/⇠)
Tz , (1)

where Tz = 2⇡/!z is the axial trapping period and ⇠ is
related to the chemical potential µ by ⇠ =

p
~2/(2mµ).

This result, which is valid to logarithmic accuracy, has
been derived for a disk-shaped nonaxisymmetric conden-
sate in Refs. [35, 36] within the Gross-Pitaevskii theory
at T = 0 and in the TF approximation, corresponding to
R?/⇠ � 1 (in our case, R?/⇠ ranges from 60 to 20). It
can also be obtained by means of the superfluid hydro-
dynamic approach introduced in Ref. [37] to describe the
motion of vortex rings in elongated condensates, appro-
priately generalized to the case of solitonic vortices as in
Ref. [24]. The quantity µ(1 � r2

o) is the local chemical
potential along the vortex trajectory and we assume ro to
be constant during expansion, as distances are expected
to scale in the same way in the slow axial expansion.

In comparing the observed period with Eq. (1) we must
consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude remain
almost unchanged. However, N(t) (hence µ / N2/5)
decreases in time and so does the vortex orbital period
T , as is clearly visible in Figs. 2(a) and 2(b). We de-
fine an instantaneous period at time t as the period ob-
tained from a sinusoidal fit to the measured position in a
time interval centered at t and containing about one os-
cillation. Such T (t) is plotted in Fig. 2(c) and 2(d) and
compared to Eq. (1), where we include the e↵ect of the
observed t dependence on N , shown in Fig. 2(e), both in
µ and ⇠. The agreement is good, the major limitation
being the experimental uncertainty in N . We also show
the period expected for the oscillation of a dark or grey
soliton, which is

p
2 Tz independently of N [38, 39]. In

Fig. 2(f) we plot the period of vortices orbiting with dif-
ferent amplitude ro. The agreement with theory is again
good and can be further appreciated by considering the
ratio between each value of T measured at a given ro and

(1) (2)

(3)

(4) (5)

(6)
(7)

(8)

Figure 1.2: Length scales and physics of superfluid turbulence. Energy is injected at scales of the order
of the metre. It is then transferred towards small scales through a Kolmogorov classical cascade. At the
scale of the mean inter-vortex distance `, new physical mechanisms are responsible for transferring energy
further down to the scale of the vortex core size ξ. (1) A picture of the Superfluide à Haut Reynolds en
Ecoulement de von Karman (SHREK) experiment in Grenoble, taken from the SHREK webpage. (2)
The Richardson cascade, picture from [Fri95]. (3) Gross-Pitaevskii (GP) simulation of a turbulent vortex
tangle (vortices in red). (4) A GP simulation of a Kelvin wave propagating along a quantum vortex
(in red). (5) Visualisation of a quantum vortex, from [BLS06]. (6) GP simulation of quantum vortex
reconnections, from [VPK17]. (7) Visualisation of quantum vortices in a BEC, from [Ser+15]. (8) GP
simulation of phonon radiation produced by rotating quantum vortices, from [KBT08].

order to conserve the mass. Counterflow turbulence is not discussed much in this manuscript, but some
interesting effects of counterflow can be found in the works [PK20b; PK20a].

In what concerns Bose-Einstein condensates (BEC), most of the previous phenomenology applies, at
least from a theoretical point of view. In BECs experiments, the healing length ξ can be adjusted using
Feshbach resonances [Chi+10], but roughly speaking, it is typically of the order of micrometres. The
size of the experiments is also smaller than in superfluid helium, not more than some hundreds healing
lengths, at best. Therefore, the scale separation occurring in superfluid helium experiments is never
achieved in BECs. Also, the compressibility of the fluid is much more important than in helium. From
the experimental side, the BECs community has achieved an incredible control of the experiments, and
it is even possible the direct visualisation of quantum vortex filaments [Ser+15].

Although in principle very different, both systems, BEC and superfluid helium have some comple-
mentarity. Whereas in superfluid helium, new experimental techniques are pushed to sample smaller and
smaller scales, hopefully soon smaller than `, in BECs larger and large traps are produced, with shapes
that allow for a better study of turbulence. From a theoretical point of view, experimental results coming
from both communities are crucial to test and confront new theories and models.

In this manuscript, we will generically talk of superfluids or quantum turbulence without making a
major distinction of the type of concerned superfluid. Depending on the scales at play, or on the physics
discussed, a given result could find a better application in BECs or in helium. In this spirit, the next
chapter discusses several models of superfluids, valid for different ranges of scales and temperatures.
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Chapter 2

Models of superfluid turbulence

In this chapter, we give a (biased) overview of the different models used for studying quantum turbulence.

We start by introducing the Gross-Pitaevskii equation and discussing its main properties and how it

can be used to study quantum turbulence. We then briefly introduce and discuss some other models that

are useful to describe quantum flows at different scales and temperatures.

As we discussed in the previous chapter, superfluid or quantum turbulence is characterised by a large
scale separation, with the occurrence of a myriad of physical phenomena. In general terms, a turbulent
quantum fluid can refer to an atomic BEC, where non-linear waves weakly interact, to a Bose-Einstein
condensate (BEC) containing vortex tangles or to superfluid helium where quantum vortices interact with
the normal fluid having or not a mean counterflow. It is kind of obvious that there is not a unique, first
principle model that would be able to account for all those complex phenomena. Depending on the scale
of interest, one is constrained to the use of one model or another.

In this chapter, we will introduce some of the models that are used today to model quantum turbulence.
The presentation is of course biased, as the works that have been selected for this manuscript, they have
been all performed in the framework of the Gross-Pitaevskii (GP) equation. However, my current research
is not constrained only to GP.

2.1 The Gross-Pitaevskii model

We shall start by considering one of the simplest (but not less complex) cases of superfluid. We will
consider a dilute weakly interacting BEC at zero temperature. In this limit, it is possible to derive from
first principles (and a mean-field approximation) one of the most important models for superfluids: the
Gross-Piteavskii equation. We will not give a derivation of the model here, as it can be found in many
excellent books and reviews (see for instance [Dal+99]). In addition, this manuscript is mainly concerned
with the hydrodynamical aspects of superfluids, hence this interpretation will be discussed in more detail.

The GP model is an equation for the macroscopic wave function ψ describing the condensate. It
satisfies the partial differential equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ + g|ψ|2ψ, (2.1)

where ~ is the reduced Planck constant, m is the mass of the condensed particles and g = 4πa~2

m , with
a the s-wave scattering length. The potential V (x) typically describes an external trap that confines
the condensate. This equation is also known as the (defocusing) non-linear Schrödinger (NLS) equation.
When g < 0, it is known as the focusing NLS equation.

Equation (2.1) derives from a variational principle with the action

A =

∫ [
i~
2

(
ψ̄
∂ψ

∂t
− ψ∂ψ̄

∂t

)]
d3x dt−

∫
Hdt, (2.2)
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2.1. The GP model CHAPTER 2. MODELS OF SUPERFLUID TURBULENCE

where

H =

∫ (
~2

2m
|∇ψ|2 + V (x)|ψ|2 +

g

2
|ψ|4

)
d3x (2.3)

is the Gross-Pitaevskii Hamiltonian. For the sake of simplicity, we will consider in the following a free
condensate, i.e. V (x) ≡ 0.

2.1.1 Conserved quantities

Thanks to the Noether theorem, the variational formulation (2.2) is particularly useful to determine the
conserved laws associated to the GP equation [SS04]. Equation (2.1) is invariant under the unitary group
U(1), i.e a phase rotation ψ → ψeiθ with θ any real number, and to time and space translations. Using
Noether theorem it is straightforward to show that the conservation laws are [NAB97]

∂t(ψψ) + ∂k

{
i
~

2m
(ψ∂kψ − ψ∂kψ)

}
= 0 (2.4)

∂t

(
i~
2

(ψ∂jψ − ψ∂jψ)

)
+ ∂kΠkj = 0 (2.5)

∂t

(
~2

2m
∂kψ∂kψ +

1

2
g|ψ|4

)
+ ∂kQk = 0 (2.6)

where the momentum and energy fluxes respectively are

Πkj =
~2

2m
(∂kψ∂jψ + ∂kψ∂jψ) + (

g

2
|ψ|4 − ~2

4m
∂ll|ψ|2)δkj (2.7)

Qk =
i~3

4m2

(
∂kψ∂jjψ − ∂kψ∂jjψ

)
+ g|ψ|2

(
i~
2m

(ψ∂kψ − ψ∂kψ)

)
. (2.8)

It follows directly from (2.4-2.6) that the Hamiltonian H, the total number of particles N and the
momentum P defined by

H =

∫

V

(
~2

2m
|∇ψ|2 +

g

2
|ψ|4

)
d3x (2.9)

N =

∫

V
|ψ|2 d3x (2.10)

P =

∫

V

i~
2

(
ψ∇ψ − ψ∇ψ

)
d3x, (2.11)

are conserved by the GP dynamics.

Finally remark that the GP equation (2.1) is invariant under the Galilean transformation

ψ′(x, t) = ψ(x− vst, t) exp

{
im

~

[
vs · x−

1

2
v2

s t

]}
. (2.12)

Associated with this last invariance, the conserved charge is the centre of mass of the system

2.1.2 Wave propagation

The simplest excitations of the GP equation are waves. Obviously, ψ = 0 is a solution of the GP equation.
Assuming small perturbations, we observe that the non-linear term can be dropped and waves propagate
with the dispersion relation

ωk =
~

2m
k2, (2.13)
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CHAPTER 2. MODELS OF SUPERFLUID TURBULENCE 2.1. The GP model

Figure 2.1: Dispersion relation of Bogoliubov waves obtained numerically by measuring the spatio-
temporal spectrum of weak amplitude waves driven by the GP model.

where k = |k| is its wave vector. Such kind of waves, are dispersive waves and they are solutions of the
Schrödinger equation. They are often called free particles.

Less trivial solutions are waves that propagate about a flat condensate ψ =
√
ρ0/me

iµt, where ρ0 is
the mean mass density and µ = gρ0/m is the chemical potential. Linearising about this flat state, we
obtain the famous Bogoliubov dispersion relation

ωBogo
k =

√
gρ0

m2
+

~2

4m2
k4 = ck

√
1 +

1

2
ξ2k2, (2.14)

where we have defined the speed of sound c and the healing length ξ as

c =

√
gρ0

m2
, ξ =

√
~2

2gρ0
. (2.15)

The healing length ξ thus defines the scale at which dispersive effects become important. Note that we
can rewrite the ratio ~/m =

√
2cξ. As a matter of illustration, figure 2.1 displays the dispersion relation

of weak Bogoliubov waves obtained numerically from the GP model by performing a spatio-temporal
spectrum. The different asymptotic limits are clearly visible.

In many applications, in particular to compare different physical systems or experiment and numerics,
it is useful to rewrite the GP equation in terms of c, ξ and ρ0/m:

i
∂ψ

∂t
=

c

ξ
√

2

(
−ξ2∇2ψ +

m

ρ0
|ψ|2ψ − ψ

)
, (2.16)

where we have include the chemical potential term µψ, and expressed µ in terms of c and ξ (last term
inside the r.h.s).

2.1.3 Hydrodynamics: from a quantum vortex to Kolmogorov turbulence

The connection of the GP equation with hydrodynamics is given by the Madelung transformation defined
by

ψ(x, t) =

√
ρ(x, t)

m
exp [i

m

~
φ(x, t)] =

√
ρ(x, t)

m
exp [i

φ(x, t)√
2cξ

], (2.17)
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where ρ(x, t) is the density and φ(x, t) is the potential velocity such that v = ∇φ. Replacing the
transformation in (2.16) one directly obtains

∂ρ

∂t
+∇ · ρv = 0 (2.18)

∂φ

∂t
+

1

2
(∇φ)2 =

c2

ρ0
(ρ0 − ρ) + c2ξ2∇2√ρ

√
ρ

(2.19)

Equations (2.18) and (2.19) are the continuity and Bernoulli equations respectively. Compared to classical
fluids, the Bernoulli equation contains an extra term that is called the quantum pressure. Such equations
are the ones governing the dynamics of isentropic, compressible and irrotational fluids. Note that in the
hydrodynamic variables, the Bogoliubov dispersion relation (2.1) is easily obtained by perturbing the
solution φ = 0 and ρ = ρ0.

Quantum vortices

Although the fluid is potential, it admits vortices as topological defects of the wave function. Indeed,
the Madelung transformation (2.17) is not defined if the wave function vanishes. If such is the case,
the phase can have a jump over a branch of discontinuity. As a zero of the wave function implies
two conditions (Re[ψ] = Im[ψ] = 0), quantum vortices are generically points in two dimensions and
filaments in three. Figure 2.2 displays a numerical solution of the GP model containing one straight
three-dimensional quantum vortex. Such a solution was first studied by Pitaevskii and Ginsburg [Pit61;
GP58], and it is the most fundamental hydrodynamical excitation of a quantum fluid.

A topological defect arises as a discontinuity of the phase of the wave function; as such, its associated
circulation might be not zero, even if the velocity fluid is potential. Indeed, we have that the velocity
circulation over a closed contour surrounding the defect is given by

Γ =

∮

C
∇φ · d` = φ+ − φ−, (2.20)

where φ+ and φ− are the values of the phase in two sides of the branch of discontinuity, as displayed in
the top right panel of figure 2.2. Because the wave function needs to have a single value while crossing
this branch, it follows from the Madelung transformation (2.17) that φ+ − φ− = n2π~/m, with n ∈ Z.
The circulation of a quantum vortex is thus quantised and takes the value

Γ = n
h

m
= n2π

√
2cξ, withn ∈ Z. (2.21)

The ratio h/m is called the Feynman-Onsager quantum of circulation [Fey55; Don91]. As a consequence
of the quantisation of circulation, the velocity vv and vorticity ωv fields are

vv(x) =
Γ

2πr
θ̂, ωv(x) = Γk̂δ(x), (2.22)

where we have used a system of coordinates as the one in figure 2.2. The velocity field is displayed in
green dashed lines in the bottom right panel.

So far, we have only discussed the phase of a quantum vortex. The precedent discussion is valid
for any topological defect described by a complex field, in particular for solutions of the Schrödinger
equation. What makes a GP quantum vortex very important is that due to its non-linearity, such a
solution is very stable and leads to a pressure term (see equation 2.19), so that quantum vortices behave
as real hydrodynamic vortices. Besides, dispersion regularises the solution and give an effective core
size to the vortex. Indeed, the vortex profile can be straightforwardly obtained from the GP equation.
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x

y

x

0

ρ0

ξ

ρv ∼ ρ0

(
1− 2ξ2

r2

)

ρv ∝
(
r
ξ

)2

ρv

vv

−π

−π/2

0

π/2

π

m
h̄ φ

Figure 2.2: Quantum vortex in the Gross-Pitaevskii model. Left: 3D visualisation of a straight quantum
vortex. The vortex is represented as a red isosurface of low values of the density field, whereas the
variation of the density field around the bulk value ρ0 are rendered in blue. Streamlines of the velocity
field are displayed in green. Top right: Phase and velocity streamlines of a straight vortex solution in the
plane orthogonal to the filament. Bottom right: Vortex density and velocity profiles. Figure courtesy
of U. Giuriato taken from his Ph.D. manuscript [Giu20]

Expressing the (steady) GP equation in polar coordinates and looking for a solution of the type ψ(r, θ) =√
ρ0R(r) exp (inθ) yields an ordinary differential equation for the vortex profile

ξ2

r

d

dr

(
r

dR

dr

)
+

(
1− n2ξ2

r2
−R2

)
R = 0, (2.23)

where the boundary conditions are R(0) = 0 and R(∞) = 1. This equation cannot be solved analytically.
The vortex profile is sketched in the bottom right panel of figure 2.2. The asymptotic behaviour of the
vortex profile is easily obtained from equation 2.23 and reads

lim
r→0

R(r) ≈ c1(r/ξ)|n|, lim
r→∞

R(r) ≈ 1− n2ξ

r2
(2.24)

where the pre-factor c1 may be determined numerically. For practical purposes, a Padé approximation
can be computed by imposing both asymptotic limits. A Padé approximation with n = 1 is

R(r) =

√
r̃2(a2 + a4r̃2 + a6r̃4)

1 + b2r̃2 + b4r̃4 + b6r̃6
, (2.25)

where r̃ = r/ξ. The coefficients are a2 = 0.340038, a4 = 0.0360207, a6 = b6 = 0.000985125, b2 = 0.355931
and b4 = 0.037502. The vortex profile obtained numerically from equation (2.23), the Padé approximation
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Figure 2.3: Density profile of a quantum vortex. The numerical solution is compared with two Padé ap-
proximations: Pade1 N. Berloff [Ber04] and Pade2 (2.25). The asymptotic limits (2.24) are also displayed.
Figure courtesy of U. Giuriato taken from his Ph.D. manuscript [Giu20].

published in the book by L.M. Pismen [Pis99] and often associated to Berloff [Ber04] (denoted by Pade1 in
the legend) and the one in equation (2.25) (denoted by Pade2) are compared in figure 2.3. The asymptotic
limits (2.24) are also displayed for comparison. Although all approximations look similar, Pade1, that
is commonly used in the community, presents an unphysical maximum close to the vortex core and
approaches 1 from above. The Padé approximation 2.25 was actually derived during my undergraduate
studies [Krs05] and recently used with U. Giuriato [GK19] for studying the capture of a particle by a
quantum vortex.

Finally, one is usually concerned with vortices having n = ±1, as quantum vortices with higher charges
are typically unstable.

Now that quantum vortices have been introduced, we can come back to the hydrodynamic equations
(2.18) and (2.18). The continuity equation involves of course the velocity field and, as we have seen,
it diverges at the vortex position. Fortunately, the density vanishes there and regularises the problem
(ρ∇φ is the momentum density and it is completely regular). Concerning the Bernouilli equation, its
interpretation is more difficult but still possible. One needs to consider φ, and impose jumps on moving
discontinuity branches. For instance, in my first contribution to the field [KBT08], I studied the sound
emitted by quantum vortices dealing with these moving boundary conditions. Quite often in literature
and seminars, the dispersive Euler equation obtained by taking the gradient of Bernouillui equation is
presented to make the connection between GP and fluids. Such a presentation hides under the carpet the
presence of quantum vortices, especially if it is not specified that such an equation needs to be interpreted
in the sense of distributions.

Energy spectra

It is customary in classical turbulence to study the kinetic energy spectrum of the velocity flow. In
Navier-Stokes flows, the definition passing by the Fourier transform of the velocity is straightforward
[Fri95]. In GP quantum turbulence, the definition is slightly more complex as the fluid is compressible
and the velocity field ∇φ is singular on the vortex core. In the seminal paper by Nore et al. [NAB97],
the authors introduced the energy spectra for a turbulent GP flow. Since then, those definitions are
commonly used.

The definition of the energy spectra are motivated on hydrodynamical backgrounds. We start by
writing the free energy per unit of total mass

F =
1

ρ0V
[H − µN − µ2V

2g
], (2.26)
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Figure 2.4: Visualisations of turbulent GP field. a) Three-dimensional visualisation of the density field.
Vortices are displayed in red as low value iso-surfaces of the density. Fluctuations about the bulk value ρ0

are rendered in yellowish colours. b) Slice of the total kinetic energy density. c) slice of the incompressible
kinetic energy density.d) Slice of the filtered pseudo-vorticity (2.32). Data from numerical simulations of
reference [MK20].

where we have subtracted the free energy of a flat condensate. Using the Madelung transformation (2.17),
it explicitly reads

F =
1

V ρ0

∫
d3x

[
1

2
(
√
ρv)2 +

c2

2ρ0
(ρ− ρ0)2 + c2ξ2 (∇√ρ)2

]
(2.27)

We recognise three terms, the total kinetic energy Ekin, the internal energy Eint and the quantum energy
Eq defined by

Ekin =
1

ρ0V

∫
d3x

1

2
(
√
ρv)2 (2.28)

Eint =
1

ρ0V

∫
d3x

c2

2ρ0
(ρ− ρ0)2 (2.29)

Eq =
1

ρ0V

∫
d3xc2ξ2 (∇√ρ)2 . (2.30)

Apart from the quantum energy term, their interpretation is clear from a fluid mechanics point of view
[LLL11].

To separate the energy coming from sound waves from the one of vortices, the total kinetic energy can
be further decomposed into compressible Ec

kin and incompressible Ei
kin by computing the kinetic term as√

ρv = (
√
ρv)c + (

√
ρv)i where ∇· (√ρv)i = 0. This decomposition is obtained by applying the projector

Pµν = ∂µ∂ν − δµν
∇2 . The incompressible kinetic energy mainly contains the contribution of vortices. To

illustrate this decomposition, figure 2.4 displays visualisations of a quantum turbulent flow from reference
[MK20]. Quantum vortices creating large scale structures are apparent in figure 2.4.a. Figure 2.4.b-c
show a slice of the total kinetic and incompressible energy densities, respectively. While the total energy
density contains structures akin to quasi-shocks, the incompressible part displays large scale eddies. It
is important to notice that the velocity field

√
ρv is regular at the vortex core. Indeed, the asymptotic

formulas 2.24 imply that
√
ρv ∼ r0 at the vortex core. For this reason, this field is called the regularised

velocity.
As the quantities inside the integrals (2.28-2.30) are quadratic, the respective spectra Ec

kin(k), Ei
kin(k),

Eint(k) and Eq can be easily defined by Parseval theorem summing over the angles [NAB97]. For instance
the kinetic energy spectrum is defined as

Ekin(k) =
1

2ρ0

∫
|√̂ρv(k)|2dΩk, (2.31)

where dΩk is the surface measure of the sphere 1.

1Remark that by definition Ekin =
∫
k
Ekin(k)dk
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Finally, a useful quantity, in particular to track vortices, is the pseudo-vorticity. It is defined from the
momentum density as

J = ∇× ρv = 2~∇Re[ψ]×∇Im[ψ]. (2.32)

From its definition, it follows that it is a regular field at the vortex core and oriented in the direction of
the vortex. We have used these properties to develop a vortex tracking algorithm [Vil+16]. Figure 2.4.d
shows the filtered pseudo-vorticity over a slice of the turbulent vortex tangle. The yellow and red dots
correspond to vortices of opposite sign.

2.1.4 Beyond low-temperature weakly interacting Bose-Einstein condensates

Formally, the GP equation should be applied to describe only low-temperature weakly interacting BECs.
This fact naturally excludes, a priori, superfluid helium. However, many aspects, especially those related
to vortex dynamics, are well reproduced by GP, and the role of compressible waves is negligible. There
are several approaches providing a better description of superfluid helium and different kinds of BECs,
that remain within the framework of GP.

Finite temperature BECs

There are many models for describing finite temperature BECs, with different degrees of complexity and
accuracy. We do not intend to provide here an overview of this challenging topic, but to explain how the
standard GP model can be easily modified to include finite temperature effects. We refer to the excellent
review article [PJ08] for a detailed discussion on other models.

The Gross-Pitaevskii model can be adapted to describe finite temperature superfluids by considering
the discrete version of it and states close to thermal equilibrium. Such a model is called the projected
(or truncated) Gross-Pitaevskii equation. The physical motivation of introducing an UV cut-off is, that
because of quantum mechanics, excitations having very high wave vectors contribute very little to statistics
and can thus be neglected in a semi-classical approximation. In principle, we can consider that excitations
such that ~ω(k)� kBT , where kB is the Boltzmann constant, can be treated classically. In practice, the
projection is done by imposing a UV cut-off to the field by performing a Galerkin truncation at given
wavenumber kmax. The resulting projected GP equation is

i~
∂ψ

∂t
= PG[− ~2

2m
∇2ψ + gPG[|ψ|2]ψ], (2.33)

where the Galerkin projector PG truncates the system acting in Fourier space as: PG[ψ̂k] = θ(kmax−|k|)ψ̂k

with θ(·) the Heaviside theta function, ψ̂k the Fourier transform of ψ(x) and k the wave vector (see
for instance [KB11b]). The extra projector acting on the |ψ|2 term, ensures the exact conservation of
momentum (see [KB11b]). See Appendix A.2 for details on the conservation of invariants and the correct
de-aliasing of this model.

Note that, if the wave function is a regular (analytic) solution of the GP equation, in the limit of k →∞
we have that |ψ̂k|2 → 0 fast enough, and the projected and standard GP model coincides, provided that
kmax is large enough. On the other hand, for a thermal solution, |ψ̂|2 do not decrease fast, and the cut-off
plays an important role. In this case, equation (2.33) is not defined mathematically as partial differential
equation (because gradients do not exist) and needs to be considered as a (very large) set of ordinary
differential equations. This discrete system, given by equation (2.33), conserves the truncated invariants
of the original GP equation.

In two and three dimensions, if one starts from a random initial condition with energy H, momentum
P and number of particles N , the system will generically equilibrate and reach thermal equilibrium after
a very long evolution. Assuming equivalence of ensembles, such states will have a distribution

{ψk}|k|<kmax
∼ e−β(H−µN+W·P), (2.34)
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where β, µ and W are Lagrange multipliers. We immediately recognise, the inverse temperature β and
the chemical potential µ, whereas W can be related to a counterflow velocity [KB11b]. If we consider
the case with no mean momentum W = 0, we remark that H − µN exactly corresponds to the action
of the famous two-components λ− φ4 theory describing second-order phase transitions [Le 91]. In 2001,
Davis et al. [DMB01], performed a series of simulations varying the initial energy and showed that the
condensation transition is observed in this system. Such thermal states are obtained after a very long
temporal evolution of equation (2.33) and they are thus by definition micro-canonical states. Instead,
one can generate such states in a grand canonical ensemble by performing simulations of the stochastic
Ginsburg-Landau equation (or GP in imaginary time plus noise). This technique was introduced during
my Ph.D and has the advantage of controlling temperature and chemical potential and to be much more
efficient numerically.

Thermal solutions, generated by whatever mean, are useful to study the interaction of the thermal
cloud and vortices. For instance, they can be used to analyse how a vortex ring decay [BY07], the effect
of counterflow on vortices and to characterise mutual friction [KB11b], to study thermally excited Kelvin
waves [KB11a] and finite temperature quantum turbulence and its effective viscosity [Shu+19].

Although the projected GP equation is a very natural model to qualitatively study finite temperature
superfluids, it is numerically costly because of the small time steps required for simulations. Furthermore,
it is not well suited for turbulent superfluids as extremely large resolutions are needed [Shu+19].

Superfluid helium

There is not a simple, first principle model to describe the dynamics of superfluid helium. In the GP
description, even at zero temperature, there are two main missing properties. Firstly, it is known that
the superfluid helium dispersion relation exhibits a minimum, called the roton minimum. The dispersion
relation is not as simple as the one shown in figure 2.1. Secondly, it is known that the internal energy
of helium does not have the same functional form like the one in equation (2.29). Such phenomenology
can be easily included in the GP description, with some numerical cost, by replacing the contact particle-
particle potential (not written in the previous equation as it takes the form of δ-function) by a non-local
interaction potential and with the addition of high-order terms. Such ideas were first introduced by
Pomeau and Rica [PR93], then further studied by Berloff and Robert [BR99]. More recently, the vortex
profile and the dynamics of vortices were also investigated [VCC12; RSC18].

In a recent work [MK20], we used a generalised GP model to study the decay of quantum turbulence.
This model reads

i~
∂ψ

∂t
= − ~2

2m
∇2ψ − µ(1 + χ)ψ + g

(∫
VI(x− y)|ψ(y)|2d3y

)
ψ + gχ

|ψ|2(1+γ)

nγ0
ψ. (2.35)

where γ and χ are two dimensionless parameters that determine the order and amplitude of the high-
order terms. The non-linear term with exponent 2(1 + γ) can be considered as the next order expansion
on the density to phenomenologically reproduce the ground state energy, density, and compressibility of
homogeneous superfluid helium [BR99]. Also, it results from beyond mean-field corrections to account
for the effect of quantum fluctuations. There χ and γ take explicit values in terms of physical constants
[BBP14]. In [MK20], we showed that the inclusion of high order terms leads to a renormalisation of the
speed of sound and the healing length. It has no major impact on the vortex profile.

The interaction potential VI is normalised such that
∫
VI(x)d3x = 1. The chemical potential and

the interaction coefficient of the high-order terms have been renormalised such |ψ0|2 = n0 = µ/g is
the density of particles of the ground state for all values of parameters. The GP equation is recovered
by simply setting VI(x− y) = δ(x− y) and χ = 0. To model superfluid helium, we use an interaction

potential that in Fourier space reads V̂I(k) =

[
1− V1

(
k
krot

)2
+ V2

(
k
krot

)4
]

exp
(
− k2

2k2
rot

)
, where krot is the

wave number associated with the roton minimum and V1 ≥ 0 and V2 ≥ 0 are dimensionless parameters
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Figure 2.5: Spatiotemporal dispersion relations of weak density waves of amplitude A obtained with the
model (2.35). Light zones correspond to excited frequencies. Figures (a) and (b) correspond to different
amplitude of the perturbation A, both exhibiting a roton minimum. Experimental observations (red
dotted line, see [BD77]) and theoretical dispersion relation for this model. See [MK20] for details and
discussion.

to be adjusted to mimic the experimental dispersion relation of helium II. The spatio-temporal spectra
of small amplitude waves, obtained with this model, is displayed in figure 2.5. When the parameters are
adjusted to fit the helium dispersion relation, high order terms are necessary to avoid the crystallisation
observed in [RSC18].

Note that the model (2.35) can be easily adapted to study dipolar BECs, in the supersolid phase
[SSL03; Gri07; Lah+09]. They are today the subject of intense theoretical and experimental studies.

2.1.5 Vortex nucleation

If an object moves with a constant (low) velocity in a superfluid, it does not experience any drag. This
fact is, of course, the most fundamental property of a superfluid. However, as L. Landau realised [LLL11],
if the object moves fast enough, superfluidity can break accompanied with the emission of an excitation.
The object thus losses some energy to “pay” the cost of that excitation. Landau predicted the critical
velocity, based on very simple conservation arguments and it is given by the following expression

vc = min
p

ε(p)

p
, (2.36)

where ε(p) is the energy of an excitation having momentum p.

We note that for a non-interacting BEC, its dispersion curves is ε(p) ∼ p2, and hence vc = 0. It follows
that there is no superfluidity for non-interacting BECs. For a weakly interacting BEC, the Landau critical
velocity is equal to the speed of sound (see equation 2.14), and for superfluid helium it has a smaller value
due to the roton minimum (see figure 2.5).

The case of a weakly interacting BEC, that is in principle well described by the GP equation, it is very
interesting and well studied. The critical velocity is actually much smaller than the speed of sound, as the
excitation “emitted” by a moving object can be a quantum vortex. The boundaries of the moving object
play an important role there. The first numerical observation of vortex nucleations in GP was performed
by T. Frisch et al. [FPR92]. A visualisation of vortex nucleations, reproduced from [FPR92], is displayed
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should be relevant at length scales of the order of the size
of the vortex core, and so could affect, for instance, the
details of the release of the vortices by the solid bound-
ary, but not the frequency, or the drag law. The relevant
parameter for molecular efrects is the ratio of the vortex
core to the diameter of the disk, assumed to be small here
( |'0 in our numerical simulations).
At small velocities, the solution accommodates the

boundary conditions everywhere after some transient to
yield a stationary velocity field without dissipation, be-
cause of the d'Alembert paradox for perfect fluids.
Beyond a critical velocity, that we shall characterize
later, vortices begin to be emitted [7] more or less period-
ically from the disk, yielding an average drag on the disk,
this drag tending linearly to zero at the onset, as does the
frequency of emission of vortices. We can estimate the
drag from the energy transferred by the flow to the disk.
This energy for one period of emission of vortices is
Es,„=F(v)T,where F is the mean drag, (v) the mean
flow velocity, and T the period. The energy of the vortex
pair is E„,&,„=Iln(2a), where a is the diameter of the
disk, in the microscopic unit length used to write the
NLSE in the dimensionless form (1), and I is the quan-
tized circulation, equal to +1 or —1 with our units. The
period T diverges as the velocity at infinity tends to the
critical velocity from above. Let e=v —v, be the small
difference between the actual value of the velocity at
infinity and its value at the threshold of emission of vor-
tices (or of drag). The quantity s is chosen for measuring
the velocity at infinity in such a way that the transition to
drag occurs at a=0: There is no permanent drag for s
negative and there is such a drag for e positive. After the
emission of a vortex, its velocity field balances the main
velocity field to make it locally less than the critical value
everywhere on the disk. As this vortex is convected
downstream, however, its contribution to the velocity on
the perimeter of the disk decreases until the total velocity
there again becomes larger than the critical value,
triggering the emission of a new vortex, and so on. As
the velocity induced by a vortex decreases like the inverse
of the distance, a simple estimate shows that s=I /(v)T;
then T-1/s and F-e. At higher velocities, the emission
of vortices becomes more and more irregular with an in-
creasing average frequency and the vortices form a kind
of turbulent wake. In the far wake these vortices radiate
their potential energy into the phonon field, due to the ac-
celeration they are submitted to in their rather chaotic
motion (interaction of vortices of like sign, with the
cylinder, and so on), and all energy and momentum are
ultimately carried away at long distances by phonons.
Lund has calculated the loss of interaction energy of ac-
celerated vortices [Sl due to this radiation in a compressi-
ble fluid.
The transition to time-dependent flow can be under-

stood as follows: In a perfect incompressible flow around
a disk, the fluid velocity is the greatest at the point across

the stream velocity on the perimeter, where the fluid ve-
locity is twice that at infinity. Here the flow becomes su-
personic when the fluid velocity is only half the sound
speed at infinity. In ordinary fluids this would lead to a
shock wave. But here this is impossible, as shock waves
require dissipation in a thin layer, and there is no such
formally dissipative term in the NLSE. Instead, in the
supersonic region, vortices are generated on the perime-
ter, very near the point of maximum velocity, as seen in
Fig. 1. On a large scale a string of vortices with the same
sign may be seen as a tangential discontinuity (or shear
layer) of the fluid velocity. This tangential discontinuity
allows the matching of different domains of fluid with
different velocities, and so avoids the formation of shocks,
which normally are the discontinuities instead. All of this
can be made more rigorous by trying to find a stationary
solution of the NLSE at distances from the surface much
greater than the microscopic unit length, and with a uni-
form flow at infinity. Putting Bp/Bt =0 in (2a) we obtain
the continuity equation V (pV&) =0, and p is determined
by (2b) together with 8p/Bt =po+v /2, expressing the
frequency of the solution of (1) at infinity. Note that a
steady flow corresponds to a solution of (1) with a single
uniform frequency. Neglecting —(1/2p'~ )V (p'~ ) on
the right-hand side of (2b) because it involves higher
space derivatives that are precisely neglected in this
long-wavelength approximation, one obtains from (2b)

v (Vy) 2 v
P =Po+ =Po+
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FIG. 1. Cylinder immersed in the "fluid. "One represents the
modulus of 0' at an instant of time. The cylinder is the black
circle in the middle, and the boundary condition on its surface is
9'=0. The speed at infinity is half the speed of sound, slightly
above the onset of drag. This shows that the drag is due to the
emission of vortices on the surface of the cylinder at the point of
maximal fluid velocity. The vortices appear as white dots close
to the cylinder and are convected by the mean flow. The sound
waves seen far from the cylinder are transients, not relevant for
the onset of continuous drag.
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TABLE I. List of runs. L⊥ and L∥ are the sizes of the domain and
N⊥ and N∥ the corresponding resolutions. D is the distance between
the rods (see Appendix A for details). The diameter of the rods is a =
2ξ for all runs. Lengths are expressed in units of the healing length
ξ . The Mach number is M = u0/c = 0.8 for all runs except for a1m
and a2m with M = 0.6. For all grid runs ξ = 0.75L⊥/N⊥. For the
Taylor-Green run (tg) L⊥ = L∥ = L, N = N⊥ = N∥, and ξ = L/N .
No symmetries are enforced.

Run L⊥ L∥
L⊥
D

N⊥ N∥ Run L⊥ L∥
L⊥
D

N⊥ N∥

a1 170 683 9 128 512 b1 341 683 17 256 512
a2 170 683 5 128 512 b2 341 683 9 256 512
a3 170 683 7 128 512 b3 341 683 7 256 512
a4 170 683 3 128 512 b4 341 683 5 256 512
c1 683 683 7 512 512 tg 512 512 – 512 512

up to its final value. During this process, local dissipation is
included far from the grid to reduce the sound emitted during
the transient (see Appendix B for more details on numerics
and methods). Different grids, Mach numbers M = v0/c, and
resolutions are studied (see Table I).

Note that such a periodic configuration mimics recent grid
turbulence experiments with 4He in a ring [21], and similar
ideas have been used in 2D to study the possibility of an inverse
cascade [25]. We also study (quasi) homogenous and isotropic
turbulence generated by the Taylor-Green flow (see Fig. 5
below). This standard flow consists of a number of vortex rings
and it develops a turbulent tangle followed by a small-scale
thermalization of sound waves (due to the Galerkin projection
of GP equation). Vortices exchange momentum and energy
with the thermalized waves mimicking mutual-friction effects.

These generic properties of the GP model are also expected to
be present in the grid simulations. Note that the thermalization
and its associated effects also occur independently of the
spectral cutoff if dispersive effects are important [26,27].

III. GENERATION AND DECAY OF TURBULENCE

We first focus on simulations done using the grid. The grid
generates a turbulent wake that is displayed in Figs. 1(a)–1(d)
by the isosurface of the density. At early times vortices
are nucleated close to the grid [Figs. 1(a)–1(c), run c1],
leading later to a turbulent wake [Figs. 1(h)–1(j), run b3].
See Supplemental Material [28] for a movie showing the
vortex nucleation close to the grid. It is well known in the
framework of 2D GP that vortex dipoles are nucleated behind
a cylindrical obstacle for Mach numbers above a critical
threshold Mcrit ≈ 0.4 [29]. The equivalent in 3D are vortex
rings that rapidly reconnect and create the complex tangle
observed in Fig. 1. The process is identical to the one described
for 3He-B experiments using a grid reported in Ref. [23]. Two
stages are observed during the development of turbulence in
the wake of the grid. During the first stage, incompressible
kinetic energy is injected by nucleation of rings. To account
for this, the total vortex length is measured as L(t) =

∫
θ (0.2 −

ρ(x,t))d3 x/
∫

θ (0.2 − ρ2D(x))d2x, where θ ( ) is the Heaviside
function and ρ2D(x) is the profile of a two-dimensional vortex
given by the Padé approximation [31]. Note that L(t) is only
a rough estimate as small amplitude Kelvin waves and density
oscillations along filaments modify this volume integral. The
temporal evolution of L(t) is displayed in Fig. 2(a) for all runs.
The increase of the vortex length depends on the geometry
of the grid and on the Mach number. From Figs. 1(a)–1(g)
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FIG. 1. 3D visualizations of the density field (rendered with the software VAPOR). Red isosurfaces are at low density values corresponding
to vortices. Blue and green density clouds correspond to sound waves (density fluctuations around ρ = 1). (a–g) Zoom close to the grid at early
times t = 0.1, 0.6, 1.1, 1.6, 2.4, 3.1, and 6.4 (from left to right) for run c1. (h–j) Run b3 at t = 21, 70, 126.
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the rods (see Appendix A for details). The diameter of the rods is a =
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up to its final value. During this process, local dissipation is
included far from the grid to reduce the sound emitted during
the transient (see Appendix B for more details on numerics
and methods). Different grids, Mach numbers M = v0/c, and
resolutions are studied (see Table I).

Note that such a periodic configuration mimics recent grid
turbulence experiments with 4He in a ring [21], and similar
ideas have been used in 2D to study the possibility of an inverse
cascade [25]. We also study (quasi) homogenous and isotropic
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and it develops a turbulent tangle followed by a small-scale
thermalization of sound waves (due to the Galerkin projection
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by the isosurface of the density. At early times vortices
are nucleated close to the grid [Figs. 1(a)–1(c), run c1],
leading later to a turbulent wake [Figs. 1(h)–1(j), run b3].
See Supplemental Material [28] for a movie showing the
vortex nucleation close to the grid. It is well known in the
framework of 2D GP that vortex dipoles are nucleated behind
a cylindrical obstacle for Mach numbers above a critical
threshold Mcrit ≈ 0.4 [29]. The equivalent in 3D are vortex
rings that rapidly reconnect and create the complex tangle
observed in Fig. 1. The process is identical to the one described
for 3He-B experiments using a grid reported in Ref. [23]. Two
stages are observed during the development of turbulence in
the wake of the grid. During the first stage, incompressible
kinetic energy is injected by nucleation of rings. To account
for this, the total vortex length is measured as L(t) =
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θ (0.2 − ρ2D(x))d2x, where θ ( ) is the Heaviside
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given by the Padé approximation [31]. Note that L(t) is only
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oscillations along filaments modify this volume integral. The
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FIG. 1. 3D visualizations of the density field (rendered with the software VAPOR). Red isosurfaces are at low density values corresponding
to vortices. Blue and green density clouds correspond to sound waves (density fluctuations around ρ = 1). (a–g) Zoom close to the grid at early
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Figure 2.6: Vortex nucleation in the GP model. Left: Nucleation of a vortex dipole by a moving cylinder,
reproduced from [FPR92]. Right: Quantum vortex rings (in red) nucleated by a moving grid (in brown).
Sound waves are rendered in blueish colours. Figure reproduced from [Krs16].

in figure 2.6 (left). With a very simple argument, based on perfect fluids, they provided a good estimate of
the critical velocity. Later, this instability was further studied by C. Huepe and M. Brachet [HB00], where
they found a series of bifurcations as a function of the Mach number of the object. Vortex nucleation is a
well study problem since the early experimental works with BECs [Ram+01; Hod+01] and today, many
experiments use vortex nucleation as way of injecting vortices in superfluids (see for instance [Wal+14;
Zme+15; vSL17]).

In the GP framework, vortex nucleations can also be used to inject vortices to the system. However,
vortex nucleation is accompanied by the emission of sound waves what can easily kill the development of
turbulence if they are not purged away by some external mechanism. In figure 2.6 (left), the sound emitted
is clearly visible. The right panel of figure 2.6 shows the nucleation of quantum vortices behind a grid,
reproduced from [Krs16]. The grid generates a superfluid vortex tangle, where Kolmogorov turbulence is
observed.

Vortex nucleation is an important property of superfluids, and it has to be taken account in experi-
ments. Particles moving can interact with the vortices they nucleate, leading to very complex dynamics
[WA00; VS18]. Besides, vortices can be easily nucleated close to the walls of the containers and by ther-
mal fluctuations [Don91]. The GP model naturally contains this physics, that is absent in the models
described in the next sections.

2.2 The vortex filament model

A completely different approach that was pioneered by Schwartz [Sch85] is to consider only the dynamics
of vortex filaments. We shall first consider the case of zero temperature. We denote by L the collection
of all vortex filaments s present in the system. The vorticity field associated with the filaments is a
straightforward three-dimensional generalisation of equation (2.22) and it reads

ωs(x, t) = κ

∮

L
s′(ζ, t)δ(x− s(ξ, t))dζ, (2.37)

where s′ is the tangent of the vortex line. By inverting the equation ∇× vs = ωs using the Biot-Savart
formula, we obtain the superfluid velocity flow

vs(x, t) =
κ

4π

∮

L

s′(ζ, t)× (x− s(ζ, t))

|x− s(ζ, t)|3 dζ. (2.38)

The vortex filament (VF) model is obtained by imposing that velocity of a vortex filament segment is
given by (2.38). The vortex filament model then reads

ṡ(ζ, t) =
Γ

4π

∮ ′

L

ds(ζ ′, t)× (s(ζ, t)− s(ζ ′, t))

|s(ζ, t)− s(ζ ′, t)|3 , (2.39)
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where the prime over the integral means that the integral must be regularised introducing a vortex core
cut-off. Indeed, the integral diverges logarithmically when ζ ′ → ζ. Several methods are possible to avoid
this problem. The most common one, introduced by Schwartz [Sch85], is to remove the divergent point
of the integral and to add a local term arising from the local induced approximation (LIA). In Section
3.3.1, we provide a geometrical interpretation of this approximation. The vortex filament method thus
consists of local and non-local contributions. Schwartz quickly realised that vortex reconnections are very
important for quantum turbulence [Sch88]. Reconnections are of course not allowed in this model and
need to be added by an ad-hoc “cut and connect” method. Vortex reconnections are discussed in Chapter
4.

Most of the current numerical simulations of the VF model use a discretisation of the Biot-Savart
integral that is very coarse compared to the vortex core size in helium. This approximation is consistent
with neglecting the density profile of the vortex core and allows to address the dynamics of superfluids at
scales much larger than those typically achieved by the GP model.

The generalisation of the VF model to include finite temperature effects is straightforward. At finite
temperatures, normal fluid excitations interact with vortices and exchange energy and momentum. This
process results in mutual friction forces that couple both fluids [Don91]. Assuming an ambient normal
fluid velocity vn, the VF model describing a finite temperature superfluid is given by

vL = vsl + αs′ × (vn − vsl)− α′s′ × [s′ × (vn − vsl)], (2.40)

where vsl is the local superfluid velocity that is the sum of the ambient superfluid velocity us and the
self-induced vortex velocity given by equation (2.39). The constants α, α′ depend on the temperature and
they are proportional to the normal density ρn [BD77]. Note that this model assumes that normal fluid
velocity field is given, and ignores the action of the filaments on it.

2.3 FOUCAULT : A self-consistent model of quantum turbulence in
superfluid Helium

As it was mentioned in the previous section, numerical simulations of the VF model neglect the action
of the filaments on the normal fluid. Such approximation can be valid in the case where we consider
a very viscous normal fluid, or in other words, the Kolmogorov scale associated with the normal fluid
is much larger than the size of any of the vortices. If such is the case, any disturbance caused by the
vortices is immediately damped by viscosity. In many situations, the Kolmogorov scale of the normal
fluid can be smaller than the intervortex distance, and the action of the filaments on the normal fluid
cannot be ignored. We can imagine that there exist situations where normal fluid turbulence is induced
by superfluid vortex tangles and mutual friction. An example is counterflow induced turbulence [Don91],
where for large values of counterflow, the normal fluid passes from a laminar to a turbulent steady state.
This transition is known as the T1-T2 transition [MT83].

We have recently introduced FOUCAULT: Fully cOUpled loCAl model of sUperfLuid Turbulence that
aims at providing a self-consistent description of superfluid helium [Gal+20]. The basic idea is to model
the normal fluid with the Navier-Stokes equations, and to couple it with the VF model. In this new
model, we generalised previous studies [KBS00; Ido+00] and provide a detailed study both, numerically
and theoretically, to validate the method.
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CHAPTER 2. MODELS OF SUPERFLUID TURBULENCE 2.3. The FOUCAULT model

For the sake of completeness, we report the full model here

∂vn
∂t

+ (vn · ∇) vn = −∇
(
p

ρn

)
+ νn∇2vn +

1

ρn

∮

L
δ(x− s)fns(s)dξ +

1

ρn
Fext (2.41)

∇ · vn = 0 (2.42)

1

ρn
fns(s) = − 1

ρn
fsn(s) = −Γs′ × (ṡ− vn) −Ds′ ×

[
s′ × (ṡ− vn)

]
(2.43)

ṡ = vs(s) + β s′ × (vn(s)− vs(s)) + β′ s′ ×
[
s′ × (vn(s)− vs(s))

]
(2.44)

vs(x, t) =
Γ

4π

∮

L

s′(ξ, t)× (x− s(ξ, t))

|x− s(ξ, t)|3 dξ, (2.45)

where νn and ρn are the kinematic viscosity and density of the normal fluid, respectively. The mutual
friction coefficient β, β′ and D are computed from a creeping flow analysis. We refer the reader to [Gal+20]
for details. The FOUCAULT model is an important improvement of the VF model.

This new model opens the avenue for many new investigations. As an example, figure 2.7 displays
a visualisation of a superfluid vortex ring that creates two other normal fluid rings next to it. Such a

Figure 2.7: A superfluid vortex ring moving in the normal fluid initially at rest. Half of the superfluid
vortex ring is visible as a green line intersecting the xy plane; the superfluid vortex ring moves to the right
along the x direction. The normal fluid enstrophy is displayed by the orange-reddish-black rendering: two
concentric normal fluid vortex rings are visible, slightly ahead and slightly behind the superfluid vortex
ring, travelling in the same direction. The normal fluid velocity magnitude is also displayed using a
black-blue-white rendering on the xy plane. Figure taken from [Gal+20].

phenomenon was first observed by Kivotides et al. [KBS00], and we are now investigating its consequences
for quantum turbulence.

Because no model is perfect, FOUCAULT possesses several inconveniences. It is based on the VF
model, so it lacks the physics of small scales (unlike the GP model). For instance, vortex reconnections
need also to be added in an ad-hoc manner. From a numerical point of view, the number of vortex
points Nv describing the filaments might become very large. Although FOUCAULT solves the Biot-Svart
integrals by a tree-algorithm method that reduces the computational cost from N2

v to Nv logNv, the cost
of the VF part of FOUCAULT might overwhelm the cost of the Navier–Stokes integration. This situation
happens for instance with a turbulent normal fluid if we one is interested in the steady state, in which
the total vortex length reaches equilibrium. This limitation imposes a drastic constraint on the size of
the system and thus on the Reynolds numbers than can be in practice achieved.
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2.4 Hall-Vinen-Bekarevich-Khalatnikov model

If one intends to model large scales of turbulent superfluids, a direct approach by the GP or VF-based
models (including FOCAULT) can become easily unfeasible. In particular, if one is interested in scales
that are much larger than the mean distance between quantum vortices, a coarse-grained approach might
be more appropriate. In such approximation, we ignore the quantum nature of vortices, and the superfluid
is described by continuous coarse-grained field.

For the sake of simplicity, we consider the dynamics of a constant temperature, incompressible super-
fluid helium flow at finite temperature. In the simplest case of the Hall-Vinen-Bekarevich-Khalatnikov
(HVBK) model [Don91], the dynamics of the superfluid is described by the coarse-grained superfluid
velocity field vs, which interacts with the viscous normal component vn via two coupled Navier-Stokes
equations,

∂vn

∂t
+ vn · ∇vn = − 1

ρn
∇pn + νn∇2vn −

ρs

ρn
fns + φn, (2.46)

∂vs

∂t
+ vs · ∇vs = − 1

ρs
∇ps + νs∇2vs + fns + φs, (2.47)

∇ · vn = ∇ · vs = 0, fns = αΩ0(vn − vs). (2.48)

The total density of the fluid is ρ = ρn +ρs. The normal fluid viscosity νn is related to the helium dynamic
viscosity µ by νn = µ/ρn. The two fluids are coupled through the mutual friction force fns that originates
from the scattering of the excitations constituting the normal fluid component on quantum vortices. It
is proportional to the relative velocity of the fluids and to a characteristic time scale. In general, this
characteristic time scale is proportional to the temperature dependent mutual friction coefficients and
to a characteristic superfluid vorticity Ω0 [Bif+19]. The frequency Ω0 is in principle proportional to the
vortex line density and to the quantum of circulation. Both fluid can be stirred by independent forces
φs and φn. In equation (2.47), the effective superfluid viscosity νs models the small-scale physics not
resolved by the HVBK equations, including for instance the energy dissipation due to quantum vortex
reconnections and Kelvin wave excitations. The values of the effective viscosity have been determined
in references [VN02; Bou+15]. In the original model, the mutual friction force coupling the fluids has a
more complex expression (see [Don91]), that simplifies to (2.46-2.48) under some assumptions.

This model has been largely used to study co-flow turbulence [RBL09; Bif+18], counterflow turbulence
[Bif+19; PK20a] and particle concentrations in quantum turbulence [PK20b]. It has the advantage that
standard numerical tools of computational fluid dynamics can be used to solve it, but requires, as in
classical turbulence, the use of HPC clusters. From the physical point of view, the model fails at low
temperatures, and it assumes that the Kolmogorov scales of the fluid components (the smallest active
scales of the flow) are much larger than the mean inter-vortex distance.

2.5 Which model should we use for studying quantum turbulence and
superfluid vortex dynamics?

There is not a single or straightforward question to this answer. Given the enormous scale separation
involved in turbulent superfluids, and the myriad of physical phenomena present in the system, one needs
to make a choice depending on the physical problem to be studied. For instance, if one is interested
in quantum vortex reconnections, the HVBK model may not provide any valuable information. For
such a study, one might want to use GP as a first principle model, but then tracking of vortex lines is
required. If one chooses the vortex filament method instead, direct information on the reconnecting lines
is provided by the model. However, the reconnection process needs to be added in an ad-hoc manner.
To study vortex reconnections at finite temperatures or to investigate if the normal fluid may affect the
process, FOUCAULT should be the proper choice. Similarly, to study the T1-T2 counterflow induced
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Figure 2.8: Different models of quantum turbulence and superfluid vortex dynamics. The axis represent
temperatures and scale ranges where they could be, in practice, used.

transition [MT83], FOUCAULT is certainly the most realistic model. If one is interested in turbulence,
for GP, one needs to resolve scales from the vortex core size to scales much larger than the inter-vortex
distance. In the case of helium, that will imply to consider fields with at least (109)3 degrees of freedom,
what is not feasible, even in the most massive computers available today. So then, an HVBK approach
might be better suited if one forgets about describing individual vortices. If ones need to study thermal
fluctuations, among the models mentioned earlier, only the projected GP might provide an answer. If
thermal fluctuations are not of interest, but finite temperature modelling is needed, then the VF method
or HVBK might be better. The lack of a unique model is a consequence of the richness of superfluid
turbulence. Figure 2.8 shows, in a very schematic manner, some of the most used models for studying
quantum turbulence and superfluid vortex dynamics, and where they apply and how they intersect. Each
model is coloured in a gradient scale, where the white zones denote the limits of the model, either by
physical applicability or numerical feasibility.
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Chapter 3

Kelvin waves

This chapter presents a review on Kelvin waves, starting from the derivation by Sir William Thomson

of his famous dispersion relation for vortex waves, to a discussion on the wave turbulence Kelvin wave

cascade. Two works are included at the end of the chapter.

Vortices are one of the most important structures in fluid dynamics. Roughly speaking, they are
highly rotating zones of a fluid that can be strongly confined in space. Typical examples are smoke rings,
the fluid structures appearing in the wake of an airfoil and tornadoes. Such structures are never rigid,
they can deform and vibrate. Sir William Thomson, also known as Lord Kelvin, pioneered the study
of vortex filament vibrations or waves propagating along vortices [Tho80b]. Quoting his 1880’s paper,
Kelvin introduced the problem of Vibrations of Columnar Vortex as.

This is a case of fluid-motion, in which the stream-lines are approximately circles, with their
centres in one line (the axis of the vortex) and the velocities approximately constant and
approximately equal at equal distances from the axis. As a preliminary to treating it, it is
convenient to express the equations of motion of a homogeneous incompressible inviscid fluid
(the description of fluid to which the present investigation is confined) in terms of “columnar
coordinates,” r, θ, z–that is, coordinates such that r cos θ = x, r sin θ = y.
. . .
Now let the motion be approximately in circles round Oz, with velocity everywhere approxi-
mately equal to T , a function of r . . .

Sir William Thomson, 1880.

The main result of the work of Kelvin was the derivation of the formula today known as the Kelvin
wave dispersion relation

ω(k) = − Γ

8π
k2 (log (1/a0k)− b) , for ka0 � 1, (3.1)

where ω(k) is the frequency of a Kelvin wave of wave vector k. Here, Γ is the circulation of the vortex
(assumed to be constant), a0 is the vortex core size and b is a constant that depends on the model used
for the vortex core.

Although Kelvin waves can be observed in vortex filaments in classical fluids, it is the quantum
turbulence community who has devoted a big effort to their study. As we have seen in Chapter 2,
quantum vortices are topological defects and they are topological protected objects. In superfluid helium,
Kelvin waves were visualised in 2013 by using micrometer sized hydrogen particles [Fon+14]. They are
very important in quantum turbulence as they appear to be of one the main mechanisms to carry energy
towards the smallest scales of a superfluid. They are easily excited by vortex reconnections [Kiv+01].
Energy of Kelvin waves is transferred along scales thanks to non-linear . When the amplitude of waves
is small, the theory of weak wave turbulence can be used to predict the scaling of the energy spectrum.
There was an agitated controversy on the theoretical derivation of this prediction that has to wait for
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accurate numerical simulations. We will discuss the Kelvin wave turbulent cascade, later in this chapter.
At the beginning of this chapter, we will focus on the description of linear Kelvin waves.

Before we proceed, one remark is in order to avoid confusions. In the geophysics or atmospheric
communities, it is often talked about Kelvin waves or modes [Tho80a]. Such waves are not at all related
with the one discussed in this chapter. Kelvin modes in that context arise as balance between Coriolis
force and some kind of waveguide. In particular, unlike Kelvin (vortex filament) waves, they are not
dispersive.

3.1 Derivation of the Kelvin wave dispersion relation

In this section we reproduce the original work of Kelvin [Tho80b], using a modern notation. We shall
then express the velocity field using cylindrical coordinates v(r, θ, z) = vrr̂ + vθθ̂ + vz ẑ. We consider an
ideal incompressible fluid of constant density ρ0 satisfying the Euler equations:

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z
− u2

θ

r
= − 1

ρ0

∂p

∂r
(3.2)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uθur
r

= − 1

ρ0r

∂p

∂θ
(3.3)

∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= − 1

ρ0

∂p

∂z
(3.4)

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0. (3.5)

We look for a steady solution containing a straight vortex aligned with the z-axis. Such a vortex can be
simply defined as

v(r, θ, z) =
α(r)

r
θ̂, and p(r, θ, z) = p0(r) = ρ0

∫ r

a0

α(s)2

s3
ds. (3.6)

The profile of the vortex core is implicitly defined by α(r) and we denote by a0 it core size, that is
implicitly defined by α(r). Note that

Γ(r) =

∮

C
v(r, θ, z) · d` = 2πα(r), (3.7)

with C a close path surrounding the vortex, is the circulation around the vortex 1.

A Kelvin wave of frequency ω, wave vector k and azimuthal wave number n, is a perturbation of the
previous solution that can be written as

ur(r, θ, z, t) = εvr(r) cos kz sin(ωt− nθ) (3.8)

uθ(r, θ, z, t) =
α(r)

r
+ εvθ(r) cos kz cos(ωt− nθ) (3.9)

uz(r, θ, z, t) = εvz(r) sin kz sin(ωt− nθ) (3.10)

p(r, θ, z, t) = p0(r) + ερ0 p1(r) cos kz cos(ωt− nθ), (3.11)

where ε is assumed to be small. Linearising for ε� 1 leads to the following equation for the perturbations

vr(r) + nvθ(r) = −rkvz − rv′r(r) (3.12)

1For the sake of simplicity we assume that C is a circular circuit, centred in the vortex.
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The velocity fields vr, vθ and the pressure p1(r) can be expressed as a function of vz:

p1(r) = vz(r)
ω

k

(
1− nα

ωr2

)
(3.13)

vr(r) =

(
1− nα

ωr2

)

Λ(r)k

[
−
(

1− nα

ωr2

)
v′z +

n

ωr2
α′vz

]
(3.14)

vθ(r) =
1

Λ(r)k

[
−
(

1− nα

ωr2

) α′
ωr
v′z +

(
Λ(r) +

α′2

ω2r2

)
n

r
vz

]
, (3.15)

where Λ(r) =
(

1− nα(r)
ωr2

)2
− 1

ω2r3 2αα′. Replacing (3.14-3.15) in (3.12) leads to a linear equation for

vz only. Equations (3.12)-(3.15) supplied with some suitable boundary condition leads the Kelvin wave
dispersion relation ω(k).

We will consider now two particular cases of the vortex profile.

3.1.1 Case of a core with solid rotation

We consider here a vortex with a core of size a0, with the fluid performing a solid rotation inside and
being irrotational outside. In this case the vortex profile is given by

α(r) =
Γ

2π

{
r2

a2
0

if r ≤ a0

1 if r ≥ a0.
(3.16)

With this profile, the velocity vz satisfies the equations

v′′z +
1

r
v′z −

(
k2

[
(1− 4

(n− ω̃)2)

]
+
n2

r2

)
= 0 if r ≤ a0 (3.17)

v′′z +
1

r
v′z −

(
k2 +

n2

r2

)
= 0 if r ≥ a0. (3.18)

where ω̃ = ω/(Γ/2πa2
0). The solution of the previous equation is simply given as a linear combination of

the modified Bessel functions In and Kn. Imposing that vz is finite at r = 0 and r = ∞, together with
the continuity of vr and vz at r = a0, leads to a transcendental equation relating ω and k. It reads





2n
2+n−ω̃ + |k|Kn−1(|k|a0)

Kn(|k|a0) +
2n 0F1

[
n; 1

4
a2

0k
2
(

1− 4
(n−ω̃)2

)]
(

1− 4
(n−ω̃)2

)
0F1

[
n+1; 1

4
a2

0k
2
(

1− 4
(n−ω̃)2

)] = 0 if n 6= 0

|k|K1(|k|a0)
K0(|k|a0) +

a2
0k

2
0F1

[
2; 1

4
a2

0k
2
(

1− 4
ω̃2

)]
2I0
(
a0k
√

1− 4
ω̃2

) = 0 if n = 0,

(3.19)

where 0F1[ν; z] is the confluent hypergeometric function. The dispersion relation for different values of n
is plotted in figure 3.1.a and it will be commented later. For n = 1, in the limit of a0k � 1, the dispersion
relation simplifies to

ω(k) = − Γ

8π
k2

(
log

1

a0|k|
+ b

)
, with b = −γE + log 2 +

1

4
= 0.366 . . . (3.20)

and γE = 0.577216 . . . the Euler constant. Note that a Kelvin wave oscillates in the opposite direction
with respect to the flow around the vortex.
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3.1.2 Case of a hollow vortex core

In this case, the flow is irrotational outside the vortex core , i.e. α(r) = Γ
2π , but “hollow” inside. The

vortex core is a free boundary initially a cylinder of radius a0.
The velocity vz satisfies the equation (3.18) everywhere. By imposing that there is no radial velocity

at infinite, the solution simply reads
vz(r) = CKn(|k|r). (3.21)

The boundary condition determining the dispersion relation is that the total pressure (3.11) must vanish
at the boundary of the disturbed cylinder. In the present case, the total pressure simply reads

p(r, θ, z, t) = ρ0

(
Γ

2π

)2 r2 − a2
0

2a2
0r

2
+ ερ0 uz(r)

ω

k

(
1− nΓ

2πωr2

)
cos kz cos(ωt− nθ), (3.22)

where we have used (3.6) and (3.13).
The disturbed surface is defined by following fluid particles initially located at the cylinder boundary.

Such trajectories satisfy ṙp = ur and θ̇p = uθ/rp, where the fluid velocities are defined in (3.8) and (3.9)
respectively. At the leading order, they are given by

θp =

∫
α(rp)

r2
p

dt = θ0
p +

Γ

2πa2
0

t, (3.23)

rp =

∫
εvr(a0) cos kz sin(ωt− nθp)dt = a0 −

εvr(a0) cos kz cos(ωt− nθp)

ω − n Γ
2πa2

0

. (3.24)

Notting that r2−a2
0 ≈ 2a0(r−a0) close to the cylinder, using (3.22) and (3.24) the condition p(rp, θp, z, t) =

0 implies

−
(

Γ

2π

)2 vr(a0)

a3
0(ω − n Γ

2πa2
0
)

+ uz(a0)
ω

k

(
1− nΓ

2πωa2
0

)
= 0 (3.25)

or simply,
uz(a0)(ω̃ − n)2 − ka0ur(a0) = 0, (3.26)

where ω̃ was defined above for the previous case. By noting from equation (3.14) that ur(r) = −u′z(r)/k
and replacing (3.21), we obtain an equation defining the dispersion relation. Solving for ω gives the hollow
vortex Kelvin wave dispersion relation 2

ω±n (k) =
Γ

2πa2
0

(
n±

√
n+

a0|k|Kn−1(a0|k|)
Kn(a0|k|)

)
(3.27)

The dispersion relation (3.27) is much simpler than the one of the previous case and it is the one often
found in the literature. The case n = 0, is given by

ω±0 (k) = ± Γ

2πa2
0

√
a0|k|K1(a0|k|)
K0(a0|k|)

. (3.28)

For n = 1, in the limit of small wave numbers it reduces to

ω−(k) = − Γ

8π
k2

(
log

1

a0|k|
+ b

)
, with b = log 2− γE (3.29)

ω+(k) =
Γ

8πa2
0

. (3.30)

2We have use the identity nKn(z) + zKn−1(z) = −zK′n(z).
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We observe that the only difference between (3.20) and (3.29) is the core constant b. We also note
that the positive branch takes values much larger than the negative one for k → 0. As we will see in
Chapter 5, this frequency is related to the Magnus force and the mass inside the core.

The previous results were derived by Kelvin in [Tho80b] in 1880. Much later, in 2003 P.H. Roberts
generalised Kelvin results to the case of a compressible classical fluid [Rob03a].

3.1.3 Discussion on vortex wave excitations

We start this discussion by plotting the dispersion relation of vortex excitation for both core models. The
dispersion relations are displayed in figure 3.1. We clearly note from the figure that there are several

-2 -1 0 1 2
-4

-3

-2

-1

0

1

2

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.1: Wave excitations of a vortex filament in an incompressible fluid. a) A vortex with solid
rotating fluid in its core (3.19). b) The hollow core vortex dispersion relation (3.27). c) A zoom of b).
The asymptotic predictions for n = 1 are displayed in dashed lines. We use the convention that Γ < 0,
so the the Kelvin wave dispersion curve lays on the upper plane.

branches of vortex excitations. The waves having n = 0 are known as varicose waves as they do not
have any angular dependence. Most interesting, it is the branch with n = 1. In particular the branch
having values of opposite sign respect to Γ. The literature usually refers as Kelvin waves to this particular
branch. We will refer to in the following as Kelvin waves to the negative mode with n = 1 and it will be
simply denoted by ω.

3.2 Vortex excitations in the Gross-Pitaevskii model

Vortices in superfluids are in some sense ideal vortices, they are topological defects and their circulation
around them is quantised so it is constant over time. They are actually nodal lines of the complex order
parameter describing the system. In Bose-Einstein condensates, their core has a finite and well determined
size that is of the order of the healing length. Kelvin waves in the context of superfluids were first studied
by L.P. Pitaevskii by using the Gross-Piteavskii (GP) equation [Pit61].

Vortex waves in GP were later studied in much detail by P.H. Roberts [Rob03b], generalising L.P
Pitaevskii work. In his work, P.H. Roberts perturbs a straight quantum vortex in order to determine the
vortex excitations of a quantum vortex. He was able to find analytically the Kelvin dispersion in the limit
k → 0. As in the case of an incompressible fluid, it can be expressed as

ω(k) = − Γ

8π
k2

(
log

1

ξ|k| + b

)
, with b = log 2− γE + CR (3.31)

CR = lim
L→∞

∫ L

0

{(
dR

dr

)2

+

(
R

r

)2
}
rdr − logL = −0.119118 . . . (3.32)
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where ξ is the healing length and R(r) is the density profile of a quantum vortex (see Section 2.1.3,
equation (2.23)). The constant CR was evaluated numerically in his work.

Like in the case of compressible fluids [Rob03a], probably inspired by quantum mechanics, Roberts
used the concept of bound and free (Kelvin wave) states. In his notation, the perturbation of the straight
vortex wave function has a dependence given by e−iωt±µr, where ω and µ are in general complex numbers
and r is the radial distance to the straight vortex. For a bound state the amplitude of the wavefunction
perturbation decreases with r. In this case, the vortex wave travels along the vortex axis without loss
of energy. On the contrary, for a free state, there are density waves escaping to infinity. Such waves are
waves radiated by the vortices. Roberts found that in general vortex excitations are free for all k, except
for the cases n = 1 and n = 2 that are a bit special.

The case n = 1 is the most interesting one. It was found that this mode is bounded for all k, with ω
always being a real number. As a consequence, the n = 1 mode does not radiate energy and it is thus
the most likely to be observed. The numerical solution found by Roberts is displayed in figure 3.2.a. The
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Figure 3.2: Wave excitations of a vortex filament in a Gross-Pitaevskii quantum vortex. a) Dispersion
relation of GP vortex waves for the n = 1 and n = 2 modes. The imaginary part of the n = 2 has
been amplified by a factor 20. Data extracted form figure 1 of reference [Rob03a]. b) Dispersion relation
computed numerically with the vortex filament tracking method used in [Krs12]. We clearly observe
the effect of discreetness. The figure also displays a fit that reproduces well both, small and large k
asymptotics. In this figure ξ is the healing length and τ = ξ/c a characteristic time scale. Figure
reproduced from [GKN20].

case n = 2 was found to be bounded only for kξ > 0.87 . . .. For kξ < 0.87, the n = 2 mode frequency has
a small imaginary part, but the vortex solution remains stable. The real and imaginary part of the n = 2
frequency are also displayed in figure 3.2.a. Roberts did not find any indication that a vortex solution
could be unstable for any mode or wave vector.

Finally, also mentioned by Roberts, in the large k limit, the vortex wave dispersion relation tends
to the free particle one −Γk2/4π. In reference [GKN20], we introduced a fit based on the two known
asymptotic behaviours that turned out be useful for simulation and theory. This fit reads

Ωfit
v (k) = ΩKW(k)

(
1 + ε 1

2
(a0|k|)

1
2 + ε1(a0|k|) +

1

2
(a0|k|)

3
2

)
, (3.33)

where ΩKW(k) is the hollow vortex core dispersion relation 3.27 with a0 = 1.1265ξ determined in order to
match Roberts result (3.31). The dimensionless parameters ε 1

2
= −0.20 and ε1 = 0.64 were obtained by

measuring dispersion relation in GP numerical simulations and a vortex tracking algorithm (see Appendix
A.1). Ωfit

v (k) is also displayed in 3.2.b.
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3.3 Non-linear Kelvin wave dynamics

The aim of this section is to provide an introduction to the dynamics of vortex waves, including a short
description on the wave turbulence Kelvin wave cascade. We start by describing the basic non-linear
models of vortex dynamics.

3.3.1 Local Induced Approximation

The so-called Local Induced Approximation (LIA) is perhaps the simplest description of the dynamics of
a vortex line. As its names suggest, it is based on a local approximation that was introduced by Da Rios
in 1906 [Da 06].

Let us start by recalling that the translational velocity of a vortex ring of radius R and circulation Γ
is simply [Don91]

vring =
Γ

2πR
(log(R/a0)− d), (3.34)

where d is some core dependent constant. We parametrise the vortex line as s(ζ), where ζ is the natural
parametrisation.

b(⇣, t) =
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Figure 3.3: Sketch of the local induced
approximation model LIA. The vortex is
displayed in red. The blue arrows indicate
orientation of the velocity of the flow. The
red and brown arrow denote the vorticity
of the filament and the the vortex ring re-
spectively. Figure courtesy of U. Giuriato,
adapted from his Ph.D. thesis [Giu20].

The LIA model assumes that each point of the vortex line
moves with the velocity of a vortex ring tangent to that point
(respecting its vorticity orientation) and of radius equal to the
radius of curvature of that point. This is clearly sketched in
figure 3.3. The unit binormal vector b̂ indicates the direction
in which a vortex point will move. Note that it is in the
opposite direction respect to the flow around the vortex. The
LIA model, is then simply given by

ṡ =
ΓΛ

4πR
b̂ =

ΓΛ

4π
s′ × s′′, (3.35)

where the dot and primes denote derivatives respect to time
and ζ respectively. The pre-factor is Λ = logR0/a0 where R0

is the characteristic or mean radius, that is usually assumed
to be constant. Note that the LIA model conserves the total
vortex length

L =

∫ ∣∣∣∣
∂s

∂ζ

∣∣∣∣dζ. (3.36)

In the case of an almost straight vortex aligned along the z
axis, the filament can be parametrised using cartesian coordi-
nates s = (X(z), Y (z), z). Denoting by s(z) = X(z) + iY (z),
and assuming small deformations (|s′| � 1), the LIA equation
becomes

iΓṡ =
δHLIA

δs∗
= −Γ2Λ

4π

∂2s

∂z2
, with HLIA =

Γ2Λ

4π

∫
|∂s
∂z
|2dz.

(3.37)
The Hamiltonian structure of the LIA model is apparent. Its
Hamiltonian is actually an energy per unit of density. The

energy of Kelvin waves is given by EKW = ρ0HLIA. The term ρ0Γ2Λ/4π is called the vortex line tension
as it relates the energy and the total length of the vortex.

Note that the LIA model trivially leads to the LIA Kelvin wave dispersion relation

ωLIA(k) = −ΓΛ

4π
k2, (3.38)

that misses the logarithmic correction in the dispersion relations discussed in the previous sections.
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3.3.2 Non-local model for an almost straight vortex

As it was discussed in Chapter 2.2, the full description of the vortex filament dynamics is given by
replacing the LIA vortex velocity by the full Biot-Savart integral. We recall the model here

ṡ(ζ) =
Γ

4π

∮ ′ ds(ζ ′)× (s(ζ)− s(ζ ′))

|s(ζ)− s(ζ ′)|3 , (3.39)

where the integral extends over all the vortices and the prime means that the integral must to be regu-
larised introducing a vortex core cut-off.

As one could expect, there is a much simpler form in the case of an almost straight vortex. Using a
cartesian parametrisation, as in the previous section, it was shown by Sonin [Son87] and Svistunov [Svi95]
that the vortex filament method can be reduced to the following non-local Hamiltonian equation

iΓṡ(z) =
δHNL

δs∗(z)
, HNL =

Γ2

4π

∫
1 +Re[s′∗(z1)s′(z2)]√

(z1 − z2)2 + |s(z1)− s(z2)|2
dz1dz2. (3.40)

Assuming that waves have a period L, the vortex disturbances can be written as s(z) = Γ−1/2
∑

k ak(t)e
ikz.

In these new variables, the equations for the vortex displacement becomes

i
dak
dt

=
∂H
∂a∗k

, with H[a, a∗] =
1

L
H[z, z∗]. (3.41)

Note that ak does not have units of length. Furthermore, if the amplitudes of waves are small, the new
Hamiltonian can be expressed perturbatively as

H =
∑

k

ωk|ak|2 +H4 +H6 + . . . , (3.42)

where Hn is of order n on the wave amplitude and it contains the interaction of n waves. An expression
for those high order terms can be found for instance in [LN10; Bou+11; Lau+10]. The dispersion relation
is thus given by ωk and it is found to be

ωNL(k) = ωk = − Γ

4π
k2(log (k`)− Λ), (3.43)

where here Λ = log (`/a0). The length ` is an IR cut-off that here represents the mean inter-vortex
distance at which the description of Kelvin wave propagating in isolated vortices breaks down. Note that,
if the logarithmic correction is neglected, H2 reduces to the LIA Hamiltonian (3.37). As H2 is quadratic,
waves with different k do not interact, therefore energy can not be redistributed among different modes.
High order terms are necessary to transfer energy along scales. Such energy exchange is described by the
theory of wave turbulence.

3.3.3 Theoretical description of the Kelvin wave cascade

A very brief description of the weak wave turbulence theory

In this section we intend to provide a quick overview of the wave turbulence theory. Only the final results
of the theory will be presented in order to give some elements to understand the Kelvin wave cascade.
The interested reader is directed for instance to the books [ZLF12; Naz11], to see the derivation and
applications of the theory.

As in classical turbulence, where energy is transferred along scales in a cascade process thanks to
the non-linear interaction of “eddies” [Fri95], non-linear waves interact and can transfer energy or other
invariants with a constant flux. When the scales of energy injection and dissipation are well separated,
an out-of-equilibrium state, known as wave turbulence emerges. Such cascade process is depicted in
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Figure 3.4: Sketch of wave turbulence cascades. a) Waves of large wavelengths interact and excite waves
at smaller wavelengths and those repeat the process until energy is dissipated. The inverse cascade process
can take place for wave action. b) Different kinds of wave are depicted by arrows with obvious notation
: 2→ 1, 3→ 1, 2→ 2 and 3→ 3.

figure 3.4.a, where a direct energy cascade and/or an inverse wave-action cascade takes place. The wave-
action is an extra invariant of some non-linear wave systems, such as the free particle excitations of the
Gross-Piteavskii equation (see Section 2.1.2).

For sake of simplicity, we will consider here a non-linear wave system with a cubic non-linearity. In
general, after performing a Fourier transform, and eventually of some change of variables, such system
can be rewritten as

dask
dt

= −isωkask + ε2
∑

s1,s2,s3

∫
Ls,s1,s2,s3k,k1,k2,k3

δ(k + s1k1 + s2k2 + s3k3)as1k1
as2k2

as3k3
dk1dk2dk3, (3.44)

where s, s1, s2, s3 = ±1 and we use the notation a+
k = ak and a−k = a∗k. The term Ls,s1,s2,s3k,k1,k2,k3

is the
interaction coefficient and is usually assumed to have some scaling properties with k. We have also
implicitly assumed that waves amplitudes have been rescaled so ak is of order one and ε is a small
parameter.

The theory of weak wave turbulence takes advantage of the small parameter ε to develop a closed
model that can be treated analytically. Thanks to this small parameter, a large time scale separation
between the time associated to waves and the one related to the non-linear terms is ensured. This allow
for a controlled multi-time expansion [NR11]. The main object of study in the theory is the particle
number spectrum defined as

nk =
1

V
〈|ak|2〉, (3.45)

where V is the volume of the system and average is performed over different kinds of fluctuations (e.g.
realisations of the initial conditions, forcing, etc.).

Summarised in one sentence, the theory of weak wave turbulence starts from nk, takes its time
derivative, use equation (3.44) several times, then take some very delicate limits and finally succeed to
obtain a closed equation for nk. This equation is called the kinetic wave equation and can be generically
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written as

dnk
dt

= ε4
∑

s1s2s3=±1

∫
|J1,s1,s2,s3

kk1k2k3
|2nk1nk2nk3nk ×

(
1

nk
− s1

nk1

− s2

nk2

− s3

nk3

)
δ(k1 + k2 + k3 − k)

×δ(s1ωk1 + s2ωk2 + s3ωk3 − ωk)dk1dk2dk3. (3.46)

The term |J1,s1,s2,s3
kk1k2k3

|2 can be seen as a collisional kernel and expressed in terms of the functions Ls,s1,s2,s3k,k1,k2,k3

defined in (3.44). Depending on the problem, it can vanish for different combinations of s1, s2 and s3.
Although the kinetic equation (3.46) seems to be very complex, it has the advantage to posses some simple
analytical solutions.

The simplest steady solution is the Raleigh-Jeans spectrum that corresponds to a thermal solution
where, by definition, there is no flux. It simply reads

nRJ
k =

T

ωk
. (3.47)

Replacing nRJ
k in (3.46) and using the δ-function on frequencies, one notes that the integrand vanishes

exactly.
A less trivial steady solution corresponds to the one having a constant energy flux P . It is called the

Kolmogorov-Zakharov spectrum and is found to be of the form

nKZ
k = CKZP

1/3k−x. (3.48)

The theory predicts the exponent 1/3 on the energy flux and the value of the exponent x that depends on
the scaling of the dispersion relation, the collisional kernel and the dimension of the space. Furthermore,
the theory also predicts the numerical value of the Kolmogorov-Zakharov constant CKZ, although it is
usually difficult to compute it.

In the context of wave turbulence, the kind of non-linear interaction we just described is said to be 4-
waves, as 4 wave vectors are involved. In a wave system with a quadratic non-linearity, like acoustic waves
in fluids or large scale Bogoliubov waves, the wave interaction is called 3-waves and so on for a general
non-linearity of order N − 1. For N -wave , the Kolmogorov-Zakharov spectrum scales with the flux as
P 1/(N−1). Figure 3.4.b depicts different types of 3-, 4- and 6-wave . Furthermore, a N -wave interaction
process is classified depending on its particular type of interaction determined by the coefficients si = ±
in the kinetic equation. For instance, in the case of 4-wave , when s1 = s2 = s3 = 1 the interaction is
called 3→ 1. The case when s1 = −1 and s2 = s3 = 1, it is called 2→ 2 and it is particularly interesting.
In this case, a new invariant appears 3:

N =

∫
nkdk. (3.49)

This new invariant it is called the wave wave-action or, in analogy with quantum mechanics, the total
number of particles. It is not necessarily a conserved quantity of the initial partial differential equation.
Associated to this invariant there is a new cascade with a constant wave-action/particle flux Q

nQk = CQQ
1/3k−y. (3.50)

In general, for N -wave process, of the kind X → X conserve wave-action. Note that a chemical potential
can be included in the Raleigh-Jeans spectrum nRJ

k = T/(ωk − µ).
Finally, the energy spectrum is simply obtained multiplying by ωk and summing over the angles

Ek =

∫
ωknkδ(|k| − k)dk, (3.51)

such that the total energy at the leading order is simply given by
∫∞

0 Ekdk.

3This can be directly checked by permuting wave-vectors.
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Kozik-Svistunov and L’Vov-Nazarenko predictions

When looking at the KW problem, one is naturally tempted to apply the theory of wave turbulence to
the equation (3.40). Before we proceed, some remarks are in order concerning the dimensions of energy,
wave action and fluxes. Note that starting point to apply the weak wave turbulence to Kelvin waves, is
the Hamiltonian written in its canonical form 3.41. The amplitude Ak of a Kelvin wave with given wave
number k relates to the particle number spectrum as

nk =
L

2π
〈|ak|2〉 =

ΓL

2π
〈|Ak|2〉, (3.52)

where we recall that L is the periodicity of the straight vortex. Its dimensions is [nk] = Length5/T ime.
In addition, the Hamiltonian H is an energy per unit of density ρ0 and length L. It follows that the total
energy of the Kelvin waves is given by

EKW = ρ0L

∫ ∞

k0

ωknkdk = ρ0L

∫ ∞

k0

EKW(k)dk, (3.53)

where k0 = 2π/L. Note that [EKW] = Mass×Length2/T ime2 and [EKW(k)] = Length5/T ime2. Finally,
as in the theory of wave turbulence the energy is expressed as

∫
ωknkdk, the energy flux has dimensions

[P ] = Length4/T ime3. The previous dimensional considerations are not important in the following and
we will refer indistinguishably to nk as the amplitude or the number KW spectrum.

The application of the theory of weak wave turbulence to describe Kelvin wave interations was in
fact the origin of an agitated debate concerning the prediction of the energy spectrum. Two independent
groups leaded by Kozik & Svitsunov [KS04] and L’vov & Nazarenko [LN10] respectively, starting from
the same equations (3.41), and applying the same theory, derived different predictions. Although the
equations describing the dynamics of KWs are one dimensional, the wave turbulence calculations are far
from simple. First of all, it was quickly noticed that the quartic term in the expansion (3.42) leads to
non-resonant terms, that means that they can removed with a suitable canonical transformation. From
the point of view of wave turbulence, the resulting Hamiltonian contains thus 6-wave .

The Kozik & Svitsunov [KS04] prediction for the energy cascade was derived from this 6-wave Hamil-
tonian and reads

nKS
E (k) = CE

KS

Γ2/5P 1/5

k17/5
. (3.54)

It was also predicted that associated to wave action, an inverse cascade should also take place and obey
the following prediction

nKS
N (k) = CNKS

(
QΓ

Λ

)1/5

k−3. (3.55)

These predictions were soon criticised by L’vov & Nazarenko [LN10], as they turned out to be non-
local, meaning that once replaced into the kinetic equations, the integrals are not convergent. To deal
with this divergence, L’vov & Nazarenko derived an effective theory, showing that the dominant sextets
contributing to 6-wave processes are those in which two wave vectors are much smaller than the other
ones [Lau+10]. In this theory, the effective Hamiltonian becomes 4-waves and contains only 3→ 1 . L’vov
& Nazarenko prediction for the direct energy cascade is

nLN
E (k) = CLN

P 1/3

Ψ2/3k11/3
, (3.56)

where the dimensionless number ψ depends itself on the spectrum as

Ψ =
8πE

ΛΓ2
, E =

ΓΛ

4π

∫ ∞

1/`
k2nLN

E (k)dk (3.57)
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and the Kolmogorov-Zakharov constant was found numerically to be CLN = 0.304 [Bou+11]. Laurie et al.
[Lau+10] noticed that wave-action inverse energy cascade prediction 3.55 was marginally non-convergent.
In such cases, a logarithmic correction can be introduced and the proposed spectrum for the inverse
wave-action cascade by Laurie et al. is

nKS
N (k) = CNLLNR

(QΓ)1/5

k3 log1/5 (`k)
(3.58)

It is worth mentioning that a third possibility was considered by Vinen [VTM03; Vin05] in which it was
argued that weak-wave turbulence prediction might not apply and critical balance should be considered.
This prediction is based on the assumption that linear and non-linear terms are comparable and thus no
time scale separation exists to apply the weak wave turbulence theory. The critical balance spectrum is
given by

nKS
E (k) = CECB`

−1k−3. (3.59)

Finally, note that E. Sonin [Son12] claimed that universally should not be expected in the energy spectrum.
The following table summarise the predictions for the KW cascades.

Theory Direct energy cascade Inverse wave-action cascade

Kozik-Svistunov nKS
E (k) = CE

KSΓ2/5P 1/5k−17/5 nKS
N (k) = CNKS

(
QΓ
Λ

)1/5
k−3

L’vov & Nazarenko
(and collaborators)

nLN
E (k) = CLN

P 1/3

Ψ2/3k11/3

Ψ = 2
Γ

∫∞
1/` k

2nLN
E (k)dk , CLN = 0.304

nKS
N (k) = CNLLNR

(QΓ)1/5

k3 log1/5 (`k)

Vinen nCB(k) = CECB`
−1k−3

Table 3.1: Wave turbulence predictions for Kelvin wave cascades. To obtain the corresponding energy
spectrum one should multiply by the Kelvin wave dispersion relation ω(k) = Γ

4πΛk2.

3.3.4 Numerical simulations of the Kelvin wave cascade

The controversy on the prediction of the Kelvin wave cascade was accompanied by several numerical
simulations of models where different approximations were made [KS05; VTM03; BB11; Bou+11]. The
main problem is that Biot-Savart simulations are costly, require a delicate regularisation and dissipation
is not very well controlled.

Instead of dealing with Biot-Savart, a different approach based on the GP model was used in [Krs12].
There, an almost straight vortex was studied. The novelty of that study is that the vortex line was
tracked with a highly accurate method taking advantage of the spectral convergence of pseudo-spectral
codes (see Appendix A.1). From the physical point of view, the Gross-Pitaevskii model has the advantage
of naturally dissipate energy of vortex waves by emission of sound waves (phonons). Furthermore, vortices
are regular structures and there is no need of any cut-off. Although the range of scales was rather limited
in [Krs12], a Kelvin wave cascade was indeed observed and the scaling of the wave amplitude spectrum
was found in agreement with L’vov & Nazarenko predictions. This work is integrally included at the end
of the chapter so it will not be discussed here in detail. It is fair mentioning, that an independent similar
work was conducted by another group [PBO13]. This nice coincidence led later to a fruitful collaboration
between D. Proment (UEA, Norwich) and myself.
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In posterior work, A. Baggaley and J. Laurie [BL14] performed equivalent numerical simulations using
the Biot-Savart model where they were able to control and measure accurately the energy dissipation.
They found a good agreement with the L’vov & Nazarenko prediction, including the scaling with the
energy flux.

3.4 Kelvin wave cascade in quantum turbulence

The theory of the Kelvin wave cascade, discussed in section 3.3.3, is formally derived for an incompressible
model in an extremely simplified theoretical setting. One can naturally wonder, why such a theory should
be relevant in quantum turbulence, where very complex vortex tangles coexist and interact with phonon
waves and other vortices. It is always possible to argue, that at scales smaller than the inter-vortex
distance `, quantum vortices can be considered somehow as isolated objects, and thus the theory of weak
wave turbulence should apply. Although intuitive, this assumption is far from obvious. At such scales,
vortices can also interact with each other through vortex reconnections, changing abruptly their topology.
Still, we can always claim that for scales even smaller, vortex reconnections could also be neglected for the
Kelvin wave cascade. It was then important, to investigate if the Kelvin wave cascade can be observed
in quantum turbulent flows.

Quoting Clark di Leoni et al. [CMB15], studying Kelvin waves in a turbulent vortex tangle is like
“looking for a needle in a haystack”. In that reference, the authors made use of the spatio-temporal
spectra to observe that, despite the fact the flow is turbulent, Kelvin waves propagate along vortices and
the Kelvin wave dispersion relation can be glimpsed (among many other things). Then, by performing a
space-time filtering of the fields to keep only excitations close to the Kelvin wave branch, a scaling in the
energy spectrum compatible with the Kelvin wave cascade prediction was observed.

A different approach was taken by us in Villois et al. [VPK16]. Taking advantage of the powerful
vortex tracking algorithm we developed in [Vil+16], we studied the evolution of a vortex tangle by tracking
all the vortex lines present in the field. Such study unveiled several interesting physical properties of vortex
lines. Here, we only describe the results concerning the Kelvin wave cascade. This work is also integrally
included at the end of the chapter. The algorithm developed in [Vil+16], was inspired from the one used
in [Krs12] but is able to track with high accuracy any vortex configuration without any prior knowledge of
the vortex line geometry. Figure 3.5 sketches the procedure employed in [Vil+16]. The algorithm receives
as an input, the complex wave field ψ, then it identifies all nodal lines of the field, and generate a list of
three-dimensional filaments {s1(ζ), s2(ζ), . . .}. Finally, the longest vortex lines were analysed individually
to determine the KW amplitude spectrum (see technical details in the attached publication).

In Villois et al. [VPK16], a Taylor-Green initial condition was generated and evolved under GP dy-
namics. The initial condition consists on a collection of large scale (almost perfect) vortex rings [NAB97].
The Kelvin wave spectrum of the initial condition is displayed in figure 3.6.a, only the largest scale of the
rings are excited. As the system evolves, more and more modes are populated, eventually developing a
clear scaling with wave numbers. Figure 3.6.b displays the Kelvin wave amplitude spectra for an equiv-
alent run at larger resolution. The range of scaling extends for almost two decades and it is clearly in
favour of the −11/3-LN prediction. For completeness, the inset displays the spectrum compensated by the
KS and LN predictions.

What is remarkable in 3.6.b is that the range of scales where the KW cascade spectrum is observed
extends at scales larger than the inter-vortex distance where Kolmogorov turbulence is known to emerge,
here roughly in the range 10−2kξ − 10−1kξ (energy spectra not shown in this work). The main message
of this work, can be thus summarised as follows. In quantum turbulence, we observe at large scales
Kolmogorov turbulence. Such classical behaviour with a strong energy cascade, is the result of the
collective effect of many vortex lines each of them obeying the physics of a weak wave turbulent cascade.
The coexisting of weak and strong cascades, with a myriad of different physical processes, is one of the
main characteristics of quantum turbulence.
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 (x) = 0 Kelvin waves{s1(⇣), s2(⇣), . . .}
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Figure 3.5: Studying Kelvin waves in turbulent vortex tangle [VPK16]. The vortex tracking algorithm
[Vil+16] takes the wave function ψ as an input and output a collection of vortex line s1(ζ), s2(ζ), . . .}.
The figure at the left displays low density iso-surfaces of ψ (in red) and density fluctuations about the
bulk values in blueish colours. The middle figure, displays all the lines outputted by the algorithm. The
panel at the right, shows one particular vortex ring with Kelvin waves at all scales.
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tion of peaks. These are evidences of reconnection events
where high values of curvature are found in localised re-
gions. It is worth noticing that the PDFs, rescaled by
their mean curvature, exhibit a relatively good collapse
to a self-similar form. This latter observation indicates
a power-law behaviour ⇠ 1 at small curvature values,
while an exponentially-decaying tail is present at large
curvature values. A similar behaviour has also been ob-
served within the VF model [24]. In Fig.3c we plot the
torsion PDFs at the same stages. The mean torsion is al-
ways about zero and there is no evidence of any skewness
in the PDFs. The distributions’ tails show an universal
power-law behaviour of ⌧�3 at all times, meaning that
the second and higher moments of the torsion diverge
during the decay. The same scaling appears in vortex
tangles of random wave fields that are solutions of the
Helmholtz equation [25]. This might be an indication
that for one-time small-scale quantities, quantum turbu-
lent tangles could be interpreted as random vortices.

The large curvature fluctuations and the torsion fluctu-
ation about a zero mean suggest also the presence of KWs
at all scales propagating on quasi-planar vortex rings. By
exploiting the accuracy of the tracking algorithm we are
able to directly detect KWs on those rings. Competing
theories have been put forward to statistically predict a
power-law KW spectrum in the form of nk ⇠ k�↵ (here
k is the Kelvin wavenumber) and to explain the energy
transfer through KW scales. Vinen et al. considered
strong nonlinear interactions and derived by a scaling
argument the exponent ↵V = 3 [26]. On the other hand,
assuming weak nonlinearity (small amplitude KWs com-
pared to their respective wavelengths), Kozik&Svistunov
[27] and L’vov&Nazarenko [12] obtained the exponents
↵KS = 17/5 and ↵LN = 11/3 respectively considering
two di↵erent orders of interaction. We compute the KW
spectra of the 50 largest rings during the evolution of the
tangle applying a Gaussian kernel in order to establish
the unperturbed ring (see Supplemental Material for de-
tails). The spectra, averaged over the rings, are shown for
di↵erent times in Fig.4a. It is evident that all accessible
KW modes get populated at early times due to recon-
nection events that trigger the cascade [28]. We observe
KW spectra exhibiting power-laws with an exponent in-
dependent of time where the best scaling is appreciated
at the time where the rings are the longest (4  t  7).
To get the best estimation of the power-law exponent,
we repeated the Taylor-Green decay in a simulation box
twice larger; in this new configuration the scaling range
spans almost two wavenumber decades. In Fig.4b we
show the spectrum at t ⇠ 5: the observed power-law ex-
ponent agrees with the L’vov&Nazarenko ↵LN = 11/3
prediction. This can be better appreciated by looking at
the compensated spectra with respect to ↵LN and ↵KS

showed in the inset. This finding corroborates the result
in favour of L’vov&Nazarenko’s prediction previously ob-
tained while studying the KW oscillations about a per-
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FIG. 4. (Color online) a) Temporal evolution of KW spectra
(averaged over the 50 longest rings). Resolution 2563. b)
KW spectrum at t ⇠ 5 (averaged over the 50 longest rings)

for run at resolution 5123. The dashed line displays the k�11/3

scaling. The inset displays the respective k11/3 (solid blue)

and k17/5 (dashed red) compensated spectra.

fect straight line in the GP model [29]. We highlight
that although the weak-wave turbulence prediction for
the KW spectrum was formally derived for KWs on an
isolated straight vortex line using the VF model, it re-
markably turns out to be valid in a dense turbulent tan-
gle also driven by the GP model. This is certainly due to
the fact that the predicted KW spectrum was found for
the longest rings. Small rings quickly loose their energy
by phonon radiation and also exchange momentum with
sound waves. Both contributions are important to under-
stand dissipation of superfluids at very low temperature
and further studies are still needed to fully comprehend
the relevance of such mechanisms.

Tracking vortices in GP turbulence opens a new way
for studying and understanding the topological config-
uration and properties of quantum vortex tangles. Al-
though unlikely, we show that rings can link creating a
local (in time and space) fluctuation of helicity. It will be
of great interest to repeat a similar analysis in a GP set-
ting where the mean helicity of the flow is not zero, like
the ABC flow introduced in [20] where linking and self-
linking processes could be substantially enhanced. Over-
all, the results presented in this Letter confirm that some
predictions traditionally associated to superfluid liquid
Helium become important in weakly-interacting BECs at
low temperature described by the GP model. Nowadays
BEC experimentalists are able to create and track few
vortices in harmonic traps [30, 31]. A controlled exper-

Figure 3.6: Kelvin wave amplitude spectrum of large
ring during the decay of quantum turbulence. Figure
reproduced from [VPK16] a) Temporal evolution of
the spectra. b) Larger resolution run taken at the
time where turbulence is the most active. The inset
shows compensated spectra by KS and LN theoret-
ical predictions. ξ is the healing length. Details on
the numerics can be found in [VPK16] attached at
the end of this chapter.

Tracking the vortex lines of a quantum tur-
bulent tangle is extremely expensive numerically.
For this reason, the largest resolution used in
[VPK16] was of 5123 grid points. Whiles it guar-
anties some scaling in the Kolmogorov rage, it is
relatively modest for today’s computational capa-
bilities. A different approach could be to apply
some “brute-force” and go to much higher reso-
lution numerical simulations. Such an approach
was taken in [CMB16; Shu+19], a secondary scal-
ing range somehow compatible with Kelvin wave
cascade predictions was observed directly in the
incompressible energy spectrum from GP simula-
tions. However, it is not possible to directly apply
the wave-turbulence predictions to the case of a
three-dimensional turbulent tangle as the predic-
tions for the spectra do not even match dimension-
ally. In a recent JETP Letters, Eltsov and L’Vov
[EL20] discussed the dimensional factors in the
wave turbulent cascade and explained how the pre-
diction could be used for experiments. In Müller
and Krstulovic [MK20], such considerations were
adapted to the case of turbulent vortex tangles. We
partially reproduce below the results of [MK20].

We shall consider a three-dimensional vortex
tangle, where Kolmogorov energy spectrum takes
place between the wave number k0 (associated to
the integral scale of the flux) and the wave num-
ber k` = 2π/`. As customary in turbulence, we
consider energy per unit of mass. We thus have
that the energy flux ε that is expressed in units of
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Length2/T ime3. We recall here the Kolmogorov prediction

EK41(k) = CKε
2/3k−5/3. (3.60)

where CK is a constant of order one. Note that the energy spectrum has units of Length3/T ime2 that
are not the same as in wave turbulence predictions (see discussion at the beginning of section 3.3.3).

In order to compare wave turbulence predictions with measurements of the three-dimensional energy
spectrum, one needs to necessarily make some phenomenological considerations. We start by noticing
that the total energetic contribution of Kelvin waves can be estimated as ρ0L

∫∞
kmin

EKW(k)dk. Here we
replaced the IR cut-off by the largest scale of excited Kelvin waves. We assume that kmin ∼ k`. In
addition, the KW periodicity length of the filament is replaced by the total vortex length of the system as
we assume that there are many individual vortex lines (∼ kminL), and each of them contributes additively
to the energy at a given scale. between filaments are neglected. In a turbulent tangle, the total vortex
length is related to the mean inter-vortex distance and the volume V of the system by L = V `−2. It
follows that the mean kinetic energy spectrum per unit of mass is given by Etangle

KW (k) = EKW(k)`−2.
The same reasoning, relates the energy flux P of the Kelvin wave cascade to the global energy flux ε of a
tangle by P = ε`2 [EL20]. In the previous phenomenological considerations, we have made the assumption
that the energy flux is the same in the Kolmogorov range than in the Kelvin wave cascade. This strong
assumption might be questioned as energy could be already dissipated into sound by vortex reconnections
at different scales diminishing this value [VPK20; PK20c]. Such extra sinks of energy are difficult to
quantify and will not be taken into account.

Taking into account the previous considerations, the LN energy spectrum becomes

EKW(k) = C
3/5
LN

ΓΛε1/3`−4/3

Ψ̃2/3k5/3
, Ψ̃ =

(12π)3/5(ε`2)
1/5

Γ3/5k
2/5
`

(3.61)

Note that the value of the constant CLN = 0.304 can not be expected to still be exact after all the previous
phenomenological assumptions.

In the work [MK20], we performed high-resolution numerical simulations of a generalised GP equation,
intended to be a better model of superfluid helium, and observed a very clear Kolmogorov range followed
by a secondary k−5/3 scaling. It is reproduced in figure 3.7.a. Figure 3.7.b displays the incompressible
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Run vrms L0  ✏ `

B1 0.395 L/2 0.163 0.012 0.412
B2 0.377 L/2 0.327 0.013 0.494
B3 0.398 L/2 0.163 0.012 0.255
B4 0.406 L/3 0.163 0.020 0.235
B5 0.403 L/4 0.163 0.029 0.227
B6 0.392 L/2 0.081 0.011 0.139

Table II. Values of integral scale L0, the quantum of circu-
lation , the energy dissipation rate ✏ and the intervortex
distance, expressed in units where the box size is L = 2⇡ and
the speed of sound c = 1.

fixed by the inertial range and varies as ✏ ⇠ v3
rms/L0.

Our initial condition  ABC keeps fixed, by construction,
the value of vrms. In Table II we present the values of dif-
ferent physical quantities relevant for a turbulent state.
Such quantities are expressed, as customary in classical
turbulence, in units of large scale quantuties. In partic-
ular, the system size is L = 2⇡ and the speed of sound
is c = 1. With such definitions, large scale quantities
remain almost constant when increasing the scale sep-
aration between the box size and the smallest scale of
the system, but the quantum of circulation takes smaller
values.

Figure 8 (a) shows the incompressible energy spectra
simply compensated by k�5/3. Two plateaux are clearly
observed but, as expected, they do not collapse because
energy fluxes and the intervortex distances have not been
taken into consideration.

The energy spectra shown in Fig. 8 (b) have been com-
pensated by the Kolmogorov law (19) and displayed as
a function of k/k0, with k0 = 2⇡/L0 in order to empha-
size the Kolmogorov regime. Once properly normalized,
all runs present a plateau at large scales that collapse
to values that fluctuate around a Kolmogorov constant
CK ⇠ 1, in agreement with previous simulation of the
GP model13,44. In order to emphasize the Kelvin wave
cascade, we make use of the L’vov & Nazarenko wave
turbulence prediction (23). Figure 8 (c) displays the in-
compressible energy spectrum compensated by the theo-
retical prediction as a function of k/k`, with k` = 2⇡/`.
The collapse of the Kelvin wave cascade is remarkable.
All runs having a nonlocal potential display a plateau
around a value C

3/5
LN ⇡ 0.36, which recovers a value of

CLN ⇡ 0.18. Such value is relatively close to the pre-
dicted one CLN = 0.304, in particular by considering all
the phenomenological assumptions made in Sec. III A to
adapt the theoretical prediction (21) to the case of a tur-
bulent tangle in Eq. 23. Although the GP run (with local
interaction potential) displays a good Kolmogorov scaling
at large scales, it does not clearly exhibit a Kelvin cas-
cade range at the highest resolution used in this work for
this model (5123). Note that previous works reporting
a secondary k�5/3 range in local GP have used resolu-
tion of 20483 and 40963 collocation points (44 and13 re-
spectively). The incompressible kinetic energy spectrum,
compensated by the Kozik & Svistunov prediction45 is
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Figure 8. Compensated incompressible kinetic energy spectra
by (a) k�5/3 scaling, (b) Kolmogorov scaling and (c) L’vov-
Nazarenko scaling for Kelvin waves.

displayed in Appendix A.

IV. CONCLUSIONS

We studied the properties of the freely decaying quan-
tum turbulence of the generalized Gross-Pitaevskii (gGP)
model (7), that includes beyond mean field corrections
and considers a nonlocal interaction potential between
bosons. This model pretends to give a better description
of superfluid helium as it reproduces a roton minimum
in the excitation spectrum.

The visualization of the flow with a nonlocal potential
allowed us to observe the formation of helical structures
around the vortices produced by density fluctuations, ex-
hibiting the intrinsic property of maximal helicity of an
ABC flow. These structures were not observed at initial

a) b)

Figure 3.7: a) Incompressible kinetic energy spectrum of decaying quantum turbulence from a GP
simulation [MK20]. The different scaling ranges and the k−5/3 scaling are displayed in the figure. b)
Compensated energy spectrum by prediction (3.61). Different curves correspond to runs performed with
different values of the flux, inter-vortex distance and integral scale.

kinetic energy spectrum compensated by the LN Kelvin wave cascade prediction (without considering
the constant CLN). Several runs having different values of the flux, inter-vortex distance and healing
length are plotted together presenting a relatively good collapse. For more details, the interested reader
is referenced to [MK20].
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3.5 Selected publications

In this chapter we integrally include two selected publications where I have contributed to the problem
of Kelvin waves. Both publications have already been mentioned in this chapter.

• Giorgio Krstulovic. “Kelvin-Wave Cascade and Dissipation in Low-Temperature Superfluid Vor-
tices”. In: Physical Review E 86.5 (Nov. 9, 2012), p. 055301. issn: 1539-3755, 1550-2376. doi:
10.1103/PhysRevE.86.055301

• Alberto Villois, Davide Proment, and Giorgio Krstulovic. “Evolution of a Superfluid Vortex Fila-
ment Tangle Driven by the Gross-Pitaevskii Equation”. In: Physical Review E 93.6 (June 30, 2016),
p. 061103. issn: 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.93.061103

The first publication considers Kelvin waves in an almost straight vortex. This work corresponds to
the first direct measurement of the Kelvin wave cascade in the the framework of the Gross-Pitaevskii
model. The second publication discusses the evolution of a vortex tangle driven by the GP model. In
particular, in addition to the Kelvin wave cascade of large rings extracted from the tangle, the Vinen
decay law [Don91] was also clearly observed.
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Kelvin-wave cascade and dissipation in low-temperature superfluid vortices
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.

DOI: 10.1103/PhysRevE.86.055301 PACS number(s): 67.25.dk, 03.75.Kk, 47.37.+q, 67.25.dt

Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance � [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than � the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k

is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3�−2/3k−5/3, (2)

where � ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V

with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H = ∫

( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N = ∫ |ψ |2dx. Madelung’s transforma-
tion ψ(x,t) =

√
ρ(x,t)

m
exp [i m

h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is

055301-11539-3755/2012/86(5)/055301(6) ©2012 American Physical Society



RAPID COMMUNICATIONS

GIORGIO KRSTULOVIC PHYSICAL REVIEW E 86, 055301(R) (2012)

TABLE I. List of runs. N⊥ and Nz are the resolutions in the
perpendicular and parallel directions with respect to the vortex. Nrea

is the number of realizations. n is the number of initial KW modes
and m is the exponent k−m of the KW spectrum.

Run N⊥ Nz Nrea n ξ A m

I 256 128 31 3 0.025 2ξ 3.85 ± 0.24
II 256 128 31 2 0.025 4ξ 3.682 ± 0.13
III 256 256 11 2 0.025 4ξ 3.753 ± 0.17
IV 512 256 1 2 0.0125 4ξ 4.116 ± 0.56
V 128 512 11 2 0.1 4ξ

linearized around a constant ψ = ψ̂0, the sound velocity is

given by c = (g|ψ̂0|2/m)
1/2

with dispersive effects taking

place at length scales smaller than the coherence length ξ =
(h̄2/2m|ψ̂0|2g)

1/2
that also corresponds to the vortex core size.

In this Rapid Communication the density ρ ≡ mN/V = 1 and
the physical constants are determined by the values of ξ and
c = 2. Numerical integration of Eq. (3) is performed in a cubic
box of length V 1/3 = 2π by using a standard pseudospectral
code with an exponential time-splitting temporal scheme
(see Table I). Ensemble averaging is done over 30 initial
conditions.

To address the KW problem, an array of four alternate-sign
vortices is used. To obtain a clean initial condition and reduce
initial phonon emission, in a first step, an exact stationary
solution of the GPE with straight vortices is numerically
obtained by a Newton method [23]. Vortices are separated by a
distance π and can be considered isolated when ξ → 0, as the

(a)

(b) (b.1)

(b.2)

(c)

FIG. 1. (Color online) (a) 3D visualization of the density |ψ |2 in the sub-box [0,π ]2 × [0,2π ]. In red an isosurface of the vortex and a (orange)
density plot shows sound waves. (b) Temporal evolution of energies. (b.1), (b.2) Zoom of Ei

kin and Ec
kin, respectively. (c) Incompressible-kinetic,

compressible-kinetic, and wave energy spectra. Dashed lines display k2, k−1, and k−5/3 power-law scalings.
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resolution is increased. Then, a KW is introduced perturbing
the vortex. It reads

x(z) = A

n∑

i=1

cos
(
i z + φx

i

)
, y(z) = A

n∑

i=1

cos
(
i z + φ

y

i

)
,

(4)

where φ
{x,y}
i are random phases. A visualization of the the

density ρ(x) is displayed in Fig. 1(a) at t = 10. The KW is
observed with the (red) isosurface. Phonon waves correspond
to the (orange) cloud that is a density plot of ρ(x) in a narrow
threshold centered around the mean-density value ρ = 1. In
superfluid turbulence, interaction and reconnection between
vortices can influence KW propagation. Here such effects are
neglected. To quantify the vortical and wave energy of the
configuration, we use the standard hydrodynamic energy de-
composition, obtained by using the Madelung transformation
(see [24] for details). The total energy is thus decomposed in
two terms: the incompressible-kinetic energy Ei

kin containing
the contribution of vortical structures and the energy of
phonon waves Ewav = Ec

kin + Eint + Eq, where Eq, Eint, Ec
kin,

are the quantum, internal, and compressible-kinetic energy,
respectively. Figure 1(b) displays the temporal evolution of
Ei

kin, Ec
kin, Ewav, and Etot = Ei

kin + Ewav. Observe in Fig. 1(b)
that their temporal evolution rapidly reaches a (quasi)statistical
stationary regime. The same energy decomposition can be
applied to the energy spectra that are displayed on Fig. 1(c)
at t = 10. The energy spectrum of the compressible-kinetic
energy presents at large wave numbers a k2-equipartition
regime. This range is also present in the initial condition
albeit with smaller values. It rapidly reaches the station-
ary state observed in Fig. 1(c) showing that thermalized
waves coexist with vortices. As Ewav 	 Ei

kin, the large-scale
GPE dynamics is mainly driven by vortices setting a clean
configuration.

The energy spectra displayed in Fig. 1(c) present a k−1

scaling at small k; this can be associated with decaying
of the velocity field of an isolated vortex at long distances
[24,25]. At an intermediate range a scaling compatible with
k−5/3, however, it cannot be associated with Kolmogorov
turbulence as the scale separation V 1/3 
 � is not realized
(here V 1/3 ∼ �). Note that a k−5/3 has been also observed
in a situation where the Kolmogorov regime is not clear to
be applicable [25]. The scaling could be explained by the
presence of a KW cascade and predictions (1) or (2), as the
principal contribution to energy of the fluid (see Fig. 1) is
coming from vortices. However, the relationship between the
KW spectrum and 3D (hydrodynamical) energy spectra is not
clearly established. To explicitly study the KW cascade, we
numerically track the coordinates (x(z),y(z)) of the vortex.
For each value of z the equation ψ(x(z),y(z)) = 0 is solved by
using a Newton method. Derivatives of the fields at intermesh
points are obtained by Fourier interpolation. This allows us
to accurately obtain the vortex coordinates with a precision
much larger than the one given by the mesh size. Once the
coordinates are obtained, it is possible to compute (1D) KW
occupation-number spectrum defined by

n(k) = |ŵ(k)|2 + |ŵ(−k)|2, (5)

where ŵ(k) is the Fourier transform of w(z) = x(z) + iy(z).
The KW spectrum allows us to construct the KW en-
ergy EKW = ∑

k ω(k)nk and the dissipation ε = −dEKW/dt ,
where ω(k) is the KW dispersion relation. It can be ap-
proximated by ω(k) = C(κ/4π )k2, where C is a numerical
constant which eventually depends logarithmically on ξ/�.
Figures 2(a) and 2(b) show the temporal evolution of the
total vortex length L = ∫ √

1 + |∂zw(z)|2dz and the mean
curvature K = ∫ |∂zw(z) × ∂zzw(z)|/|∂zw(z)|3dz, normalized
by their initial values. Note that their temporal fluctuations are
small. Finally, in Fig. 2(b) the temporal evolution of the KW

(a)

(b)

FIG. 2. (Color online) (a) Vortex
length L(t) (blue circles) and curvature
K(t) (red crosses) normalized by L(0) =
6.51 and K(0) = 0.44. (b) KW energy
EKW(t) (circles). The (red) solid line
displays EKW(t) averaged over temporal
windows of width t = 2. Inset: energy
dissipation ε.
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energy is displayed. Note that the energy fluctuates, especially
after the arrival of phonon waves coming from neighboring
cells at t ∼ π/c ≈ 1.5. The solid (red) line presents the
energy averaged over temporal windows of width t = 2;
the decrease in energy is apparent. The inset of Fig. 2(b)
displays temporal evolution of the energy dissipation showing
also some negative values. This can be related to the presence
of phonon waves that excite KW at small scales. Its temporal
average is positive as more energy is radiated than absorbed
by the vortex.

We now turn to the KW spectrum. Two kinds of simulations
are presented: the first trying to enhance the scale separation
between V 1/3 and ξ and thus obtaining a larger inertial range;
the second concerns the dissipative range of the KW spectrum
and then presents a large number of modes between ξ and
smallest resolved scale V 1/3/Nz. Details of runs are listed in
Table I.

Let us focus now on the inertial range of the KW cascade.
The two KS and LN predictions for n(k) read

nKS(k) = 4πCKSκ
2/5ε1/5

k17/5
, nLN(k) = 4πCLNε1/3

�2/3k11/3
, (6)

where CKS and CLN are numerical constants. The temporal
evolution of the KW spectrum is displayed in Fig. 3(a) for run
III. KW are rapidly exited, and populate all wave numbers. At
low wave numbers an excess of energy is observed. For Bose
gases, a wave-turbulence energy transport to large scales was
reported in [26]; here for KW, data do not allow to clearly
observe such a behavior. When energy arrives to scales small
enough to be efficiently dissipated, a steep decay zone called
dissipative range in hydrodynamic turbulence [5] is observed.
As dissipation by phonon emission is very weak [27], the
spectrum stabilizes and a clear inertial range is observed.
For all modes the amplitude of KW remains small; it is
thus expected that weak-turbulence theory applies for wave
numbers such that V −1/3 	 k 	 2π/ξ . Temporal-averaged
KW spectrum of runs I–IV are displayed in Fig. 3(b). A
power-law scaling is clearly appreciated for almost one decade.

The exponent m, obtained from a fit k−m, is shown on Table I
with their respective errors.

For all runs the exponent is slightly larger than the one
predicted by the two weak-turbulence results (6) and presents
a variation of 5%. However, for all runs data support the
exponent −5/3 − 2 predicted by LN, that it is within errors,
and excludes the −7/5 − 2 KS prediction. Note that although
the power-law range extends until near 1/ξ , where dissipation
can start to play a role, the exponent m is stable for the different
runs. Experimentally, one usually has access only to the (3D)
kinetic energy, that for small amplitude KW is dominated by
the singularity of the velocity at the vortex core. However,
a singularity cannot transfer energy and the KW cascade
is thus crucial for understanding low-temperature dissipative
mechanisms of superfluids.

We now turn to the dissipative range of the KW spectrum,
that takes place at wave numbers larger than kξ = 2π/ξ . For
such small scales it is known that dispersive effects of phonon
waves slow down the dynamics producing a bottleneck and
quasithermalization [28]. This effect was observed for large
values of ξkmax, where kmax is the largest wave number. A
natural question is can this slowdown affect the dissipative
mechanism of the KW cascade? If excitations of high-
wave-number phonons are difficult, one could expect that
dissipation of KW by sound emission should be reduced
at such scales. To investigate such a configuration we have
performed simulations with a large value of ξkmax = 17 (run
V). For such a configuration, the inertial range of the KW
cascade is not clearly identified in Fig. 4(a). At very early
times, KWs stop to be populated at wave numbers larger than
kξ ∼ 60 displaying an equipartition of KW spectrum followed
by a faster than exponential decay for k > kξ . Unlike, the
3D dispersive bottleneck, this behavior does not last long and
the statistics of KW modes in this range is not Gaussian. At
later times, the equipartition range is destroyed and a large-k
exponential decay of rate 2 δ(t) [see Fig. 4(a)] is observed.

Finally we study the statistics of KW amplitudes in the
inertial and dissipative range. The PDF of KW amplitudes

(a)

(b)

FIG. 3. (Color online) (a) Temporal evolu-
tion of KW spectrum, run III. (b) Time-averaged
KW spectra, runs I–V. Dashed line displays the
power-law fits.
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(a)

(b) (c)

FIG. 4. (Color online) (a) Temporal evolu-
tion of KW spectrum for run V. Inset: temporal
evolution of the exponential decay rate δ(t). (b)
PDF of KW amplitudes in the inertial range 20 <

k < 40 (run III). (c) PDF of KW amplitudes
in the dissipative range 80 < k < 100 (run III)
and 30 < k < 170 (run V). Inset: same PDF
in log-log, the power law w−7/3 is drawn for
reference.

varying at scales inside the inertial range for run III is obtained
by filtering in Fourier space and keeping modes in the range
20 < k < 40. The normalized PDF is displayed in Fig. 4(b).
The quasi-Gaussian behavior is manifest as expected from
weak turbulence predictions. |w(z)|2 consequently presents
exponential tails. In the dissipative range (for 80 < k < 100)
the PDF shows a strong non-Gaussian character as apparent
in Fig. 4(c). Better statistics are obtained for run V. The PDF
has power-law tails as shown in the inset of Fig. 4(b) and
present, as in turbulent flows, an asymmetry of skewness
〈w3〉/〈w2〉2/3 = −0.15. Recently, in Biot-Savart simulations
[29], a crossover between Gaussian and non-Gaussian statistics
was found in the velocity field at the mean intervortex scale �.
Here, for KWs, the crossover takes place at the scale ξ 	 �.
At scales smaller than ξ , KWs are somehow decoupled of
the large-scale dynamics prescribed by wave turbulence and
are in direct interaction with a strongly fluctuating superfluid
velocity field, as the one found in the GP simulations of
Ref. [30], and hence inherit some properties of the surrounding
fluid.

The behavior of KWs at very small scales is important
at low temperature where mutual friction is absent. In all
vortex-filament models, some small-scale artificial dissipation
is needed to avoid energy pileup. Although vortex-filament
models are not concerned with such small scales, how the
energy is dissipated in those models can affect the vortex
dynamics. It would be important to check if the dissipative
mechanisms used are consistent with dissipation produced by
phonon radiation. A natural extension of this work is to include
thermal waves and vortex interaction by using the projected
GPE, where mutual friction effects are present [31].
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The development and decay of a turbulent vortex tangle driven by the Gross-Pitaevskii equation is studied.
Using a recently developed accurate and robust tracking algorithm, all quantized vortices are extracted from the
fields. The Vinen’s decay law for the total vortex length with a coefficient that is in quantitative agreement with
the values measured in helium II is observed. The topology of the tangle is then investigated showing that linked
rings may appear during the evolution. The tracking also allows for determining the statistics of small-scale
quantities of vortex lines, exhibiting large fluctuations of curvature and torsion. Finally, the temporal evolution of
the Kelvin wave spectrum is obtained providing evidence of the development of a weak-wave turbulence cascade.

DOI: 10.1103/PhysRevE.93.061103

The full understanding of turbulence in a fluid is one of the
oldest yet still unsolved problems in physics. A fluid is said to
be turbulent when it manifests excitations occurring at several
length scales. Due to the large number of degrees of freedom
and the nonlinearity of the governing equations of motion,
the problem is usually tackled statistically by introducing
assumptions and closures in terms of correlators. This is the
case in the seminal work of Kolmogorov in 1941 based on the
idea of Richardson’s energy cascade, where energy in classical
fluids is transferred from large to small scales [1].

Superfluids form a particular class among fluids character-
ized essentially by two main ingredients: the lack of dissipation
and the evidence that vortex circulation takes only discrete
values that are multiples of the quantum of circulation [2].
Superfluid examples are superfluid liquid helium (He II) and
Bose-Einstein condensates (BECs) made of dilute alkali-metal
gases. Here the superfluid phase is usually modeled via a
complex field describing the order parameter of the system
and vortices appear as topological defects where the superfluid
density vanishes.

In three spatial dimensions those defects organize them-
selves into closed lines (or even open lines at the boundaries
if confining sides are considered) of different configurations.
Any vortex line point induces a velocity field which affects
the motion of any object in the system including the vortex
line itself. In general, even for a single closed vortex line,
the dynamics are chaotic and the problem does not have
analytical solutions. Superfluid turbulence regards the study
of the evolution of many vortex lines, a tangle, which induce
velocity field gradients in the fluid at several length scales.

Different mathematical models have been devised to mimic
the dynamics of a superfluid. An example is the vortex filament
(VF) model based on the Biot-Savart law that relates vorticity
and velocity [3]. This model is able to mimic the dynamics
of dense vortex tangles due to a relatively fast numerical
integration technique [4]. The VF model implicitly assumes
that the superfluid density is constant everywhere and the
vortex structure is a line with vanishing core. This assump-
tion is generally satisfied in He II where the characteristic
experimental setup sizes, and consequently the largest scales

of the motion, are order of 10−1 m and the vortex core is
of the order of 1 Å = 10−10 m. Moreover, since He II is in
its liquid phase, the compressibility effects can be usually
neglected. However, the VF model fails to describe vortex
reconnections. These are rapid changes in the topology of the
vortex configuration which occur naturally in a superfluid [5]
and are one of the main mechanisms responsible for the energy
transfer. Reconnections are thus introduced by some ad hoc
mechanism.

Another superfluid model that admits quantized vortices
and inherently possesses vortex reconnections is the Gross-
Pitaevskii (GP) equation that describes the evolution of the
superfluid order parameter ψ . In contrast to the VF model, the
GP equation allows density fluctuations in terms of phonons
and density depletion at the vortex cores. Although it has been
formally derived as a mean-field theory for a dilute boson
gas in the limit of zero temperature [6], it also qualitatively
reproduces He II dynamics. The vortex core size here is of the
order of the healing length ξ , the only intrinsic characteristic
length scale of the model; nowadays experimental techniques
are able to create BEC setups that are 101–102 healing
lengths where superfluid turbulence can develop [7]. In
turbulent superfluids, vortices constantly rearrange themselves
following reconnections into complex tangles with nontrivial
geometrical, algebraic, and topological properties [8]. At small
scales, helical excitations of vortex lines known as Kelvin
waves (KWs) are believed to be the ultimate mechanism of
energy dissipation via phonon emission [9]. To study such
dynamics, the GP equation has the advantage that no extra
modeling is needed (unlike the VF model). However, GP does
not provide direct information on vortices.

In this work we apply a numerical algorithm [10] to
accurately track the configuration of a turbulent vortex tangle
evolving according to the GP model. First, we show that after
the onset of turbulence, the vortex line density satisfies the
Vinen’s decay law [11] with a coefficient that is in agreement
with the values measured in He II. Different algebraic and topo-
logical quantities of the tangle are then measured. The tracking
allows for obtaining curvature and torsion distributions of the
vortex tangle. Finally, we perform a direct measurement of
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KWs during the dynamics and compute a KW spectrum that
appears to be consistent with L’vov-Nazarenko’s weak-wave
turbulence theoretical prediction [12].

The GP model for the condensate wave function ψ is

i�
∂ψ

∂t
= − �2

2m
∇2ψ + g|ψ |2ψ, (1)

where m is the mass of the bosons and g = 4πa�2/m, with
a the s-wave scattering length. Madelung’s transformation
ψ(x,t) = √

ρ(x,t)/m exp [i m
� φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ.
The quantum of circulation about the ψ = 0 vortex lines is
� = h/m. When Eq. (1) is linearized about a constant value

ψ = ψ̂0, the sound velocity is given by c = (g|ψ̂0|2/m)
1/2

,
with dispersive effects taking place at length scales smaller

than the healing length ξ = (�2/2m|ψ̂0|2g)
1/2

.
In the simulations presented here, the mean density is fixed

to the unity and the physical constants in Eq. (1) are determined
by the values of ξ and c = 1. The quantum of circulation
results in � = 4πc ξ/

√
2. Numerical integration of Eq. (1) is

performed using a standard pseudospectral code. We integrate
an initial condition characterized by the so-called Taylor-
Green flow [13], a well-studied flow in superfluid turbulence.
Symmetries are not enforced during the evolution and we use
resolutions of 2563 and 5123 uniformly distributed collocation
points with ξ = 2π/256 and ξ = 2π/512, respectively. Mirror
symmetries are broken during the evolution although traces of
such symmetries will be present even at very large times. With
units used in this work, the large eddy turnover time is of the
order of the unity.

The Taylor-Green flow initially contains a configuration of
unstable large-scale rings that develop to create a turbulent
tangle. Vortices can be spotted by plotting the low-value
isosurfaces of the density field as displayed in Fig. 1. Low-
density regions corresponding to vortex lines are plotted in red,
while density fluctuations (sound) are rendered in light blue.
The initial condition is visualized in Fig. 1(a), the complex
turbulent tangle at t = 12 in Fig. 1(c), and the final state
at t = 105, where few vortices are present with a lot of
sound in the background, in Fig. 1(e). We track the vortex
lines with a recently developed algorithm [10] that allows
for identifying separately each single line forming the tangle.
Vortex lines are followed using the pseudo-vorticity field
as in [14] and the exact vortex positions are obtained by
applying a Newton-Raphson method. The algorithm is robust
and accurate as it takes full advantage of the spectral resolution.
The intermesh values of the field ψ and its derivatives needed
for the Newton-Raphson method are directly evaluated by
Fourier transforms; the locations of vortices are thus found
with precision given the machine-ε (double in the present
simulations). See [10] for all technical details and a complete
validation of the algorithm. Figures 1(b), 1(d), and 1(f) show
the corresponding tracked vortices displayed in different colors
(see Supplemental Material [15]).

We focus first on the later evolution times. During the decay,
vortices radiate phonons at small scales creating a thermal bath
that exchanges energy and momentum with the vortices. This
process mimics mutual friction and leads eventually to the
total annihilation of vortex rings [16]. In superfluids such a

(b)(a)

(d)(c)

(f)(e)

FIG. 1. Left: Isosurfaces of density field at different times.
Low-density regions that correspond to vortex lines are plotted in
red, while density fluctuations (sound) are rendered in light blue.
Right: Corresponding tracked vortices. Different colors correspond
to different vortices. Snapshots taken at t = 0 [(a) and (b)], t = 12
[(c) and (d)], and t = 105 [(e) and (f)]. Resolution 2563.

decay is modeled by the Vinen equation [11] for vortex line
density L:

dL
dt

= −χ2
�

2π
L2, (2)

where χ2 is a constant of the order of unity. Its solutions
manifest a L ∼ t−1 behavior at long times: this power-law
decay has been named quantum turbulent decay and measured
in He II experiments [17] and VF numerical simulations [18].
In Fig. 2(a) we show the temporal evolution of L. It is worth
noticing that it grows at the initial stages: this is caused
by the instability of the initial Taylor-Green configuration
and the subsequent vortex stretching due to numerous vortex
reconnections. The data is compared with an estimation of
L obtained by computing the ratio between the volume of
points such that ρ(x) < 0.2 and the corresponding surface of a
perfect two-dimensional vortex profile. This latter method has
become a standard technique within GP numerical simulations
to compute the vortex line density [19]. Even if this technique
is able to capture the qualitative behavior of L, it fails to
grasp at long times the power law predicted by Vinen’s
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FIG. 2. (a) Temporal evolution of the vortex line density: tracked
data are plotted using blue circles, and volume estimation in a solid
red line. (b) Long time decay of �L (see text), together with Vinen’s
prediction �LVinen = [χ2

�

2π
(t − t0)]−1, setting χ = 0.65 (solid black

line). Resolution 2563.

equation. This is shown in Fig. 2(b) where the measured
�L(t) = [L(t)−1 − L(t0)−1]−1, setting t0 = 17, is compared
to Vinen’s prediction. We can explain this discrepancy by
reasoning that the vortex core size (proportional to the uniform
condensate state) varies in time because more and more sound
excitations are created by the superfluid decay, altering the
estimation of L by fixing the (non-time-dependant) density
threshold. The tracked data also allow for determining the
numerical constant χ2 = 0.65. This value is in remarkable
agreement with experimental values measured in He II in
the low temperature limit [11]. Between the time of maximal
vortex length (t ≈ 8.5) and t0 there is a faster decay that could
be explained by the quasiclassical turbulent decay law [20],
although the data (not shown here) do not allow for a precise
corroboration and further studies are needed.

From Fig. 1 and the movie provided in the Supplemental
Material, it is clear that the complexity of tangle first increases
and then decreases. The complexity of tangle can be measured
by computing the changes in some of its algebraic and
topological quantities [8]. We compute the total average
crossing C̄ = ∑

i �=j Ci,j , the total linking Lk = ∑
i �=j Lkij ,

and the writhe Wr = ∑
i Wri , by directly performing the line

integrals over the vortex ring(s) [8] as

C̄i,j = 1

4π

∮
Ci

∮
Cj

∣∣∣∣ (Ri − Rj ) · dRi × dRj

|Ri − Rj )|3
∣∣∣∣, (3)

Lkij = 1

4π

∮
Ci

∮
Cj

(Ri − Rj ) · dRi × dRj

|Ri − Rj )|3 , (4)

Wri = 1

4π

∮
Ci

∮
Ci

(Ri − R′
i) · dRi × dR′

i

|Ri − Rj )|3 . (5)

t
0 20 40 60 80 100

0

4

8

Nrings(t)/Nrings(0)
C̄(t)/C̄(0)

(a)

t
0 20 40 60 80 100

-10

-5

0

5

10 Lk
Wr
Hc/Γ2

(b)

(c) (d)

FIG. 3. (a) Temporal evolution of the (normalized) total number
of rings and crossing number. At t = 0, Nrings(0) = 128 and C̄(0) =
758. (b) Temporal evolution of the total linking Lk, writhe Wr and
center-line helicity Hc/�2. (c) Visualization of two linked rings at
t = 21. (d) Visualization of a ring with high Wr at t = 24.5.
Resolution 2563.

Here Ri corresponds to the points identifying the ith ring Ci ;
for the writhe number, Ri and R′

i correspond to two different
points of the same ring. In Fig. 3(a) we plot the total number
of rings Nrings and C̄ normalized by their initial values versus
time. It is worth noticing that the average crossing number
reaches qualitatively a maximum at the same stage of the
vortex line L maximum, while the ring number maximum
is slightly shifted forward in time. The former observation
follows the idea that vortex lines simultaneously stretch, bend,
and coil during reconnection events. The latter is due to the
fact that longer vortex rings continue to break into pieces
during the evolution until the tangle density becomes low
enough and the main vortex length dissipation mechanism
is given by sound interaction. We then focus on the center-line
helicity Hc/�2 = Lk + Wr [21] related to the helicity in
classical fluid dynamics, an important inviscid invariant. The
linking number Lk takes integer values and gives information
about the number of linked rings present in the system,
whereas the writhe takes real values and its contribution
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comes from self-linked (knots), an integer contribution, and
KWs [22]. Figure 3(b) shows the temporal evolution of
these three quantities. Initially, Lk = Wr = 0, as expected for
the Taylor-Green flow. Surprisingly, during the evolution Lk
becomes nonzero, indicating the presence of linked rings, such
as the ones displayed in Fig. 3(c) [23]. This is remarkable
as in the GP model sufficiently simple vortex configurations
usually decay by reducing their complexity [24]. Once the
decay is established, no linked rings are present and only
writhe contributes to Hc. Note that the writhe number is not
enough to determine whether a ring is self-linked (knotted)
or not. The center-line helicity, however, fluctuates about a
zero mean, an indication of the presence of KWs. KWs are
indeed apparent in Fig. 3(d) where an unknotted ring with high
Wr is displayed. KWs have already been indirectly observed
in the Taylor-Green flow during the turbulent stage [25], in
agreement with the large values of writhe observed around
t ∼ 10.

We now study statistical properties of some geometrical
quantities of the vortex filaments by exploring the time
behavior of the probability density functions (PDFs) of the
curvature κ and torsion τ of the entire set of vortices in
the system. In Fig. 4(a) we present the PDF of curvature,
normalized by its mean value, at different stages. The temporal
evolution of the mean curvature 〈κ〉 and its rms value κrms are
also displayed in the inset. We can observe that 〈κ〉 increases
rapidly at early stages and then almost saturates, an indication
that the average vortex size (inversely proportional to the
curvature) slowly decreases at later times. The rms value of
the curvature presents the same tendency with the exception
of peaks. These are evidence of reconnection events where
high values of curvature are found in localized regions. It is
worth noticing that the PDFs, rescaled by their mean curvature,
exhibit a relatively good collapse to a self-similar form. This
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FIG. 4. (a) PDFs of curvature κ normalized by their respective
mean values 〈κ〉 at different times [same legend as (b)]. The inset
displays the temporal evolution of the mean and rms values of κ .
(b) PDFs of torsion τ at different times. The inset emphasizes their
τ−3 power-law tail. Resolution 2563.

latter observation indicates a power-law behavior ∼κ1 at
small curvature values, while an exponentially decaying tail
is present at large curvature values. A similar behavior has
also been observed within the VF model [26]. In Fig. 4(b) we
plot the torsion PDFs at the same stages. The mean torsion is
always about zero and there is no evidence of any skewness in
the PDFs. The distributions’ tails show a universal power-law
behavior of τ−3 at all times, meaning that the second and
higher moments of the torsion diverge during the decay. The
same scaling appears in vortex tangles of random wave fields
that are solutions of the Helmholtz equation [27]. This may be
an indication that for one-time small-scale quantities, quantum
turbulent tangles can be interpreted simply as random vortices.

The large curvature fluctuations and the torsion fluctuation
about a zero mean are evidence of KWs at all scales
propagating on quasiplanar vortex rings. By exploiting the
accuracy of the tracking algorithm we are able to directly
detect KWs on those rings. Competing theories have been put
forward to statistically predict a power-law KW spectrum in
the form of nk ∼ k−α (here k is the Kelvin wave number)
and explain the energy transfer through KW scales. Vinen
et al. considered strong nonlinear interactions and derived by a
scaling argument the exponent αV = 3 [28]. On the other hand,
assuming weak nonlinearity (small amplitude KWs compared
to their respective wavelengths), Kozik and Svistunov [29] and
L’vov and Nazarenko [12] obtained the exponents αKS = 17/5
and αLN = 11/3, respectively, considering two different orders
of interaction. We can compute the KW spectrum of a ring R by
applying a Gaussian kernel of width αL in order to establish
the configuration of the unperturbed ring Rump. This can be
used to define the KWs on it as RKW(s) = R(s) − Rump(s),
where s ∈ [0,L] is the arc-length parametrization of the ring.
Being RKW a periodic set of three signals (one for each
spatial dimension), the KW spectrum is then defined as
nk = |R̂KW(k)|2 + |R̂KW(−k)|2, where R̂KW(k) is the Fourier
transform of RKW(s). In [10] we checked that this procedure
is able to capture well the KWs superimposed on a ring. Here
we compute the KW spectrum averaging over the spectra of
the 50 largest rings such that it has small fluctuations and it
always spans over two Kelvin wavelength decades. For the
Gaussian filter, we use the value α = 0.1; varying this fraction
weakly modifies the large-scale values of the spectrum, but
the data in the inertial range remain unchanged. The KW
spectra are shown for different times in Fig. 5(a). It is evident
that all accessible KW modes get populated at early times
due to reconnection events that trigger the cascade [30]. We
observe KW spectra exhibiting power laws with an exponent
independent of time where the best scaling is appreciated at
the time where the rings are the longest (4 � t � 7). To get
the best estimation of the power-law exponent, we repeated
the Taylor-Green decay in a simulation box twice larger; in
this new configuration the scaling range spans almost two
wave-number decades. In Fig. 5(b) we show the spectrum
at t ∼ 5: the observed power-law exponent is close to the
weak-wave turbulence predictions and seems to agree with
the L’vov and Nazarenko αLN = 11/3 one. This can be better
appreciated by looking at the compensated spectra with respect
to αLN and αKS shown in the inset. This finding supports the
result in favor of L’vov and Nazarenko’s prediction previously
obtained while studying the KW oscillations about a perfect
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FIG. 5. (a) Temporal evolution of KW spectra (averaged over
the 50 longest rings). Resolution 2563. (b) KW spectrum at t ∼ 5
(averaged over the 50 longest rings) for run at resolution 5123.
The dashed line displays the k−11/3 scaling. The inset displays the
respective k11/3 (solid blue) and k17/5 (dashed red) compensated
spectra.

straight line in the GP model [31]. We highlight that although
the weak-wave turbulence prediction for the KW spectrum is
formally derived for KWs on an isolated straight vortex line
using the VF model, it remarkably turns out to be valid in
a dense turbulent tangle also driven by the GP model. This

is certainly due to the fact that the predicted KW spectrum
was found for the longest rings. Small rings quickly lose their
energy by phonon radiation and exchange momentum with
sound waves. Both contributions are important to understand
dissipation of superfluids at very low temperature and further
studies are still needed to fully comprehend the relevance of
such mechanisms.

Tracking vortices in GP turbulence opens up a new way for
studying and understanding the topological configuration and
properties of quantum vortex tangles. Although unlikely, we
show that rings can link creating a local (in time and space)
fluctuation of the center-line helicity. It will be of great interest
to repeat a similar analysis setting where the mean helicity
of the flow is not zero, like the ABC flow introduced in [22]
where linking and self-linking processes could be substantially
enhanced. Overall, the results presented in this work confirm
that some predictions traditionally associated to superfluid
liquid helium become important in weakly interacting BECs at
low temperature described by the GP model. Nowadays BEC
experimentalists are able to create and track few vortices in
harmonic traps [32,33]. A controlled experimental setting with
a turbulent BEC, such as the one presented in this work, has
yet to be achieved but it should be realizable in the near future.
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Chapter 4

Quantum vortex reconnections

This chapter presents a brief introduction to vortex reconnections in quantum fluids. We start by

discussing the general properties of the process of vortex reconnections. We then state the differences

between reconnections in classical and quantum fluids. Finally, we summarise the main properties of

vortex reconnection in quantum fluid and discuss in which sense vortex reconnections can be seen as

an irreversible process in superfluids. Three works are included at the end of the chapter.

In a classical fluid, vorticity is a continuous three-dimensional vector field. It occurs often in nature that
vorticity takes very high values in narrow fluid structures supported in vortex patches like tubes, sheets or
filaments [Saf93]. The latter is the case for instance of tornadoes in classical fluids and quantum vortices
in superfluids. As we have seen in previous chapters, such fluid structures have a complex dynamics.
A vortex filament can interact with itself, generating the self-propulsion of vortex rings, and with other
surrounding filaments leading to the formation of vortex tangles. When two filaments approach each
other, they can recombine through a process known as vortex reconnections. Vortex reconnection is one
of the most fundamental processes in fluid dynamics. Such process plays a fundamental role in several
physical phenomena like eruptive solar events [Xue+16], energy transfer and fine-scale mixing [HD11]
and turbulent states in superfluids [Bew+08]. Vortex reconnections are also a stand-alone mathematical
problem, related for instance, to the presence of singularities in the Euler and Navier-Stokes equations
[Sig85; PS87; SMO93; KT94; FM96; Mof00].

A vortex reconnection is necessarily accompanied by a change in the topology of vortex lines. For this
reason, only some configurations are generically possible. Figure 4.1 shows a sketch of the approach of
two vortices. The black arrow indicates the alignment of vorticity (the flow is turning accordingly to the
right-hand rule). In the case of an anti-parallel approach, we notice that a reconnection is possible by a

Anti-parallel approach Parallel approach

time time

Figure 4.1: Sketch of vortex approach. The black arrows indicate the orientation of the vortex.

“cut and connect” process. Indeed, each one of the blue vortices could be “cut” in two pieces and the
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Figure 4.2: Enstrophy visualisation. Left: Reconnection of trefoil know under Navier-Stokes equations.
Right: Snapshot of a turbulent decay in hyper-viscous Navier-Stokes equation (in collaboration with S.
Nazarenko).

“glued” to create the red vortices respecting the direction of the arrows. On the contrary, in the parallel
approach, vortices will tend to roll each other creating a thread. Of course, in the last case viscosity could
become quickly important.

The image sketched in figure 4.1 is extremely simplified. First of all, in classical fluids, a filament always
has a finite core size, so during the approach, the vortex core might substantially deform [Saf90; BHP16].
The description above only makes sense if we look at distances between the vortices where the vortex
core size is negligible. Furthermore, the reconnection is not so simple, many secondary structures appear
during the process. As a matter of illustration, we show in figure 4.2 three-dimensional visualisations
of the enstrophy field from (classical) Navier-Stokes simulations. Inspired by the experiments in water
carried on in Ref. [KI13], we simulate the evolution of a tree foil knot. At the left, we observe the
reconnection of the knot where many bridges (thin filaments connecting the main ones) develop. On the
panel at the right, we observe a turbulent decay in hyper-viscous Navier-Stokes. Vortices of the same sign
start rolling each other creating threads and more dissipative structures.

A full mathematical understanding of vortex reconnections is certainly a very difficult or almost
impossible task. We shall start by recalling the most fundamental constraint of perfect fluids. The Kelvin
circulation theorem states that in barotropic ideal fluids, the circulation

Γ =

∮

C
v · d` (4.1)

around a material (moving with the fluid) closed curve C is conserved [Tho68]. As a consequence, we
deduce that in perfect fluids, i.e. fluids driven by the Euler equations, vortex reconnections are not
allowed. On the contrary, in Navier-Stokes dynamics, the circulation is not conserved and it is dissipated
by the viscous term

dΓ

dt
= ν

∮

C
∇2v · d`, (4.2)

where ν is the kinematic viscosity of the flow. In particular, during a reconnection event in classical fluids,
a fraction of the circulations is dissipated [KT94; MBG01; HD11; HD11; YH20a].

From the point of view of a theoretician, one would like to isolate the universal features (if any), from
some model-dependent physical behaviour (finite core size a0 and typical vortex size R, finite Reynolds
number Rev = Γ/ν, etc.). In that sense, we are interested in the limit

a0 � R, Rev →∞, keeping Γ fixed. (4.3)

50



CHAPTER 4. QUANTUM VORTEX RECONNECTIONS

Figure 4.3: a) Vortex reconnection in the GP model from the work of Koplik and Levine [KL93]. b) Vortex
reconnection in superfluid helium from the work of Bewley et al. [Bew+08]. The Black dots correspond
to trapped particles of a (frozen) dilute mixture of atmospheric air in helium gas. c) Dynamics of vortices
in sodium Bose-Einstein condensate form Serafini et al. [Ser+17]. The figure shows a vortex rebound.

Such limit is extremely complex form the mathematical point of view. For instance, we know that because
the dissipative anomaly of turbulence [Fri95; Eyi08], in the limit of vanishing viscosity there is remanent
dissipation [Sre84; Vas15; Dub19]. Similar ideas have been for instance applied to the Kelvin theorem
[Che+06], showing that although it is violated in that limit, in some statistical sense the Kelvin theorem
should be recovered for infinite Reynolds numbers.

Leaving aside all those interesting mathematical issues, the limit (4.3) becomes physically relevant
for superfluids. Indeed, as discussed in Section 2.1.3, quantum vortices are topological defects of the
wave function. The vorticity field resulting form a quantum vortex needs thus to be interpreted as a
distribution

ω(x) = Γ

∮
δ(x− s)ds, (4.4)

where s is the filament parametrisation and the integral extends over the whole filament(s). The circulation
Γ is now quantised and a multiple of the Onsager-Feynman quantum of circulation (see Section 2.1.3).
Naively, as a superfluid is characterised by the absence of viscosity and driven by hydrodynamic equations,
one could argue that because of Kelvin theorem, in superfluids vortex reconnections should not be possible.
This claim is of course invalid. It was already suggested by Feynman in the 50’s [Fey55] that quantum
vortices should indeed reconnect. This idea was taken by Schwarz [Sch88], where he assumed that if vortex
lines driven by hydrodynamic interactions (LIA) get close enough they will reconnect. He implemented
this idea numerically and noticed that vortex reconnections are a very important mechanism for the
generation of turbulent quantum vortex tangles. A couple of years later, Koplik and Levine [KL93]
showed for the first time, by direct numerical simulations of the Gross-Pitaevskii model, that quantum
vortices indeed reconnect. A figure taken from the original paper by Koplik and Levine is displayed in
Fig.4.3.a. There is no conflict between quantum vortex reconnections and the Kelvin theorem. Indeed,
the fluid density vanishes on the vortex filament and thus the theorem can not be applied there. Although
in terms of velocity or vorticity (Eq.4.4) there is no notion of a vortex core, due to the dispersive term in
the GP model, the density field vanishes at the filament giving an effective core size of the order of the
healing length (see Section 2.1.3). It follows, as noticed by P.H Robert and C.A Jones [JR82], that during
quantum vortex reconnections, at very small scales, the circulation simply disappears and the remanent of
the vortex becomes a solitary wave of compression. Note however, that there is no net loss of circulation
during the process as vortex circulation is quantised, after the reconnection, each vortex will have its own
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quantum of circulation.

The direct observation of quantum vortex reconnection took many years. In superfluid helium, the
vortex core is of the order of the angstrom, which makes very difficult their direct visualisation. Concerning
atomic BECs, the vortex core is much larger (typically of the order of micrometers) but measurements are
commonly destructive (time of flight). Despite this fact, both superfluid helium and atomic BECs had
been visualised in the past by different techniques, particularly in the case of rotation, where Abrikosov
lattices have been observed [WP74; YGP79; Abo+01]. The difficulty in the case of vortex reconnections
is that measurements of the full dynamics of vortices are needed. This experimental breakthrough took
place in 2006, where micrometer size hydrogen particles were used to visualise quantum vortices [BLS06].
Despite their large size, particles have been extensively used over the last 15 years to study different
aspects of quantum vortex dynamics. In particular, quantum vortex reconnections were observed with
this technique [BLS06; FSL19]. Figure 4.3.b shows a vortex reconnection taken form [FSL19] where
quantum vortex reconnections are observed. At the end of this chapter, I include a work with U. Giuriato
where reconnections of quantum vortices having trapped particles are studied.

Concerning BECs, the recent development of new experimental techniques have allowed for the visu-
alisation of real-time vortex dynamics [Ser+15; Ser+17], opening the way for many interesting research
avenues. A visualisation of the temporal evolution of quantum vortices in a trap, taken from reference
[Ser+17], is shown in figure 4.3.c.

4.1 Rates of approach and separation

The simplest question that one can try to answer is how fast vortices approach and separate during a
reconnection event. We consider a situation as the one depicted in figure 4.1 (left). Let’s denote by
δ−(t) and δ+(t) the distance between the closest points of the filaments before and after reconnection,
respectively. We shall focus now, only on the case of quantum vortices (although the reasoning should be
also valid for classical vortex reconnection in the limit 4.3). The first answer to this problem can be given
by dimensional analysis. If we assume that the reconnection is local, in the sense that we can neglect the
interaction with other vortices, the only relevant dimensional parameters are, the quantum of circulation
Γ (with units of Length2/T ime) and the healing length ξ (proportional to the vortex core size). From
dimensional analysis, if we denote by tr the reconnection time, the distance should obey a relationship of
the type

Φ

(
δ±(t)√
Γ|t− tr|

,
δ±(t)

ξ

)
= 0, (4.5)

where Φ(·, ·) is an unknown function.

In the Biot-Savart limit, i.e. when δ± � ξ, the second argument of the function Φ, can be replaced
by ∞, where we of course assume that this limit exists. As a consequence, the Biot-Savart scaling for
vortex reconnections is δ(t) ∼ t1/2. On the opposite limit, when vortices are almost reconnecting, as the
filament are nodal lines of the wave function, we can formally take the limit ξ → ∞ (with Γ and t − tr
fixed). As the reconnection process in superfluid is a regular process, we can replace the second argument
of Φ equal to zero and recover again the same t1/2 scaling. This last limit was derived analytically by
Nazarenko and West [NW03]. We refer to this asymptotic as the linear regime because here, non-linear
terms in GP can be neglected. We will discuss further this limit later.

To summarise, assuming that the only relevant physical parameters are Γ and ξ and based on two
(opposite) asymptotic limits, we should have that during quantum vortex reconnections the distances
between vortices obey the law

δ±(t) = A±
√

Γ|t− tr|, (4.6)

where A± are two order one constants. Note that any scaling different from 1/2 in superfluid vortex
reconnections, needs necessarily the introduction of a different physical length or time scale. Indeed, for
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instance, in [Gal+19], it was observed a crossover between a ballistic t1 at long times and a reconnection
t1/2 scaling. The ballistic scaling simply corresponds to the one of two self-propagating vortices that
approach at a constant speed (a new dimensional parameter is thus present).

In classical fluids, the scaling (4.6) does not necessarily need to hold, as the dynamics of the vortex
core might be highly non-trivial [PK87]. Indeed, different scaling exponents have been found over the last
decades [HD11; Ker18; YH20a]. However, in a recent paper, Yao and Hussain [YH20b] have found the t1/2

scaling in Navier-Stokes simulations for rings having a very small vortex core (compared to their radius).
For vortices in superfluid helium, the scaling (4.6) has been indeed observed in experiments [Bew+08;
FSL19] and in Biot-Savart numerical simulations [Bag+12; TA11]. In what concerns numerical simulations
of the Gross-Pitaevskii model, many studies reported disparate exponents, even having different values
before and after the reconnection event. None of those exponents, violating the mathematical results
of Nazarenko and West [NW03], have been explained. One possible reason is that the GP model does
not provide direct information of the vortex filament and in order to study the reconnection processes,
an accurate vortex tracking algorithm is needed. Thanks to the accurate vortex tracking method that
we developed in [Vil+16], we were able for the first time to obtain a clear verification of the scaling 4.6
both, before and after reconnections, for very different vortex configurations [VPK17]. The scaling was
also verified later by other groups [Ser+17; Gal+19], in two recent papers where about 40 reconnection
events were studied [VPK20] and with vortices with trapped particles inside [GK20b]. The works [VPK17;
VPK20; GK20b] are included at the end of this chapter.

4.1.1 The linear regime of vortex reconnections

In this section, we reproduce and adapt part of the results of [NW03] as they allow to understand the
very process of reconnection. We have generalised such results in [VPK17; PK20c] in order to explained
some of our numerical observations, we redirect the reader to those references for a detailed analysis.

For the sake of simplicity, as in [NW03], we shall only discuss here the case when reconnection process
takes place fully in a plane. We recall we are in the limit in which δ± � ξ. As a consequence, the wave
function takes here very small values and the GP model simply reduces to the Schrödinger equation

∂ψ

∂t
= i

Γ

4π
∇2ψ, (4.7)

where the quantum of circulation is Γ = h/m with h the Plank constant and m the mass of the atoms.
The solution of (4.7) is simply given by

ψ(x, y, z, t) = ei
Γ(t−tr)

4π
∇2
ψr(x, y, z), (4.8)

where ψr(x, y, z) is the wave function describing the reconnection event. It was known that vortices
approach following asymptotically a pyramid [dWA94]. In particular, in the plane, vortices are hyperbolae
approaching each other by following their asymptotes. A suitable choice for the reconnection wave function
is

ψr(x, y, z) = z + i(az + tan2

(
φ+

2

)
x2 − y2) (4.9)

where the parameters have been written in such a way to facilitate the discussion later 1. Equation 4.9
can be seen as particular choice of a second (leading) order polynomial development of ψr around zero.
The choice in (4.9) is certainly not the most general one, and indeed misses several important physical
phenomena (see [VPK17; PK20c]), but it is good enough to illustrate the main properties. Replacing
(4.9) in (4.8) and setting ψ(x, y, z, t) = 0, yields and equation for the temporal evolution of the x and y

1Even in this planar case, the parameters have to obey some constraints. For the sake of simplicity we omit this discussion
here.
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φ+ φ+

x/ζ

y/ζ(a)

t < 0, R−1,2

t > 0, R+
1,2

Figure 4.4: a) Sketch of vortex reconnection in the linear regime. The two asymptotes are displays by
straight dashed lines. The the angle φ+ is also indicated in the figure. b) Close up of a GP reconnection
taken form [VPK17]. The arrows are the tangents to the filaments at the reconnection points. The
colormap indicates the local curvature of the filaments, from low (red) to high (green).

component of the vortex filaments. It reads

tan2

(
φ+

2

)
x2 − y2 =

Γ

2π
(t− tr)a

(
1− tan2

(
φ+

2
.

))
(4.10)

We can reinterpret now φ+ as the angle between the two asymptotes of the vortices after reconnection, as
sketched in Fig.4.4.a. Vortex reconnection literature usually refers to this angle as the reconnection angle.
Note that, this angle is related to an asymptotic approach and it is different from the one between the
tangents at the reconnection point that is always π (reconnections are always anti-parallel, see [VPK17]),
as shown in 4.4.b.

Solving Eq.(4.10) for t < tr and t > tr directly leads to the reconnection distances

δ−(t) =

√
2

π
a

[
1− tan2

(
φ+

2

)]√
Γ(tr − t), δ+(t) =

√√√√√ 2

π

a
[
1− tan2

(
φ+

2

)]

tan2
(
φ+

2

)
√

Γ(t− tr). (4.11)

The first observation is that the t1/2 scaling is recovered (as a consequence of dimensional analysis and the
fact that the process is regular). Nothing can be said respect to the individual values of the pre-factors
A± defined in equation (4.6), as the constant a is arbitrary. However, we notice that

A+

A−
= cot2

(
φ+

2

)
= tan2

(
φ−

2

)
. (4.12)

i.e. the ratio of the pre-factors is related to the value of the reconnection angles φ+ (or φ− = π − φ+). A
very important remark: A+ > A− if φ− ≤ π/2, and A+ = A− if the angle is exactly π/2. Note as well,
that in principle all possible values of φ+ are admissible in the linear regime.

Finally, as you can notice in 4.4.b, during reconnection a cusp is generated. Actually, we can show
that the curvature diverges as t−1/2 and the pre-factors are related to the value of (A+/A−)3. Curvature,
torsion and self-similarity are studied in the selected publication [VPK17].

At this point, we could state that the mechanism of vortex reconnections is a purely linear process in
the GP framework, however, some caution is needed. The previous derivations are valid only very close
to the reconnection point (δ � ξ and |t − tr| � ξ/c), and assume that vortices are already very close.
Indeed, we could take two vortices that are already about to reconnect, switch the non-linearity off, and
the process will not be very different from the one driven by the full GP model if the temporal evolution
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Figure 4.5: a) Squared distances δ2 versus time of the reconnecting filaments. Time is expressed in units
of τ = ξ/c, with c the speed of sound. The grey-scale colour indicate the measured value of A+/A−

in each case. b) Values of approach and separation pre-factors A+ and A−. Red points correspond to
data of [VPK20]. Grey left and right triangles correspond to reconnections of free and trapped vortices
respectively, from Galantucci et al.[Gal+19]; other symbols from Villois et al. [VPK17].

is short enough. However, one needs to keep in mind that vortices get close to each other because of their
mutual hydrodynamic interaction, which is a fully non-linear process. Without non-linear interactions, the
fluid has no pressure (other than the quantum part) and vortices do not present hydrodynamic behaviour.

4.2 Irreversibility of vortex reconnections

As we discussed in the previous section, the linear regime is a powerful mathematical tool to study
reconnections and to link the filaments before and after that event. The most important parameter that
fixes the reconnection is the approaching angle, that is simply related to the ratio of the pre-factors
A+/A− of formula (4.6). At this point, we do not have any knowledge of their values or even of their
ratio. In Villois et al. [VPK17] we have studied several configurations having very different geometries
and we always observed that A+ > A−, in other words, vortices separate faster than they approach. This
finding motivated a recent work [VPK20], where we study systematically more than 40 reconnections.

In reference [VPK20] we considered a Hopf link (two linked rings) and we varied their offset. We
evolved the Hopf link under GP evolution and carefully tracked the vortices to compute their reconnecting
distance. The rate of approach and separation are displayed in Fig.4.5.a. The very first remark is the good
agreement with the t1/2 law. As manifest in the colormap, we always observe that A+ > A−. This finding
is put in evidence in Fig.4.5.b, where all the values of A− are plotted against A+ for all the reconnections,
including data from other works. For almost all reconnections we observe A− ≈ 0.5, that is in agreement
with theoretical prediction of A− ∈ (0.45, 4.8) by Boué et al. [Bou+13a]. A natural question arises, if the
GP evolution is time reversible, why do we observe this time asymmetry? In other words, if an educated
observer is provided with data from reconnections, he or she should be able to tell if the provided data is
stored forward or backward in time.

In Villois et al. [VPK20], we provide an explanation to the observation in Fig.4.5. In a nutshell, the
explanation is that in order to observe a reconnection with A+ < A−, we have to provide energy to the
vortices, so this process should be generically excluded. We demonstrated that there is a loss of energy
and momentum from the vortices during the reconnection process. As the dynamics is conservative, the
energy and momentum need to be converted into compressible degrees of freedom. We observed a pulse
that is emitted during the reconnection and we were able to find analytically its direction.

We have shown that there is an intrinsic irreversibility in the process of superfluid vortex reconnections.
Reconnections generically imply a loss (or irreversible transfer) of momentum and energy. We can thus
understand this process as a route to reach thermal equilibrium. What does it happen in classical fluids?
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Remarkably, Yao and Hussain [YH20b] observed in Navier-Stokes simulations the t1/2 scaling with a
pre-factor of A− ∼ 0.4. More impressive, is that they also observed A+ > A−, although the value of
A+ is difficult to interpret, as in classical vortex reconnections, some circulation is lost. An emerging
obvious question is, what is the limit of infinite Reynolds number? Figure 4.5.a remind us the idea of
spontaneous stochasticity, a fundamental issue of turbulence (and other systems) [FGV01; ED15; TBM20].
Is something similar going on in this system?

To conclude this chapter and before going to the publications referenced previously, we present in
Fig. 4.6, visualisations of the reconnection process of a Hopf link in quantum and classical fluids (Navier-
Stokes and hyper-viscous Navier-Stokes). The emitted pulse in the quantum case, and the fluid structures
dissipated by viscosity and hyper-viscosity are clearly visible. We leave the reader to enjoy the beauty of
fluids and draw conclusions.

Figure 4.6: Left panel: vortex reconnections in superfluids. Visualisation of the density field produced
by numerical simulations of the GP model. Vortices are displayed in white as iso-contours of low density
values. Density waves are rendered in blue/red colours. Middle panel: vortex reconnections in clas-
sical fluids. Visualisation of the enstrophy field produced by numerical simulations of the Navier-Stokes
equation with Rev = Γ/ν = 2500. Right panel: Hyper-viscous simulation (with dissipation (−∇2)3)
to mimic high Reynolds numbers. Helical secondary structures develop after reconnection, probably to
compensate a loss of global helicity due to the unknotting of the link.
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4.3 Selected publications

In this chapter we integrally include three selected publications where I have contributed to the problem
of vortex reconnections.

• Alberto Villois, Davide Proment, and Giorgio Krstulovic. “Universal and Nonuniversal Aspects of
Vortex Reconnections in Superfluids”. In: Physical Review Fluids 2.4 (Apr. 4, 2017), p. 044701.
issn: 2469-990X. doi: 10.1103/PhysRevFluids.2.044701

• Alberto Villois, Davide Proment, and Giorgio Krstulovic. “Irreversible Dynamics of Vortex Recon-
nections in Quantum Fluids”. In: Physical Review Letters 125 (16 Oct. 2020), p. 164501. doi:
10.1103/PhysRevLett.125.164501

• Umberto Giuriato and Giorgio Krstulovic. “Quantum vortex reconnections mediated by trapped
particles”. In: Physical Review B 102 (9 Sept. 2020), p. 094508. doi: 10.1103/PhysRevB.102.

094508

The first paper contains my first contribution to vortex reconnections. There, we observe the t1/2

temporal scaling within the framework of GP for a variety of configurations. We also highlight the
importance of the ratio A+/A− and relate it to curvature, torsion and the breakdown of self-similarity.
This work obtained an international recognition thanks to the 2018 François Naftali Frenkiel Award
for Fluid Mechanics of the APS Division of Fluid Dynamics in Atlanta. https://journals.aps.org/

prfluids/pdf/10.1103/PhysRevFluids.4.010002

The second work, appearing in the cover of Physical Review Letter, explains the irreversibility of
vortex reconnections. The main results are presented focusing on the physical implications are explained
without going in to the mathematical details. All the technical aspects have been published in a joint
publication in Physical Review Fluids [PK20c].

Finally, in the third work published in Physical Review B, we studied how quantum vortex recon-
nections are affected by the presence of particles. In this setting, relevant for experiments in superfluid
helium, vortices exchange energy and momentum also with particles. We use a simple model of particle
dynamics in the Gross-Pitaevskii equation that will be discussed in detail in the next chapter.
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Insight into vortex reconnections in superfluids is presented, making use of analytical
results and numerical simulations of the Gross-Pitaevskii model. Universal aspects of the
reconnection process are investigated by considering different initial vortex configurations
and making use of a recently developed tracking algorithm to reconstruct the vortex
filaments. We show that during a reconnection event the vortex lines approach and separate
always according to the time scaling δ ∼ t1/2 with prefactors that depend on the vortex
configuration. We also investigate the behavior of curvature and torsion close to the
reconnection point, demonstrating analytically that the curvature can exhibit a self-similar
behavior that might be broken by the development of shocklike structures in the torsion.

DOI: 10.1103/PhysRevFluids.2.044701

I. INTRODUCTION

Reconnections in fluids have been a subject of study for a long time in the context of plasma
physics [1] and both classical [2] and superfluid dynamics [3]. Depending on the physical system
considered, such reconnections are events characterized by a rearrangement in the topology of either
a magnetic field (magnetic reconnections) or vorticity field (vortex reconnections). Such topological
modifications are believed to play a fundamental role in several physical phenomena such as eruptive
solar events [4], energy transfer and fine-scale mixing [5], and turbulent states in superfluids [6].
Despite their physical relevance, reconnections represent also a stand-alone mathematical problem,
related, for instance, to the presence of singularities in the Euler equation [2,7,8].

In classical fluids described by the Navier–Stokes-type equations, reconnecting vortex tubes
stretch and deform, leading to complicated dynamics and the formation of structures like vortex
bridges [5]. In order to understand fundamental aspects of vortex reconnections it is often desirable
to work with a vortex configuration where the vorticity is confined along lines of zero core size. Such
idealization is called a vortex filament. This limit naturally arises in superfluids such as superfluid
liquid helium (He II) and Bose-Einstein condensates (BECs). Superfluids are in fact examples of
ideal flows of quantum mechanical nature characterized by the lack of viscous dissipation and
by a Dirac δ vorticity distribution supported on the vortex filaments. For such fluids, the velocity
circulation is equal to a multiple of the Feynman-Onsager quantum of circulation � = h/m, with h

the Planck constant and m the mass of the superfluid’s bosonic constituents.
Due to Kelvin’s circulation theorem (or Alfvèn’s theorem in magnetohydrodynamics), in a

barotropic ideal flow reconnections should be forbidden since the circulation of vortex lines
transported by the flow is conserved and so their topology is frozen. However, as already suggested
by pioneering works of Feynman [9] and Schwarz [10], vortex reconnections in superfluids do
exist and play a fundamental role in superfluid turbulence. This was indeed confirmed by Koplik
and Levine [3], who performed numerical simulations of reconnecting vortex lines within the
Gross-Pitaevskii (GP) model. They showed that Kelvin’s circulation theorem does not hold in this
context because the superfluid density identically vanishes at the vortex filament. With the progress
of experimental techniques in the past decade, reconnecting superfluid vortices have been visualized
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in He II [6,11] and in BECs [12,13]. From the theoretical side, many works have been devoted to
study the reconnecting vortex filaments in superfluids, by using either the so-called vortex filament
(VF) model introduced by Schwarz [10] or the GP model.

The simplest question to ask, although contradictory answers appear in the literature, is related
to the rates of approach and separation of two reconnecting vortices. Assuming that a reconnection
event is a local process in space and the circulation � is the only relevant dimensional quantity
involved, by simple dimensional analysis it follows that the distance δ(t) between two reconnecting
filaments should scale as

δ(t) ∼ (�t)1/2, (1)

independently if it is measured before or after the reconnection. Such a prediction has been confirmed
by numerical simulations of the VF model [14] and in He II experiments [11]. In the framework of
the GP model, the same scaling was asymptotically derived in Ref. [15], but a number of numerical
studies report disparate scaling exponents that may differ between the before and after reconnection
stages [16–18]. Another fundamental question regards the universality of the geometrical shape
of the vortex filaments at the reconnection. It is expected that vortices become locally antiparallel
during the reconnection process [15]. However, using the VF model, it has been reported that the
reconnection angle may follow a broad distribution that depends on the turbulent regime that is
considered [14]. It has also been observed that during a reconnection event cusps are generated on
the filaments and argument has been given either in favor of those cusps being universal [19] or not
[20]. Finally, a great deal of interest has arisen recently in the generation of Kelvin waves (helical
waves propagating along vortex filaments) [6,21–23] and the evolution of hydrodynamical helicity
[24–28] during reconnection events.

The VF model is based on Biot-Savart equations that describe a regularized Dirac δ vorticity
distribution field in the incompressible Euler equation; it provides direct information on the vortex
filaments and is widely used to mimic superfluid vortex dynamics and turbulence in He II. However,
due to Kelvin’s circulation theorem in the Euler equation, reconnections here need to be added
by some ad hoc cut-and-connect mechanisms. In addition, the VF model introduces a small-scale
cutoff to regularize Biot-Savart integral divergence and thus cannot explore the vortex dynamics at
the smallest scales where the reconnection events take place. The GP model represents an alternative
in the study of vortex dynamics and reconnections, the main advantages being that it naturally
contains vortex reconnections in its dynamics and that the entire reconnection process is regular
due to the identically zero superfluid density field at the vortex core. Studying such small-scale
dynamics is crucial for understanding how energy is transferred through scales and eventually
dissipated. Unfortunately, no information can be directly inferred from the GP model on the vortex
dynamics because this model described the evolution of an order parameter complex field, which
contains simultaneously sound excitations and vortex lines in the form of topological defects. We
will present here a detailed study of vortex reconnections by exploiting a recently developed tracking
algorithm [29] that is able to track vortex filaments in numerical simulations of the GP model with
a machine epsilon level of accuracy.

In order to understand what is universal in vortex filament reconnection mechanisms, we study
the dynamics of four different initial configurations: (a) perpendicular and (b) almost antiparallel
lines, (c) a trefoil knot, and (d) reconnections occurring in a fully turbulent tangle dynamics. We
will show that reconnecting vortex lines always obey the dimensional analysis scaling (1) (both
before and after reconnection) and they generally separate faster than they approach. In addition, we
report that, regardless of the initial configuration, vortices become antiparallel at the reconnection.
We also report a self-similar behavior of the curvature close to the reconnection point when torsion
does not play an important role and shocklike structures appear in the torsion evolution for some
configurations. Those findings are explained by some asymptotic calculations.
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II. THE GP MODEL AND RECONNECTION CASE STUDIES

The GP model is a dispersive nonlinear wave equation describing the dynamics of the order
parameter ψ of a BEC arising in dilute Bose gases; for the sake of completeness and clarity we
introduce it in Appendix A. When ψ is linearized about a constant value ψ0 = √

ρ0/m, the sound
velocity results in c = √

gρ0/m and dispersive effects take place at length scales smaller than the
healing length ξ = h̄/

√
2ρ0g. This can be easily understood by rewriting the GP model using those

physical parameters

i
∂ψ

∂t
= c√

2ξ

(
−ξ 2∇2ψ + m

ρ0
|ψ |2ψ

)
(2)

and comparing the magnitude of the first and second terms on the right-hand side. Note also that by
a suitable time and space rescaling, the parameters c and ξ can be reabsorbed; in this work length
and time scales are expressed in units of the healing length ξ and its characteristic time τ = ξ/c.

The relationship between the GP equation and a hydrodynamical model is immediately illustrated
by introducing the Madelung transformation

ψ(x,t) =
√

ρ(x,t)

m
ei[ϕ(x,t)/

√
2cξ ], (3)

which relates ψ to an inviscid, compressible, irrotational, and barotropic superfluid of density ρ(x,t)
and velocity v = ∇ϕ. In the domain where the Madelung transformation is well defined (ψ �= 0), the
velocity field is potential. However, vortices may exist as topological defects of the order parameter.
In places where the density vanishes (nodal lines) arg ψ is not defined. The field ψ still remains a
single-value function if the circulation

∮
v · d
 along a nodal line is a multiple of the quantum of

circulation � = h/m = 2
√

2πcξ . For this reason nodal lines of ψ are called quantum (or quantized)
vortices. Their corresponding velocity field v thus decays as the inverse of the distance to the vortex
and their vorticity is therefore a Dirac-supported distribution. Their typical vortex core size is order
of ξ .

The GP equation (2) is numerically integrated with a pseudospectral code. The resolution is
chosen carefully to sufficiently resolve the vortex core in space and the reconnections in time. We
consider four different initial configurations in a cubic box of size L with N collocation points in
each dimension.

(a) Perpendicular lines. The order parameter field is characterized by straight vortex filaments
perpendicular to each other and having an initial distance of 6ξ . This initial configuration is shown
in Fig. 1(a1) for L/ξ = 128 and N = 256.

(b) Antiparallel lines. Vortex filaments with opposite circulation are set at an average distance of
6ξ . In order to trigger a Crow instability [30], a small perturbation is introduced by adding a Kelvin
wave of amplitude ξ and wavelength equal to the system size. The initial configuration is shown in
Fig. 1(b1) for L/ξ = 128 and N = 256.

(c) Trefoil knot. A vortex filament reproducing a torus T2,3 knot (a trefoil) is produced following
[31]; the torus on which the knot is built has toroidal and poloidal radii of R0 = 16ξ and R1 = 4ξ ,
respectively. The initial configuration is shown in Fig. 1(c1) for L/ξ = 128 and N = 256.

(d) Turbulent tangle. We prepare an initial condition consisting of several large-scale vortex rings
that replicates a Taylor-Green flow as in Ref. [32]. The initial condition then evolves in time: The
rings reconnect, breaking the initial symmetry and creating a dense turbulent tangle displayed in
Fig. 1(d1) (see [33] for a complete description of the field evolution). We study four successive vortex
reconnection events occurring in a small volume [Fig. 1(d2)] at stages when the tangle density is
higher for L/ξ = 256 and N = 256.

The time stepping scheme for cases (a) and (b) is a Strang-splitting method, whereas for cases (c)
and (d) it is a second-order Runge-Kutta method. In each case, the time step is chosen to be smaller
than the fastest linear time scale of the system. Conservation of the invariants has been carefully
checked.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1)
the turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized
vortices are considered, the quantum of circulation � can be used to formulate an extra length scale.
Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be

δ±(t) = A±ξ 1−2α± |�(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after
(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting
filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of
the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases
the approach and separation rates follow the same dimensional t1/2 scaling. For each event we
estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic
mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight
deviations are observed in some cases. Perhaps this fact could explain the different results for
the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after
the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and
α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on
the initial vortex filament configuration. In these works the time asymmetry was interpreted as a
manifestation of the irreversible dynamics due to sound emission; we will return to this interesting
point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex
distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate
sound at all scales) and no asymmetry concerning the exponent is observed.

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with
respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating
the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity
but are not universal. Moreover, we observe that the vortex filaments usually separate faster than
they approach (A− � A+).
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FIG. 2. Temporal evolution of the distance between the reconnecting vortex filaments before (blue) and
after (red) the estimated reconnection time tr for the (a) perpendicular, (b) antiparallel, (c) trefoil knot, and
(d) turbulent tangle configurations. For the turbulent tangle four different reconnection events have been tracked.
(a2)–(d2) Same plots as in (a1)–(d1) but on a log-log scale.

The tracking algorithm we use follows the pseudovorticity and naturally provides the orientation
of the filament with respect to the circulation. It thus allows us to compute the tangent vectors to
the lines and infer the orientation of the filaments by evaluating the cosine of the angle θ between
the vectors at the two closest points as illustrated in Fig. 3(b) and in Ref. [34]. By approaching

FIG. 3. (a) Fitted values of the prefactors A± corresponding to (4). (b) Example of reconnecting filaments
(trefoil knot case). The black dots represent the points of minimal distances and are used to compute δ(t), the
arrows are the tangents of the filaments at those points, and the reconnection angle θ is defined by using the
scalar product of the tangents. The coloring is proportional to the filament curvature (low in red and high in
green and blue). (c) Temporal evolution of the cosine of the reconnecting angle. The inset displays the same
plot on a log-log scale.
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the reconnection point each vortex filament develops a cusplike structure characterized by high and
localized values of the curvature (displayed in green and blue). The temporal evolution of cos θ

for all the case studies is presented in Fig. 3(c). It is apparent that, independently of the initial
configurations, vortices are always antiparallel at the reconnection point. This behavior appears to
be time symmetric about the reconnection time and is smooth, as highlighted in the inset of Fig. 3(c),
where we show cos θ in log-lin coordinates for a better view of the short times before and after
reconnection.

IV. ANALYTICAL PREDICTIONS USING A LINEAR APPROXIMATION

The results presented in Figs. 2 and 3 support the analytical predictions obtained by Nazarenko
and West in Ref. [15]. Their seminal calculations consider a planar reconnection of two vortex
filaments having a hyperbolic configuration at times close to tr . As we will observe in the following,
vortex reconnections do not always fully lie in a plane and the local torsion of the filament can play an
important role. We generalize here the calculations performed in Ref. [15], including torsion of the
vortex lines to understand its effect during the reconnection. Let us assume that at the reconnection
time tr and close to the reconnection point the order parameter of two reconnecting nonplanar vortex
lines is given by

ψr (x,y,z) = z + γ

a
(x2 + y2) + i(az + βx2 − y2), (5)

with a �= 0 and β−γ

γ+1 > 0 (the Nazarenko-West reconnecting vortex profile is recovered by setting
γ = 0). In the vicinity of the vortex filaments, ψ is small and the nonlinear term in Eq. (2) can be
neglected. Within this approximation the pre- and postreconnection solution is given by ψ(x,y,z,t) =
e[i(t−tr )�/4π]∇2

ψr (x,y,z). By solving ψ(x,y,z,t) = 0 we can explicitly obtain the temporal evolution
of the vortex lines. Equation (4) is obtained with

α+ = α− = 1

2
,

A+

A− =
√

1 + γ

β − γ
(6)

for a > 0 and β < 1 − 2γ /a2 (refer to Appendix C for a figure of the vortex profiles, details on the
above calculations, and different choices of a and β). Interestingly, the angle between the asymptotes
of the hyperbolic vortex configuration close to reconnection is found to be φ = 2 tan−1(A−/A+).

The linear approximation also allows for computing the curvature and torsion of the vortex lines.
As pointed out by Schwarz in Ref. [10], the curvature κ±(s,t) should present a self-similar behavior
close to the reconnection point of the form κ±(s,t) = κ±

max(t)�±(ζ±), where ζ± = (s − sr )κ±
max(t),

sr is the coordinate of the reconnecting point, and κmax is the maximum value of curvature. The
present calculations predict

κ±
max(t) ∝ |t − tr |−1/2,

κ+
max(t)

κ−
max(t)

=
(

A+

A−

)3

. (7)

Note that the t−1/2 scaling could be directly inferred by dimensional analysis arguments but not
the scaling of the dimensionless prefactors. Moreover, these self-similar functions �±(ζ±) can be
expressed in compact forms for small values of γ and t − tr as

�±(ζ ) = 1{
1 + [(

A∓
A±

)2 + 1
]
ζ 2

}3/2 + O

(
η±γ 2 (t − tr )

τ

)
, (8)

with η± = (A∓/A±)2 − 1. This function corresponds to a cusp in the vortex filament at t = tr and
s = sr . The dependence on the coefficient (A∓/A±)2 + 1 multiplying the self-similar variable ζ±
is unexpected and could not also be guessed by dimensional arguments. We also remark that the
self-similarity is only exact when γ = 0 or η± = 0.
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FIG. 4. (a) Curvature normalized by κmax close to (just before) the reconnection time for all reconnection
events explored as a function of (s − sr )κmax. (b) Same data represented using the scaling suggested by the
self-similar form (8). The black dashed line displays the theoretical prediction.

Finally, the torsion T ±(s,t) of the vortex line can also be computed within this approximation.
When γ �= 0 torsion is not identically null but it vanishes at sr , thus confirming that reconnections
occur locally on a plane. Also, it can be proved that it changes sign linearly at sr with a slope
that diverges as γ |t − tr |−1/2, creating shocklike structures. The slope ratio before and after the
reconnection satisfies the relation dT +

ds
/ dT −

ds
|s=sr

= A+/A−.
We observe that in the context of Euler and Navier-Stokes flows, dynamical equations for torsion

and curvature have been derived in Ref. [35]. These nonlinear equations do not allow for predicting the
generation of curvature cusps and shocklike torsion structures. It would be interesting to investigate
if the scaling laws reported above also remain valid in classical fluids and MHD flows.

V. NUMERICAL MEASUREMENTS OF THE CURVATURE AND TORSION

Motivated by the previous asymptotic results, we analyze the data coming from simulations. We
start by looking at the curvature at a fixed time very close to the reconnection. In Fig. 4(a) the
curvature just before tr normalized using κmax is shown for all configurations. We indeed observe the
formation of a cusp at the reconnection point sr in all cases. Note that, strictly speaking, no universal
function of the curvature is observed. This is actually expected from the calculations of the curvature
(8), which shows a dependence on the values A+/A− that differ from case to case. However, (8)
suggests that if the variable

√
1 + (A+/A−)2(s − sr )κmax is used instead, a universal form should be

recovered. As shown in Fig. 4(b), the data indeed collapse into one universal function when using
this new variable. The theoretical prediction (8) is also plotted with a dashed black line to appreciate
the remarkable agreement.

We now study the temporal evolution of the curvature to determine if a self-similar evolution
is observed. Figure 5(a) shows how the trefoil knot curvature curves, rescaled by their maximum
values, almost perfectly collapse into a single plot, demonstrating the self-similar behavior for this
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FIG. 5. (a) Self-similar evolution of the curvature close to the reconnection point for the trefoil vortex. Blue
lines (from light to dark) correspond to times before reconnection and red lines (from dark to light) to times after
reconnection. The inset displays the temporal evolution of the maximum value of the curvature on a log-log
scale before and after, normalized as suggested in Eq. (7). (b) Same plot as in (a) but for the reconnection
occurring in the antiparallel case. In both figures we consider times such that |t − tr | < 0.5τ and the dashed
line shows the t−1/2 scaling. In both figures the black dashed line displays the theoretical prediction (8).

configuration. In the inset we plot the maximum value of the curvature as a function of time on
a log-log scale. The predicted t−1/2 scaling of (7) is clearly observed. In Fig. 5(b) we present the
same analysis done for the antiparallel case where a clear breakdown of the self-similar behavior is
observed. This can be explained by assuming a non-negligible value of γ , hence a strong torsion,
that breaks the validity of the expansion done to obtain (8), only recovered when times are very
close to tr , as evident when comparing with the theoretical prediction displayed as a dashed black
line. The temporal evolution of the maximum of curvature, shown in the inset of Fig. 4(b), still
confirms the relations presented in Eq. (7), namely, the scaling t−1/2 scaling normalized by the
ratio of the prefactors is confirmed. Note that the agreement is very good given the large value
(A+/A−)3 = 4.153. For all other cases except tangle 2, self-similarity is observed (data not shown).

The breakdown of self-similarity is predicted by (8) when A+/A− �= 1 and γ �= 0. A nonzero
value of γ is related, as we have seen, to torsion close to the reconnection point and a shocklike
structure formation (see Appendix C). In Fig. 6(a) we show the temporal evolution of the torsion
T for the antiparallel case. The shocklike structure formation, as well as the linear behavior close
to the reconnection point, is clearly visible, thus explaining the breakdown of the self-similarity in
Fig. 5(b). The inset shows that the temporal evolution of the slope of the torsion at sr obeys the
scaling |t − tr |−1/2 with the correct normalization A+/A− suggested by the analytical calculations.
For completeness, in Fig. 6(b) we show the torsion normalized by the maximum value of the
curvature for all the configurations close to the reconnection time. In all the other cases except for
tangle 2, the slope of torsion is almost zero at the reconnection point. Remarkably, tangle 2 and
antiparallel configurations correspond to the cases where vortices separate much faster than they
approach [see Fig. 3(a)]. We remark finally that measuring quantities such as curvature and torsion
is numerically very challenging as they involve high-order derivatives.
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FIG. 6. (a) Temporal evolution of the torsion T as a function of the arc length in the antiparallel case. Blue
lines (from light to dark) correspond to times before reconnection and red lines (from dark to light) to times after
reconnection. The inset displays the temporal evolution of the slope of torsion computed at the reconnection
point sr on a log-log scale before and after, normalized as A+/A−. (b) Torsion T as a function of the arc length
close to (just before) the reconnection for all configurations (same legend as in Fig. 4).

VI. DISCUSSION

The reconnection of quantized vortex filaments within the Gross-Pitaevskii model displays both
universal and nonuniversal phenomena. We found that close to the reconnection the approach
and separation rates follow the same scaling δ ∼ (�t)1/2 and the vortex filaments always become
locally antiparallel. Previous numerical studies reported scaling rates in the form of a power law
with exponents depending on the configuration. By dimensional analysis, any scaling different from
α = 1/2 would introduce necessarily a new time or length scale to the problem that needs to be made
explicit. The discrepancies in previous studies might be due to the fact that (i) the computational
domain is not big enough, hence introducing a non-negligible system size length scale, (ii) the
initial condition contains a considerable amount of sound waves such that the rms value of the
compressible kinetic energy can be used to construct an extra time scale, or (iii) the observed
scaling corresponds to dynamical regimes occurring much farther or later than the reconnection
event and is thus driven by the specific vortex configuration and therefore is nonuniversal. In that
spirit, reconnections within Navier-Stokes flows, a modified version of the model GP with nonlocal
potential and/or high-order nonlinearities to better replicate superfluid liquid helium, or coupled GP
equations modeling multicomponent or spinorial BECs could indeed lead to different scalings.

Our findings demonstrate that the prefactors A± are not universal in the GP method. However,
once measured case by case, their ratio determines many properties of the reconnection dynamics.
Note that the easiest way to determine this ratio is to look at the medium- to large-scale reconnection
angle φ between the hyperbola asymptotes, which should be an accessible quantity in superfluid
experiments [11,13,36]. Let us also remark that the t1/2 scaling we observed extends beyond the
distance ξ . This suggests that the linear approximation might be used as a matching theory in
order to relate measurements done well before and far from the reconnection events. Bose-Einstein

044701-9



VILLOIS, PROMENT, AND KRSTULOVIC

condensate experimentalists are able today to study vortex dynamics and reconnections [13,36]. Our
predictions should directly apply to those systems.

Finally, let us underline that understanding the dynamics of the reconnection events is crucial
to provide a full comprehension of the dissipative processes occurring in superfluids in the low-
temperature limit. It is largely believed that Kelvin waves play a fundamental role carrying the
energy to the smallest scales where it finally gets dissipated by sound radiation. The cusps arising
in the vortex filaments due to reconnection events are responsible for a rapid and efficient excitation
of Kelvin waves at all scales. Here we provided an analytical formula for the dynamical formation
of the cusps and we aim to use this result in further theoretical studies to estimate the rate of
radiation during reconnection. Also, we have shown that non-negligible torsion of the reconnecting
filaments implies the breakdown of self-similarity, resulting in the formation of shocklike structures
of the torsion. This phenomenon seems to be linked to the large difference observed in the A±
prefactors, hence to extreme events where vortices separate much faster than they approach, and to
the irreversibility of the reconnection events. We do not have yet a theoretical understanding of this
fact and more data would be desirable to perform a detailed statistical analysis.
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APPENDIX A: THE GROSS-PITAEVSKII EQUATION

In the limit of very low temperature a weakly interacting Bose gas can be described using a mean
field approximation in terms of a complex order parameter (or condensate wave function) ψ . Such
a system is governed by a dispersive nonlinear wave equation called the Gross-Pitaevskii equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ, (A1)

where m is the mass of the bosons and g = 4πah̄2/m, with a the boson s-wave scattering length.
The chemical μ can in principle be absorbed by a global phase shift. Although formally derived for
BECs, the GP model qualitatively reproduces many aspects of superfluid liquid helium too. It can
be used to model classical vortex dynamics in situations where a large-scale separation between the
vortex core and the size of such a vortex is present.

The GP equation possesses a Hamiltonian structure and conserves the total number of particles

N =
∫

|ψ |2d3x, (A2)

the total energy

H =
∫ (

h̄2

2m
|∇ψ |2 + g

2
|ψ |4

)
d3x, (A3)

and the total momentum

P = h̄

2i

∫
[ψ∗∇ψ − ψ∇ψ∗]d3x. (A4)
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The speed of sound for such a model is given by c = √
gρ0/m. This value can be derived by

linearizing (A1) about a constant value ψ = √
ρ0/m = √

μ/g. It is also possible to identify a
characteristic length ξ = h̄/

√
2ρ0g, called healing length, representing the scale where the linear

contribution in Eq. (A1) equals the nonlinear one. Dispersive effects will then take place for length
scales smaller than ξ . Equation (A1) can be rewritten in term of the two physical quantities c and ξ as

i
∂ψ

∂t
= c√

2ξ

(
−ξ 2∇2ψ − ψ + m

ρ0
|ψ |2ψ

)
. (A5)

By using the Madelung transformation

ψ(x,t) =
√

ρ(x,t)

m
ei[ϕ(x,t)/

√
2cξ ], (A6)

it possible to relate the order parameter ψ to a compressible, irrotational, and barotropic superfluid
having density ρ(x,t) and velocity v = ∇ϕ. Indeed, plugging the transformation (A6) into (2), we
directly obtain

∂ρ

∂t
+ ∇ · (ρv) = 0, (A7)

∂φ

∂t
+ 1

2
v2 = c2 ρ0 − ρ

ρ0
+ c2ξ 2 ∇2√ρ√

ρ
. (A8)

Equations (A7) and (A8) are the continuity equation and the Bernoulli equation, respectively, except
for the last term in Eq. (A8), which is called quantum pressure and has no analog in classical fluid
mechanics.

Although the velocity field defined by the Madelung transformation (A6) is potential, solutions
with nonzero circulation can exist in the form of topological defects of the order parameter ψ .
For such vortex solutions the vorticity is supported on the curves (nodal lines) where the density
field vanishes and the phase is not defined. In order to ensure that the order parameter stays single
valued, the circulation around such nodal lines must be constant and equal to a multiple of the
Onsager-Feynman quantum of circulation � = h/m = 2

√
2πcξ . For this reason, nodal lines of

the order parameter are called quantum (or quantized) vortices. The region around the topological
defect where the density drops to zero is called the vortex core and its size is of the order of the
healing length ξ . The hydrodynamical interpretation of superfluids is thus the one of a compressible
(dispersive) flow where vorticity is a distribution (a superposition of Dirac δ’s) supported on the
vortex filament.

We would like to remark that often quantum vortices are misleadingly referred to as the
singularities of the system, as the velocity field diverges as 1/r , where r is the distance to the
filament. This divergence is just a consequence of the change of coordinates given by the Madelung
transformation. At the vortex position, the order parameter solution of the GP equation is a smooth
field. We can thus precisely track vortices finding the zeros of ψ as described in Appendix B.

APPENDIX B: VORTEX TRACKING ALGORITHM

We have recently developed a robust and accurate algorithm to track vortex lines of the order
parameter ψ in arbitrary geometries. The details of the algorithm and accuracy of the method can
be found in Ref. [29]. We recall here the basic ideas. A quantized vortex line in three dimensions
corresponds to a nodal line defined by

Re[ψ(x,y,z)] = Im[ψ(x,y,z)] = 0. (B1)

The algorithm is based on a Newton-Raphson method to find zeros of ψ and on the knowledge of the
pseudovorticity field W = ∇ Re[ψ] × ∇ Im[ψ], always tangent to the filaments, to follow vortex
lines [18]. Starting from a point x0 where the density |ψ |2 is below a given small threshold (therefore
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FIG. 7. Sketch of the plane on which the Newton-Raphson method is implemented.

very close to a vortex), we define the orthogonal plane to the vortex line using W(x0). The plane is
then spanned by the two directors û1 and û2, as illustrated in Fig. 7. A better approximation for the
vortex position xv on the plane is then given by x1 = x0 + δx. Here the increment δx is obtained
using the Newton-Raphson formula (the linear approximation)

0 = ψ(x0 + δx) ≈ ψ(x0) + J (x0)δx, (B2)

where J (x0) is the Jacobian matrix expressed as

J =
(∇ Re[ψ] · û1 ∇ Re[ψ] · û2

∇ Im[ψ] · û1 ∇ Im[ψ] · û2

)
. (B3)

The increment can be therefore calculated using δx = −J−1(x0) · {Re[ψ(x0)],Im[ψ(x0)]}T . Suffi-
ciently close to the line, the Jacobian matrix is always a nonsingular 2 × 2 matrix, so its inverse can
be computed. We underline that the method requires the evaluation of the Jacobian (B3) at intermesh
points. Making use of the spectral representation of ψ , we can precisely compute those values using
Fourier transforms. This process can be iterated until the exact location xv is determined upon a
selected convergence precision.

To track the following vortex point of the same line we use as a next initial guess x0 = xv + ζW,
which is obtained evolving along W by a small step ζ . The process is reiterated until the entire line
is tracked and closed and then repeated with another line until the whole computation domain has
been fully explored.

APPENDIX C: DETAILED CALCULATIONS OF THE LINEAR APPROXIMATION

An analytical study of a reconnection event in the GP model was provided by Nazarenko and West
[15], where it is shown that two vortices are antiparallel during a reconnection and their distance
scales as δ(t) ∼ t1/2. In the same spirit as [15], we assume that inside the vortex core the nonlinear
term of the GP equation can be neglected and so a reconnection event should be governed by the
(linear) Schrödinger equation. For the sake of simplicity, in dimensionless units this equations reads

i∂tψ + 1
2∇2ψ = 0. (C1)

Note that we absorbed the parameters c and ξ in Eq. (2) by a suitable time and space rescaling. We
remark that in Ref. [15] reconnections are studied just on a plane, whereas here we consider vortex
filaments with nonzero torsion. At the reconnection time tr we use as the initial condition the ansatz

ψr (x,y,z) = z + γ

a
(x2 + y2) + i(az + βx2 − y2). (C2)

Looking for ψr = 0, one can recover the vortex profile, given by the curves

R(s) =
(

s, ± s

√
β − γ

γ + 1
, − s2 γ (β + 1)

a(γ + 1)

)
, (C3)
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FIG. 8. Plot of the initial condition using γ = 0.01, β = 1/2, and a = 1. The vortex filaments are shown
in blue while their projection on the x-y is shown in orange. The arrows identify the circulation around each
vortex.

where s is the parametrization of the curve. We note that (C3) requires that

β − γ

γ + 1
> 0. (C4)

In Fig. 8 we plot the vortex filaments R(s) (blue lines) for our initial condition.
The vortices projected on the x-y planes form two hyperbola (orange lines) crossing at the

reconnection point. We note that the values β and γ fix the angle

φ = 2 tan−1

(√
1 + γ

β − γ

)
(C5)

between the two hyperbola. The arrows identify the circulation around each vortex.
The formal solution of Eq. (C1) is given by

ψ(t) = ei[(t−tr )∇2/2]ψr, (C6)

where tr is the time when the reconnection occurs. The choice of a second-order polynomial for ψr

allows us to find the exact solution of (C1):

ψ(t) = z + γ

a
(x2 + y2) − 2t(β − 1) + i

(
az + βx2 − y2 + 4(t − tr )

γ

a

)
. (C7)

Assuming a > 0 and γ < β <
a2−2γ

a2 , the vortex lines before the reconnection (t < tr ) are given by

R−
1,2(s,t) =

(
s, ±

√
(tr − t)(a2(1 − β) − 2γ ) + as2(β − γ )

a(γ + 1)
,

(t − tr )(a2(β − 1) − 2γ 2) − aγ (β + 1)s2

(γ + 1)a2

)
, (C8)
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no solutions

A+

A− < 1
A+

A− > 1
A+

A− > 1

β =
a2 − 2γ

a2
β = 1 + 2γβ = γ0

φ− > φ+φ− < φ+ φ− < φ+

FIG. 9. Dependence of the ratio A+
A− and the angles φ− and φ+ on different values of β.

while after the reconnection (t > tr )

R+
1,2(s,t) =

(
±

√
(t − tr )(a2(1 − β) − 2γ ) + as2(1 + γ )

a(β − γ )
,s,

(t − tr )(a2(β − 1) + 2γ 2) − aγ (β + 1)s2

(β − γ )a2

)
. (C9)

From the above curves we observe that the two vortices approach along the y direction and separate
along the x direction. It follows that

δ±(t) = |R±
1 (0,t) − R±

2 (0,t)| =
√

2πA±|t − tr |1/2, (C10)

where the ratio of prefactors satisfies

A+

A− =
√

1 + γ

β − γ
> 1. (C11)

From Eq. (C5) we can see how the quantity A+
A− is related to the angle φ. Calling φ− the angle

of the approaching vortices and φ+ the angle of the separating vortices, we can conclude that for
β <

a2−2γ

a2 , φ− > φ+. On the other hand, when β >
a2−2γ

a2 the two vortices approach along the x

direction and separate along the y direction with A+
A− =

√
β−γ

1+γ
. For the sake of completeness, in

Fig. 9 we show the values of the ratio A+
A− and the angles φ− and φ+ for different values of β. We

note that A+
A− < 1 for a2−2γ

a2 < β < 1 + 2γ , while A+
A− > 1 for β > 1 + 2γ .

As a final remark, we note that changing the sign of a corresponds to looking at the reconnection
back in time, hence each value of A+

A− in Fig. 9 will then be reversed. The linear approximation also
allows for computing the curvature

κ(s,t) = |R′(s,t) × R′′(s,t)|
|R′(s,t)|3 (C12)

and torsion

T (s,t) = [R′(s,t) × R′′(s,t)] · R′′′(s,t)
|R′(s,t) × R′′(s,t)|2 (C13)

of the vortex lines.
The curvature can be directly evaluated. Its maxima as a function of time before and after

reconnection are given by

κ−
max(t)

√
4γ 2(1 + β)2[a2(β − 1) + 2γ ](t − tr ) + a3(β − γ )2(1 + γ )

a2(1 + γ )2[a2(β − 1) + 2γ ](t − tr )
(C14)
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FIG. 10. Plot of the torsion versus the y coordinate, for different time steps using γ = 0.01, β = 1/2, and
a = 1.

and

κ+
max(t) =

√
4γ 2(1 + β)2[a2(β − 1) + 2γ ](t − tr ) − a3(β − γ )2(1 + γ )2

a2(β − γ )[a2(β − 1) + 2γ ](t − tr )
, (C15)

respectively. The present calculation predicts κ±
max(t) ∝ |t − tr |−1/2, which also corresponds to a

dimensional analysis prediction. In addition, the linear approximation predicts that κ+
max/κ

−
max =

(A+/A−)3 in the limit of t → tr . This nontrivial result cannot be found by dimensional arguments.
Moreover, one can show that κ± presents a self-similar behavior close to the reconnection point
of the form κ±(s,t) = κ±

max(t)�±(ζ±), where ζ± = (s − sr )κ±
max(t) and sr is the coordinate of the

reconnecting point. For small values of γ , these self-similar functions can be found to be

�±(ζ ) =
1 ± 3

2
(β±1+1)ζ 2

1+(β±1+1)ζ 2 γ

[1 + (β±1 + 1)ζ 2]3/2
+ O(γ 2) = 1{

1 + [(
A∓
A±

)2 + 1
]
ξ 2

}3/2 + O

(
η±γ 2 (t − tr )

τ

)
,

(C16)

where η± = (A∓/A±)2 − 1. Remarkably, once the ratio A+/A− is reintroduced, γ only appears as
a quadratic correction to the self-similar form. Note that within this approximation, self-similarity
is destroyed when η±γ 2(t − tr )/τ is of order 1.

We note that if one chooses β >
a2−2γ

a2 , then A+
A− =

√
β−γ

1+γ
and

[�±(ζ )]β>(a2−2γ )/a2 = [�∓(ζ )]β<(a2−2γ )/a2 . (C17)

The former calculations were evaluated using symbolic computation software.
Finally, the torsion T ±(s,t) of the vortex line can be also computed within this approximation.

It vanishes at sr (suggesting a locally planar reconnection); however, it changes sign linearly at this
point. Its slope is given by

dT +

ds
= −γ

3
√

2(1 + β)√
a(β − γ )

√
(t − tr )[a2(1 − β) − 2γ ]

(C18)

and it diverges as γ |t − tr |−1/2. The torsion thus develops shocklike structures as displayed in Fig. 10.
The inset in Fig. 10 shows the linear behavior close to the reconnection point. It is possible to

prove analytically that the ratio of the slopes is given by dT +
ds

/ dT −
ds

|s=sr
= A+/A−. The full formulas

for the torsion are too long to be presented here.
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We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex
Hopf links using the Gross–Pitaevskii model. Despite the time reversibility of the model, we report clear
evidence that the dynamics of the reconnection process is time irreversible, as reconnecting vortices tend to
separate faster than they approach. Thanks to a matching theory devised concurrently by Proment and
Krstulovic [Phys. Rev. Fluids 5, 104701 (2020)], we quantitatively relate the origin of this asymmetry
to the generation of a sound pulse after the reconnection event. Our results have the prospect of being tested
in several quantum fluid experiments and, theoretically, may shed new light on the energy transfer
mechanisms in both classical and quantum turbulent fluids.

DOI: 10.1103/PhysRevLett.125.164501

Introduction.—Irreversibility emerges naturally in most
interacting systems characterized by a huge number of
degrees of freedom. Its manifestation is associated to a
time-symmetry breaking: the arrow of time appears inher-
ently defined in the dynamics and an experienced observer
is able to distinguish what are before and after.
In dissipative systems the arrow of time naturally reflects

the dynamics that minimizes the energy. Classical viscous
fluids present valuable examples. When no external forces
are applied, an initial laminar flow decays in time until its
kinetic energy is totally converted into heat. A less simple
example is the particle pair dispersion in turbulent flows.
Although two tracers separate from each other backward
and forward in time with the same Richardson scaling, their
rates are different [1]: particles separate slower forward in
time than backward.
Conservative (energy-preserving) systems are more

subtle. The arrow of time is defined only in a statistical
sense by exploiting an entropy function that approaches its
extremal as time progresses. The simplest example of this
kind is the free-expansion experiment of a gas: even if the
gas particles interact microscopically through conservative
collisions, on average their macroscopic position and
velocity distribution obeys the Boltzmann kinetic equation
which is time irreversible.
Quantum fluids are exotic types of fluids characterized

by the total absence of viscosity, thus being conservative.
Examples of such systems are superfluid liquid helium [2]

and Bose-Einstein condensates (BECs) made of dilute
gases of bosons [3], Cooper-paired fermions [4], or massive
photons [5]. As a consequence of the wave nature of their
bosonic constituents, quantum fluids have two striking
properties: vortices arise as topological defects in the order
parameter and their circulation takes only discrete multiples
of the quantum of circulation Γ ¼ h=m, where h is the
Planck constant and m is the boson’s mass. These defects,
referred to in the following as vortex filaments, present a
complicated dynamics which still misses a general solution.
A key point in such dynamics is the occurrence of
reconnection events. A vortex reconnection is the process
of interchange of two sections of different filaments; see the
sketch in Fig. 1(a). It happens at small spatial and fast
timescales [6], and allows the filament topology to vary.
For the sake of simplicity, we consider in this Letter a

quantum fluid described by a single scalar order parameter.
In the limit of zero temperature, this quantum fluid
accommodates only two distinct excitation families:
vortex-type excitations, in the form of filaments, and
compressible density-phase excitations, that is sound
waves. While the full dynamics is energy preserving, the
energy may continually flow between these two excitation
families. In this perspective, we provide a statistical
analysis over many realizations of vortex reconnections,
unveiling an inherent irreversible dynamics of the
reconnection process. Moreover, we show how the linear
momentum and energy transfers, from vortex-type
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excitations to compressible density-phase excitations, are
related to the geometrical parameters (macroscopic recon-
nection angle and concavity parameter) of the reconnecting
filaments, explaining the origin of such irreversibility.
Main results.—We choose an initial configuration char-

acterized by a Hopf link vortex filament, see Fig. 1(b),
where (almost) all the superfluid kinetic energy is stored
into the vortex-type excitations. Similarly to vortex knots,
the Hopf links naturally decay into topologically simpler
configurations [7–9] by performing a set of vortex recon-
nections. To study the Hopf link evolution, we use the
Gross-Pitaevskii (GP) model, a nonlinear partial differ-
ential equation formally derived to mimic the order
parameter ψ of a BEC made of dilute locally interacting
bosons, but qualitatively able to mimic a generic quantum
fluid [10]. The GP equation, cast in terms of the healing
length ξ and the sound velocity c, reads

i
∂ψ
∂t ¼ c

ffiffiffi
2

p
ξ

�
−ξ2∇2ψ þ m

ρ0
jψ j2ψ

�
; ð1Þ

where ρ0 is the bulk superfluid density and m the mass of a
boson. When the GP equation is linearized about the
uniform bulk value jψ0j ¼

ffiffiffiffiffiffiffiffiffiffiffi
ρ0=m

p
, dispersive effects arise

at scales smaller than ξ and (large-scale) sound waves
effectively propagate at speed c. In this Letter lengths and
times are expressed in units of ξ and τ ¼ ξ=c, respectively.
Thanks to the Madelung transformation, ψðx; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ=mp

exp½iϕðx; tÞ=ð ffiffiffi
2

p
cξÞ�, Eq. (1) can be inter-

preted as a model for an irrotational inviscid barotropic
fluid of density ρ and velocity v ¼ ∇ϕ. Vortices arise as
topological defects of circulation Γ ¼ h=m ¼ 2

ffiffiffi
2

p
πcξ and

vanishing density core size order of ξ [11]. In the previous
formula, h is the Planck constant.
We evolve a Hopf link prepared by superimposing two

rings of radius R ¼ 18ξ, obtained by using a Newton-
Raphson and biconjugate-gradient technique [12] to ensure
a minimal amount of compressible energy; details on the
numerical scheme and on the generation of the initial
condition are in the Supplemental Material [13]. A set of 49
different realizations are obtained by changing the offsets
ðd1; d2Þ of one ring as sketched in Fig. 1(b), taking di ∈
½−9ξ; 9ξ� with unit step of 3ξ. During the evolution one or

more reconnection events occur. It has been shown [14–17]
that about the reconnection event, the distance between the
two filaments behaves as

δ�ðtÞ ¼ A�ðΓjt − trjÞ1=2; ð2Þ

where A� are dimensionless prefactors and tr is the
reconnection time; the superscripts − and þ label the cases
before and after the reconnection, respectively. In each
Hopf link realization, we carefully track [18] all reconnect-
ing events and measure A�. The measured values of δ2ðtÞ
for all the 71 analyzed reconnections are shown in Fig. 2;
the best-fit A� are plotted in red dots in the inset of Fig. 2.
Remarkably, the reconnecting filaments always separate
faster (or at an almost equal rate) than they approach; that
is, Aþ ≥ A−. The clear asymmetry recorded in the δ2 versus
t − tr and in the distribution of the A�’s is the fingerprint of
the irreversible dynamics characterizing the vortex recon-
nection process. For completeness, we also report in the
inset of Fig. 2, using different symbols, the prefactor
measurements obtained in previous works [15,16], which
corroborate even further our results. Finally note that in a

FIG. 1. (a) Sketch of a vortex reconnection event in quantum fluids. At the reconnection time tr the reconnecting filaments are locally
tangent to the plane xOy, here depicted in gray, and form the reconnecting angle ϕþ. The vorticity of the filaments is depicted with
gray arrows. (b) The Hopf link initial condition used to create the different realizations, with visual indication of the offset
parameters ðd1; d2Þ.

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

0 1 2
0

1

2

FIG. 2. Squared distances versus time of the reconnecting
filaments measured in all the 49 realizations. The gray-scale
color indicates the estimated value of Aþ=A− in each case. Inset:
values of approach and separation prefactors Aþ and A−. Red
points correspond to data of the present work. Gray left- and
right-facing triangles correspond to reconnections of free and
trapped vortices, respectively, from Galantucci et al. [16]; other
symbols from Villois et al. [15].
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recent work [19], it has been reported that vortex recon-
nections in the Navier-Stokes equation also display a clear
t1=2 scaling, a coefficient A− ∼ 0.3–0.4 and the same time
asymmetry Aþ > A−. Note that the Biot-Savart (BS)
analytical calculations of Ref. [20] and the local induction
approximation based ones of Ref. [21] predict A− ∼ 0.47
and A− ¼ 0.427, respectively, which are in agreement with
our GP measurements. In what follows, we quantitatively
relate the asymmetry in the distribution of the prefactors
with the irreversible energy transfer between the vortex-
type and density or phase excitation families occurring
during a reconnection event. Previous numerical studies of
the GP model have indeed reported the clear emission of a
sound pulse during reconnection events [22,23]. A series of
snapshots showing the sound pulse emitted during the
decay of the Hopf link in one of our realizations is reported
in Ref. [24].
The simple linear theory neglecting the nonlinear term of

the GP model [14,15], valid in the limit δ� → 0, provides
insight into the dynamics of reconnecting parameters as the
order parameter can be found analytically. It predicts that
the filaments reconnect tangent to a plane, in our reference
frame the z ¼ 0, see Fig. 1(a), and that the projections of
the filaments onto it approach and separate following
the branches of a hyperbola. The macroscopic (post)
reconnection angle, formed by the hyperbola asymptotes,
results in

ϕþ ¼ 2arccotðArÞ; where Ar ¼ Aþ=A−: ð3Þ

the projections of the filaments onto the orthogonal plane
y ¼ 0 form a parabola (not shown in here; see Ref. [24] for
more details). Without any loss of generality, we set Λ=ζ
the concavity of such a parabola, and we refer to Λ as the
concavity parameter, where ζ is an arbitrary length scale,
whose value is not important in the following discussion.
In all the reconnection events detected, we observe a

distinct sound pulse generated after the reconnection
and propagating toward the positive z axis, as shown in
Figs. 3(a) and 3(b). Figure 3(c) shows the behavior of the
superfluid density along the z direction versus times t − tr.
A (depression) sound pulse is generated soon after the
reconnection and propagates toward the positive z direction
at a speed qualitatively close to the speed of sound in the
bulk; refer to the green dashed line z ¼ cðt − trÞ, with c
defined in Eq. (1). Note that the other low density regions,
corresponding to the density depletions of the vortex cores,
move much slower.
To explain the generation and directionality of such a

pulse, we devise a novel theoretical approach, detailed in
Ref. [24], and summarize in the following. Let us denote
by R�

1 ðs; tÞ and R�
2 ðs; tÞ the reconnecting filaments, with

s being their spatial parametrization variable. Far from
the reconnection point (both before and after), the
dynamics of the vortex filaments are mostly driven by

the Biot-Savart model, which describes the motion of
δ-supported vorticity in an incompressible inviscid
flow [25]; note that this limit can be formally derived
from GP [26]. In our realizations, BS is valid at distances
δ�ðtÞ ≫ δlin, whereas for δ�ðtÞ ≪ δlin the dynamics is
determined by the linear approximation, given δlin is a
crossover scale of order of the healing length. We assume
both descriptions approximately valid when the filaments
are at the distance δ�ðt�Þ ≈ δlin. This hypothesis, vali-
dated by previous GP simulations [15,16], allows us to
perform an asymptotic matching.
We can therefore compute the difference, before and

after the reconnection, of BS linear momentum ΔPfil using
the positions of the filaments R�

1 ðs; t�Þ and R�
2 ðs; t�Þ

coming from the linear approximation. As shown in
Ref. [24], note that these depend only on the reconnection
angle ϕþ (or equivalently Ar) and the concavity param-
eter Λ. Within BS, the linear momentum is given as the line
integral PfilðtÞ ¼ ðρ0=2ÞΓ

H
Rðs; tÞ × dRðs; tÞ [27]. As the

total linear momentum of the superfluid is conserved in GP
[28], the linear momentum carried by the sound pulse
created after the reconnection must compensate the loss of
linear momentum accounted by ΔPfil and reads [24]

Ppulse ¼ −ΔPfil ∝ ð0; 0; 2 cscϕþÞ; ð4Þ

independently of the δlin chosen. This result is remarkable:
the sound pulse linear momentum is (overall) nonzero only
in the positive z direction, as observed in all our recon-
nection events, and its amplitude is independent of Λ and
minimal for ϕþ ¼ π=2.

FIG. 3. Three-dimensional rendering of the density field. White
contours display the vortices and density fluctuations are ren-
dered in blue-redish colors: (a) reconnection time and (b) at
t − tr ≈ 40τ. (b) The positive direction of the z axis is also
depicted with a white arrow. (c) Spatiotemporal plot of density
along the z axis about the reconnection event denoted by the blue
central point. The two dashed green lines are z ¼ cðt − trÞ; here,
the reconnection point (0,0) is represented by the blue dot.
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The same matching theory can be applied to estimate the
amount of energy transferred to the sound pulse. Following
the standard energy splitting protocol in GP [29], the
superfluid kinetic energy is decomposed into a compress-
ible component EC

kin, associated to sound excitations, and
an incompressible component EI

kin, associated to vortex-
type excitations. In all our realizations, we observe a sharp
growth of EC

kin during each reconnection event. An example
of its evolution, normalized by the total (constant) energy
Etot, is shown in the inset of Fig. 4: here the red dot
indicates the reconnection time and the green region
indicates the times when δ�ðtÞ ≤ δlin ¼ 6ξ. The increase
of EC

kin during the reconnection event is related to the loss of
incompressible kinetic energy EI

kin. For all the reconnection
events measured in our realizations, we compute the energy
transferred to the sound pulse as Epulse ¼ −ΔEI

kin, where
ΔEI

kin ¼ EI
kinðtþÞ − EI

kinðt−Þ. Figure 4 shows the measured
Epulse=Etot data versus Ar: there is clear correlation between
these two quantities, with a best-fit scaling of Epulse=Etot ∝
ðAr − 1Þ0.71.
To the simplest approximation, called local induction

approximation, the BS superfluid kinetic energy is propor-
tional to the total length of the filaments. As the repre-
sentations R1ðs; tÞ and R2ðs; tÞ have infinite lengths (as in
the linear regime they do not close) we choose to account
only for the length of finite sections of the filaments
contained in a cylinder of radius R ≫ δlin, centered at
the reconnection point and parallel to the z axis. Evaluating
Epulse reduces thus to the computation of the difference
ΔLðAr; jΛj=ζ; δlin; R=δlinÞ of the length of these sections;
see [24] for more details. As the total GP energy is
conserved, we have that

Epulse=Etot ¼ −ΔL=L0; ð5Þ

given L0 is the initial length of the Hopf link filament. For
any given choices of δlin and R, all the admissible values of
the theoretical estimation ΔL, rendered in cyan color in
Fig. 4, are bounded between two lines obtained setting
Λ ¼ 0 (dashed line) and jΛj → ∞ (solid line). The GP data
are all distributed within these admissible values, thus
confirming the accuracy of the matching theory.
Remarkably, the estimation of Epulse explains in a

straightforward way the time asymmetry between the rates
of approach and separation reported in Fig. 2 and its inset.
Independently on thevalue of the concavity parameterΛ, the
energy of the sound pulse is only non-negative when
Aþ ≥ A−, meaning that unless energy is externally provided
to the reconnecting vortices, it is energetically impossible to
have a reconnection event where Aþ < A−, or equivalently,
where ϕþ > π=2.
Closing remarks.—In this Letter we reported numerical

evidence of the irreversible dynamics of vortex reconnec-
tions in a scalar quantum fluid and explain its origin thanks
to a matching theory developed concurrently in Ref. [24].
This theory is based on very general physical consider-
ations and give bounds for the energy of the pulse emitted
during a reconnection event. However, it cannot determine
the exact value of the reconnecting angle and, thus, the one
of Aþ=A−. Our results can be extended to more compli-
cated quantum fluids where nonlocal interactions and/or
higher order nonlinearities are included, like BECs
with dipolar interactions, cold Fermi gases, and superfluid
liquid 4He.
In quantum fluid experiments, the detailed study of

vortex reconnections is still in its infancy. In current BECs
made of dilute gases, reconnecting vortices are created only
in a nonreproducible way using fast temperature quenches
[30]; however, new protocols have been proposed to create
vortices in a reproducible manner [31]. In such setups, once
the reconnection plane is identified, it should be feasible to
measure the rates of approach and separation and detecting
directionality of the sound pulse, using, for instance, Bragg
spectroscopy [32]. In superfluid liquid 4He experiments,
vortex reconnections have been detected so far only at
relatively high temperature where the normal component is
non-negligible [33]. This latter may provide energy but also
dissipates it through mutual friction; hence, measuring
experimentally the distribution of the rates of approach and
separation at different temperatures would be particularly
desirable.
Finally, let us come back to the concept of irreversibility.

In the realizations presented in this Letter, almost all of the
superfluid kinetic energy is initially stored in the vortex-
type excitations. This is likely to cause the observed
statistical asymmetry in the distribution of the rates of
approach and separation to be maximized. At finite temper-
atures or in a turbulent tangle, fluctuations can provide
extra energy to reduce this asymmetry, perhaps allowing
also for ϕþ > π=2, but the time asymmetry should in

FIG. 4. Relative energy transferred to waves during the re-
connection process. The cyan zone denotes the allowed values
from the matching theory. Inset: relative increase of compressible
kinetic energy (solid blue) about a reconnection event (denoted
by the red dots) for a typical realization. The green area
corresponds to the interval defined by δ�ðtÞ ≤ δlin ¼ 6ξ.
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principle remain as an inherent mechanism allowing the
system to reach the equilibrium. From a fluid dynamical
point of view, let us remark that vortex reconnections are
allowed and regular, in classical fluids due to the presence
of viscosity, while in quantum fluids thanks to a dispersive
term. Showing whether the resulting dynamics of these two
different fluids are equivalent or not, in the limit where their
respective regularization scale tends to zero, is an appealing
open problem. Comparing the results presented in this
Letter with a similar study in Navier-Stokes or a carefully
regularized Biot-Savart model might provide some insight
on the spontaneous stochasticity and the dissipative
anomaly of turbulent flows, two concepts closely related
to irreversibility.
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Quantum vortex reconnections mediated by trapped particles
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Reconnections between quantum vortex filaments in the presence of trapped particles are investigated using
numerical simulations of the Gross-Pitaevskii equation. Particles are described with classical degrees of freedom
and modeled as highly repulsive potentials which deplete the superfluid. First, the case of a vortex dipole with
a single particle trapped inside one of the vortices is studied. It is shown that the reconnection takes place at the
position of the particle as a consequence of the symmetry breaking induced by it. The separation rate between
the reconnecting points is compatible with the known dynamics of quantum vortex reconnections, and it is
independent of the particle mass and size. After the reconnection, the particle is pushed away with a constant
velocity, and its trajectory is deflected because of the transverse momentum exchange with the vortex filaments.
The momentum exchanges between the particle, the vortex, and a density pulse are characterized. Finally, the
reconnection of two linked rings, each of them with several initially randomly distributed particles, is studied.
It is observed that generically, reconnections take place at the location of trapped particles. It is shown that
reconnection dynamics is unaffected for light particles.

DOI: 10.1103/PhysRevB.102.094508

I. INTRODUCTION

One of the most striking features of superfluids is the
presence of quantum vortices, thin tornadoes which arise as
topological defects and nodal lines of the complex order pa-
rameter describing the system [1]. Quantum vortices have
been observed in different kinds of superfluids, from atomic
Bose-Einstein condensates (BECs), where their core is mi-
crometer sized, to superfluid 4He, where the core size is a few
angstroms. The topological nature of quantum vortices con-
strains their circulation to be a discrete multiple of the quan-
tum of circulation � = h/m, where h is the Planck constant
and m is the mass of the bosons constituting the superfluid.

The dynamics of such vortex filaments is rich and still
not fully comprehended. In particular, a fundamental phe-
nomenon is the occurrence of reconnection events. In general,
in fluid mechanics a vortex reconnection is an event in which
the topology of the vorticity field is rearranged [2]. In the case
of classical fluids, the presence of viscosity breaks the Kelvin
circulation theorem, allowing the reconnection between
vortex tubes [3]. In the case of inviscid superfluids, the
vorticity is supported exclusively along the unidimensional
vortex filaments, and the reconnection between them is made
possible because of the vanishing density at the core of the
vortices [4]. Specifically, the process of superfluid vortex
reconnection consists in the local exchange of two strands of
different filaments after a fast approach, allowing the topology
to vary. In quantum turbulence, reconnections are also thought
to be a fundamental mechanism for the redistribution of
energy at scales smaller than the intervortex distance [5].

The separation δ(t ) between the two reconnecting points
is the simplest observable that characterizes a vortex recon-
nection. Given that a reconnection is an event localized in
space and time, sufficiently close to the reconnection event
it is expected to be fully driven by the interaction between

two filaments. Assuming that at this scale the only parameter
that determines the dynamics is the circulation � about each
filament, a simple dimensional analysis suggests the following
scaling for the separation rate:

δ(t ) = A±(�|t − trec|)1/2, (1)

where A± are dimensionless prefactors, trec is the reconnec-
tion time, and the labels − and + refer, respectively, to the
times before and after the reconnection event. Such scal-
ing has been demonstrated analytically in the context of the
Gross-Pitaevskii (GP) model for δ → 0 [6–8], and it has been
observed to be valid even at distances that go beyond several
healing lengths [7,9]. Note that previous studies reported dis-
parate exponents that still need to be explained [10–12]. The
scaling (1) has also been observed in Biot-Savart simulations
[9,13,14] and superfluid helium experiments [15]. If an exter-
nal driving mechanism is absent, the scaling (1) is considered
a universal feature of vortex reconnections, and the filaments
always approach slower than they separate, i.e., A+/A− > 1.
This last observation has been explained by a novel match-
ing theory as the consequence of an irreversible mechanism
related to the sound radiated during the event [8,16].

In recent years, vortex reconnections have been directly
observed in atomic BECs by means of destructive absorp-
tion imaging [17] and in superfluid helium experiments by
using solidified hydrogen particles as probes [15,18]. This
latter technique has become a standard tool for the investi-
gation of the properties of superfluid helium and quantum
vortices, following its first utilization in 2006 [19]. Indeed,
such particles get captured by quantum vortices thanks to
pressure gradients and are carried by them, unveiling in this
way the dynamics of the filaments. Besides the reconnections
between vortices and Kelvin waves (helicoidal displacements
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that propagate along the vortex filaments), solidified hydro-
gen particles succeeded in revealing important differences
between the statistics of classical and quantum turbulent states
[20,21]. However, given that the typical size of such particles
is four orders of magnitude larger than the vortex core size, it
is far from trivial that they actually behave as tracers. For this
reason, understanding the actual vortex-particle interactions
and how particles and fluids affect each other’s motions is a
crucial theoretical task.

Many models have been developed and studied in this
regard. The main difficulty is caused by the large extent
of the scales involved in the problem, so that different
phenomenological approaches need to be used. For what
concerns large scales, the dynamics of particles in classical
fluids has been phenomenologically adapted to the two-
fluid description of a superfluid [22], and the distribution
of inertial passive particles has been studied in the Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model [23]. In this
macroscopic approach, the vorticity is a coarse-grained field,
and there is no notion of quantized vortices. Instead, in the
vortex-filament model, the superfluid is modeled as a collec-
tion of filaments that evolve according to Biot-Savart integrals
[1]. This method involves nonlocal contributions and a sin-
gular integral for the computation of the vortex self-induced
velocity that needs to be regularized [24]. In this framework,
hard spherical particles can be modeled as moving boundary
conditions [25,26], although the reconnections both between
vortices and between a vortex and a particle surface need
to be implemented with an ad hoc procedure. These issues
are absent in the GP model, in which the evolution of the
order parameter of the superfluid is described with a nonlinear
Schrödinger equation. Indeed, although the GP equation is
formally derived for dilute Bose–Einstein condensates, it can
be considered as a general model for low temperature super-
fluids, including superfluid helium. Unlike the vortex-filament
method or the HVBK model, the full dynamics of vortices
emerges naturally, including the reconnection events. Particles
modeled as highly repulsive potentials have been successfully
implemented in the GP framework, allowing for an extensive
study of the capture process [27], the interaction between
trapped particles and Kelvin waves [28], and the Lagrangian
properties of quantum turbulence [29]. Recently, the dynamics
of particles trapped inside GP vortices was also addressed in
two dimensions [30].

Because the GP equation is a microscopic model, regular
at the vortex core, it is the natural setting in which quantum
vortex reconnections can be studied. In this work, we combine
such suitability with the simplicity of modeling particles in
the GP framework to study vortex reconnections in the pres-
ence of particles trapped by the filaments. We focus on two
different configurations. In Sec. III we study the evolution
of a dipole of two counterrotating straight vortices with a
particle trapped in one of them. In Sec. IV we characterize
the reconnection of two linked rings loaded with a number of
particles. In the first case the reconnection is induced by the
presence of the particle, and its simplicity allows for a system-
atic investigation of the mutual interaction between vortices
and particles during the process of the reconnection. In the
second case, the reconnection happens even in the absence
of particles, so that how the presence of particles effectively
affects the reconnection process can be addressed.

II. MODEL FOR PARTICLES AND QUANTUM VORTICES

We consider a quantum fluid with Np spherical particles of
mass Mp and radius ap immersed in it. We describe the system
by a self-consistent model based on the three-dimensional
Gross-Pitaevskii equation. The particles are modeled by
strong localized potentials Vp that completely deplete the
superfluid up to a distance ap from the position of their center
qi. The dynamics of the system is governed by the following
Hamiltonian:

H =
∫ (

h̄2

2m
|∇ψ |2 − μ|ψ |2

+ g

2
|ψ |4 +

Np∑
i=1

Vp(r − qi )|ψ |2
)

dr

+
Np∑

i=1

(
ppart

i

)2

2Mp
+

Np∑
i< j

V i j
rep, (2)

where ψ is the order parameter of the quantum and
ppart

i = Mpq̇i are the particles linear momenta. The chemical
potential is denoted by μ. The nonlinear self-interaction
coupling constant of the fluid is denoted by g, and m is the
mass of the condensed bosons. The potential V i j

rep is a repulsive
potential between particles, needed to avoid an unphysical
overlap, due to a short-range fluid-mediated interaction
[31,32]. The equations of motion for the superfluid field ψ

and the particle positions qi = (qi,x, qi,y, qi,z ) are

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ +

Np∑
i=1

Vp(|x − qi|)ψ,

(3)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (4)

We refer to [27–29,33] for further details about the model,
which was recently adopted to study extensively the
interaction between particles and quantum vortices.

In the absence of particles, the ground state of the system
is a homogeneous flat condensate ψ∞ = √

μ/g ≡ √
ρ∞/m,

with a constant mass density ρ∞. Linearizing around this
value, dispersive effects take place at scales smaller than
the healing length ξ =

√
h̄2/2gρ∞, while large-wavelength

excitations propagate with the phonon (sound) velocity c =√
gρ∞/m2. The close relation between the GP model and

hydrodynamics comes from the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), which maps the GP (3) into the

continuity and Bernoulli equations of a superfluid of density
ρ and velocity vs = ∇φ. Although the superfluid velocity is
described by a potential flow, vortices may appear as topo-
logical defects because the phase is not defined at the nodal
lines of ψ (x), and thus, vortices may appear to be topological
defects. Each superfluid vortex carries a quantum of circula-
tion � = h/m = 2π

√
2cξ , and vortices are characterized by a

vanishing density core size of the order of ξ .
In this work, we perform numerical simulations of the

coupled differential equations (3) and (4) in a periodic cubic
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box with sides L = 128ξ with Nc = 2563 collocation points.
We use a standard pseudospectral method with a fourth-order
Runge-Kutta scheme for the time step. In numerics, we mea-
sure distances in units of ξ , velocities in units of c, and times
in units of τ = ξ/c. As described in the Appendix and in
Ref. [34], dealiasing is applied to equations (3) and (4), in
such a way that they conserve the total energy H (2), the total
fluid mass N = ∫ |ψ |2 dx, and the total momentum

ptot = pGP +
Np∑

i=1

ppart, (5)

where pGP = ih̄/2
∫

(ψ∇ψ∗ − ψ∗∇ψ ) dx is the momentum
of the quantum fluid. If dealiasing is not carefully performed,
the discrete system does not conserve momentum. In the sim-
ulations presented here the total momentum is conserved up
to eight decimal digits.

We use two different particle potentials to model the par-
ticles. For the simulations with the dipole, a smoothed hat
function V 1

p (r) = V0
2 (1 − tanh [ r2−ζ 2

4�2
a

]) is used. The parame-
ters ζ and �a are set to model the particle attributes. In
particular, ζ fixes the width of the potential, and it is related
to the particle size, while �a controls the steepness of the
smoothed hat function. The latter needs to be adjusted in
order to avoid the Gibbs effect in the Fourier transform of
V 1

p . For the simulations of the Hopf link, we use a Gaussian
potential V 2

p (r) = V0 exp (−r2/2d2
eff ), where the width is fixed

using the Thomas-Fermi approximation to set an approximate
radius ζ of the particle as deff = ζ/

√
2 ln(V0/μ). Since the

particle boundaries are not sharp, the effective particle radius
is measured as ap = (3M0/4πρ∞)

1
3 , where M0 = ρ∞L3(1 −∫ |ψp|2 dx/

∫ |ψ∞|2 dx) is the fluid mass displaced by the
particle and ψp is the steady state with just one particle.
Practically, given the set of numerical parameters ζ and �a,
the state ψp is obtained numerically with imaginary time
evolution and the excluded mass M0 is measured directly.
We use the repulsive potential V i j

rep = γrep(2ap/|qi − q j |)12 in
order to avoid an overlap between them. The functional form
of V i j

rep is inspired by the repulsive term of the Lennard-Jones
potential and the prefactor γrep is adjusted numerically so that
the interparticle distance 2ap minimizes the sum of V i j

rep with
the fluid mediated attractive potential [31,32].

The initial conditions for the dipole and a single ring (with-
out particles) are obtained using the Newton-Raphson method
and a biconjugate-gradient technique in order to minimize the
sound emission [35]. The Hopf link of two rings is obtained
by multiplying two states containing a ring each.

III. RECONNECTION OF A VORTEX DIPOLE

We start by presenting a series of numerical simulations
of a dipole of two counterrotating superfluid vortices, with a
single particle initially trapped inside one of them. Such a set-
ting is useful to illustrate how a superfluid vortex reconnection
can be triggered by the symmetry breaking produced by the
presence of particles. Indeed, in the absence of trapped par-
ticles, the vortex dipole is a steady configuration, in which a
spontaneous self-reconnection does not happen unless a Crow
instability is induced [36]. At the same time, the simplicity

TABLE I. Simulation parameters for the vortex dipole reconnec-
tion experiment.

λ d/ξ ap/ξ ζ/ξ �a/ξ V0/μ

1 10 4.3 3.0 0.75 20
2 20 8.6 7.4 0.75 20

of the initial configuration allows for the systematic study of
the mutual effects between the particle and the reconnecting
filaments.

In the initial time of each simulation, the vortices are
straight and aligned along the z direction. The initial velocity
of the particle is set equal to the translational speed of the
dipole vd ∼ (�/2πd )ŷ, where d is the distance between the
two filaments and ŷ is the unit vector along the y direction
[30,37]. We performed the same experiment using particles of
two different sizes and for a wide range of mass densities.

It has been observed in Ref. [27] that the effective Hamil-
tonian describing the process of particle capture by a vortex
induces a dynamics which is invariant under the following
scaling transformation:

d → λd, ap → λap, t → λ2t ∀ λ ∈ R+, (6)

where d is the vortex-particle distance. In order to check if the
scaling invariance (6) is valid also in the present simulations,
we set the radius of the large particle exactly λ = 2 times
larger than the radius of the small one. Analogously, in the
case of the large particle, the vortex filaments are initially
placed λ = 2 times more distant than for the small particle.
If such invariance subsists, it would be an indication of the
analogy between the reconnection process and the trapping
mechanism. In addition, it would naturally extend the validity
of the results reported below in the case of particles with larger
sizes, comparable to the ones used in current experiments.
Note, however, that the scaling invariance (6) neglects the den-
sity profile of the vortex core, as well as other more complex
particle-vortex interactions which can become relevant when
a particle is trapped, like the Magnus effect.

The parameters used for these sets of simulations are sum-
marized in Table I [note that the repulsive potential V i j

rep in Eq.
(4) is absent because only one particle is present].

Snapshots of the typical evolution of the dipole configu-
ration under the GP dynamics (3) and (4) are displayed in
Fig. 1 for a neutral particle of size ap = 4.3ξ and initial vortex
separation d = 10ξ . During the motion of the dipole, the
particle starts to precede about the filament because of the
Magnus effect [28,30,38]. At the same time, the two vortices
start to bend, until the filament without a particle reconnects
with the surface of the sphere at time t−

rec. After the recon-
nection, the contact point of the free vortex separates into
two branches, which then slide on the particle surface toward
opposite directions. For a time window of about ∼20τ the
particle is pierced by both vortices, until the couple of pinning
points above and below the particles merge and the vortices
detach symmetrically. The reconnection changes the topology
of the flow, so that the dipole is eventually converted into a
single vortex ring (which in Fig. 1 appears to be folded on the
vertical direction because of spatial periodicity). At the time
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FIG. 1. Snapshots of the superfluid density and a neutral-mass particle of size ap = 4.3ξ during the dipole reconnection (time varies from
left to right). The initial distance between the vortices is d = 10ξ . Vortices are displayed as red isosurfaces at low density; particles are the
green spheres, and sound is rendered in blue.

of the detachment, a clear spherical sound pulse is generated at
the reconnection point. It expands and propagates along the y
direction, which is the dipole propagation direction and coin-
cides with the normal to the reconnection plane, in agreement
with Refs. [8,16]. Simultaneously, the particle is released and
abruptly accelerated. Eventually, it keeps on moving forward
with a constant speed larger than the dipole velocity.

Before exploring in more detail the origin of the particle
dynamics, we address the question of whether the observed
reconnections induced by the particle are compatible with
the standard picture of GP reconnections. In order to do so,
we compute the separation δ(t ) between the reconnecting
points as a function of time. When the circulation � is the
only relevant parameter driving the reconnection dynamics,
δ(t ) is expected to scale as Eq. (1). We operatively define
the separation before the reconnection δ− as the distance
between the reconnecting point on the free vortex and the
particle surface. After reconnection time t−

rec between the free
vortex and the sphere surface, the separation is not well de-
fined until the particle detachment, after which δ+ becomes
simply the distance between the two extremal points of the
outgoing vortex ring (see Fig. 1). The vortex filaments have
been tracked using the method based on the pseudovorticity
developed in [39]. Since the initial measurable value of δ+ is
of the order of the particle diameter 2ap, we extrapolate the
virtual original time t+

rec at which δ+(t+
rec) = 0, performing a

linear fit of [δ+(t )]2 and evaluating the point where it vanishes.
The same protocol was used with δ−(t ) to refine the value of
t−
rec. The evolution of δ(t ) is displayed in Fig. 2(a) for all the

types of particles analyzed. In Fig. 2(b), δ+(t ) and δ−(t ) are
plotted in a logarithmic scale, after rescaling the distances by
a factor of λ and times by a factor of λ2 (λ = 1 for the small
particle, and λ = 2 for the large one), according to Eq. (6).
It is apparent that the separation rate is independent of the
particle mass and always shows a scaling compatible with
t1/2. This evidence confirms that, although the reconnection
is triggered by the presence of the particle, the vortex dy-
namics is effectively fully governed only by the circulation.

Moreover, the scaling invariance (6) seems to be respected
for the separation rate. Finally, note that the observed positive
ratio between the prefactors of the separation rate (1) after and
before the reconnection (A+/A− ∼ 5.5) is consistent with the
irreversibility of the reconnection dynamics, which is related
to the conversion of energy into sound [7,8,16].

FIG. 2. (a) Distance δ(t ) between reconnecting points for par-
ticles of size ap = 4.3ξ and ap = 8.6ξ . Dashed lines correspond
to δ− before reconnection, and solid lines correspond to δ+ after
reconnection. (b) Log-Log plot of δ(t ), with the rescaling (6). λ = 1
for the particle of size ap = 4.3ξ , and λ = 2 for the particle of size
ap = 8.6ξ . Dotted lines indicate the scaling t1/2.
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FIG. 3. Trajectories of particles of size (a) ap = 4.3ξ and
(b) ap = 8.6ξ during the dipole reconnection. Different colors cor-
respond to different masses, and the shaded regions indicate the area
spanned by each particle. The dashed lines in corresponding colors
are the trajectories of the reconnecting point of the vortex without
particles at times t < t−

rec. (c) Angle of deflection of the particle
trajectory after the reconnection as a function of the particle mass
for both particle sizes (blue circles correspond to ap = 4.3ξ , and
red crosses correspond to ap = 8.6ξ ). The angle considered is with
respect to the dipole propagation direction.

In Figs. 3(a) and 3(b) we show the trajectories of the par-
ticles on the plane orthogonal to the dipole for the small and
large particles, respectively, and for all the different masses
used. The shaded regions indicate the actual area spanned by
each particle. In Figs. 3(a) and 3(b), the dashed lines show the
trajectories of the reconnecting point on the vortex without
the particle (initially placed at x = 0, y = 0) until it touches
the particle surface at time t−

rec. For the large particle one
can appreciate the different Magnus precession frequencies,
which are inversely proportional to the mass. We observe
that the ballistic motion of the particle after the reconnection
is deflected with respect to the propagation direction of the
dipole, and a correlation between the particle mass and the
deflection angle is apparent. In particular, the heaviest par-
ticles show a smooth trajectory and a deflection concordant
with the velocity orientation at the reconnection point. Con-
versely, light particles slightly bounce back in the opposite
direction. In Fig. 3(c) the deflection angle θ of the particle
trajectory with respect to the dipole propagation direction
is displayed as a function of the particle mass. As already
qualitatively observed in Figs. 3(a) and 3(b), both the small
and large particles (indicated, respectively, by blue circles and
red crosses) deviate in a similar manner, with a deflection
angle that saturates at sin θ ∼ −0.2 for the largest masses. The
origin of such behavior can be understood as the consequence

FIG. 4. (a) x component and (b) y component of the particle
momentum increment with the rescaling (6) as a function of time.
Different colors correspond to different particle species, with the
same convention as in Fig. 2.

of a transverse momentum transfer between the vortices and
the particle, which we analyze in the remainder of this section.

The x component and y component particle momentum
increments �ppart (t ) = ppart (t ) − ppart (t = 0) are plotted as
a function of the rescaled time, respectively, in Figs. 4(a)
and 4(b). The data associated with all the species of par-
ticles analyzed are displayed using the same convention as
in Fig. 3, and also the particle momentum has been rescaled
as ppart → ppart/λ, according to the transformation (6). Note
that at the initial time of the simulations the particle is placed
in the reference frame comoving with the dipole, so that
its momentum is aligned with the propagation direction of
the dipole (the y direction) and reads ppart (t = 0) = Mpvd =
(Mp�/2πd )ŷ. We can clearly observe the abrupt acceleration
felt by the particle in both the transverse and longitudinal
directions during the reconnection event, followed after the
detachment by a relaxation to a ballistic motion with constant
speed. The ballistic motion is due to the absence of Stokes
drag in the superfluid, and a negligible interaction with sound
or with the outgoing vortex ring. The shaded area represents
the time window after t−

rec in which the particle is pierced by
both the filaments and the vortex separation δ is undefined.
Remarkably, such a window turns out to be the same in the
rescaled units regardless of the particle size. Note how before
the reconnection the momentum of the trapped particle oscil-
lates weakly about a constant average because of the Magnus
precession induced by the vortex [28]. If the invariance (6)
really holds, the net particle momentum increment after the
detachment in the rescaled units is expected to coincide for
particles of different radii but the same relative mass M. How-
ever, a small mismatch can be observed, which is probably due
to the interaction between the particle and the vortex by which
it is trapped before the reconnection. Such interaction indeed
produces Magnus oscillations of greater amplitude for the
large particle, as well as the generation of Kelvin waves along
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FIG. 5. (a) x component and (b) y component of the net momen-
tum increment as a function of the particle mass for different particle
sizes. Dotted lines are the particle momentum, dashed lines are the
vortex ring momentum, and solid lines show the sum of the two.
Blue lines refer to the small particle (ap = 4.3ξ ), and red lines refer
to the large one (ap = 8.6ξ ).

the filament and sound radiation, which certainly corrupt the
scaling invariance (6).

We eventually analyze the momentum exchange between
the vortices and particle. Parametrizing the vortex ring after
the reconnection as R(s, t ), where s is a spatial parametriza-
tion variable, the linear momentum of the vortex can be
expressed within the Biot-Savart framework as [40]

pvort = ρ0�

2

∮
R(s, t ) × dR(s, t ), (7)

where the contour integral is evaluated along the ring. Note
that the vortex linear momentum (7) is de facto a purely
geometrical quantity, determined by the spatial configuration
of the ring. In fact, each component of the vortex momentum
can be related to the projection of the oriented area enclosed
by the filament onto the corresponding direction [41]. The
momentum contribution of the superfluid pGP to the total
momentum in Eq. (5) contains the vortex momentum (7) and
compressible waves.

The net momentum increment for the vortex is defined as
〈�pvort〉 = 〈pvort (t > trec)〉 − pvort (t = 0), which is analogous
to the net momentum increment for the particle. In practice,
the vortex momentum is computed from the filaments tracked
during the GP simulation. Then it is averaged over a time win-
dow of ∼20τ after the particle detachment, during which it
remains steady. The x and y components of the net momentum
increments as a function of the mass are displayed Fig. 5. The
dotted lines are the particle net momentum increments, the
dashed lines are the corresponding vortex net momentum in-
crements, and the solid lines are the sum of the two. Blue lines
refer to the small particle, and red lines refer to the large one.

In the x direction (perpendicular to the dipole velocity)
the momentum acquired by the particle compensates almost
exactly the momentum increment of the vortex, and thus,

the transfer to sound modes is negligible. On the contrary, in
the y direction and, in particular, for the small particle (solid
blue line with circles), we observe a net momentum transfer
from the particle and the vortices to other degrees of freedom.
This transfer is independent of the particle mass, and it is
consistent with the observation of a sound pulse after the
reconnection in Fig. 1.

IV. RECONNECTION OF TWO LINKED RINGS

In this section we study a different setting in which vortices
reconnect regardless of the presence of particles. In particular,
we consider as the initial configuration a Hopf link consisting
of two vortex rings with radius R = 18ξ , which is known to
spontaneously undergo reconnection. We place Np = 8 parti-
cles of size ap = 3.7ξ randomly distributed along each ring.
The initial condition is shown in the first snapshot on the left
in Fig. 6. The numerical parameters for the particle potential
are V0 = 20μ and ζ = 3ξ .

We set as the initial velocity of each particle the velocity
of the ring by which it is trapped vring. In order to study
how the presence of particles modifies the reconnection we
consider three different particle masses, light (M = 0.51),
neutral (M = 1), and heavy (M = 3.14 and M = 12.56).
The evolution of the system for light particles (M = 0.51)
according to the GP dynamics is displayed in Fig. 6. Analo-
gous to what was observed for the dipole, as a result of the
particle-vortex interaction [27], the reconnection takes place
between one trapped particle and the other filament. In the
particular case of light particles, two unlinked vortex rings
emerge after the reconnection: a large ring which contains the
majority of the particles and a small ring with two particles
still attached. Moreover, because of the violence of the event,
a couple of particles get detached from the vortices.

In order to give a quantitative description, we measured the
separation rate δ(t ) for the different masses. They are reported
in Fig. 7(a) as solid lines with markers. For comparison,
Fig. 7(a) also includes the distance δ for the vortices without
particles (dashed red line). Overall, if the particles are not too
heavy, the reconnection remains almost unaffected by their
presence. However, at very close distances a speedup takes
place due to particle-vortex interactions. Conversely, in the
case of heavy particles, their inertia is so large that vortices
are driven by them. To illustrate this fact, we consider the
fictitious case in which free heavy particles (without vortices)
are set in the same positions as and with the initial velocity
of the trapped ones. The distance in this case is computed
as the minimal distance between the two groups of particles.
Comparing this separation with that of heavy trapped particles
M = 12.56 (light green triangles), it is clear that in the latter
case the ballistic motion of particles governs the dynamics.

Finally, in Figs. 7(b) and 7(c) a reconstruction of the
event displayed in Fig. 6 using the tracked vortex filaments
(rendered as blue solid lines) is also shown from a different
perspective. For comparison, the tracked vortices correspond-
ing to a simulation with the same initial configuration but
without particles are shown as red lines. It is evident that the
dynamics in the two cases are rather similar, especially before
the reconnection. However, in the moments immediately prior
to the reconnection one of the vortices decorated with parti-
cles shows a clear bending toward a particle set on the other
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FIG. 6. Snapshots of the superfluid density and light particles (M = 0.51) during the Hopf link reconnection (time varies from left to
right). Vortices are displayed as red isosurfaces at low density; particles are the green spheres, and sound is rendered in blue.

filament. This is a clear indication of a fast acceleration, which
is induced by the fluid depletion generated by the presence of
the particle.

V. DISCUSSION

In this work we studied how particles trapped inside quan-
tum vortices modify the process of vortex reconnections. We

FIG. 7. (a) Separation between the reconnecting rings for dif-
ferent masses of the trapped particles (solid lines with markers).
The red dashed line is the vortex separation in the absence of par-
ticles, and the green solid line is the separation between ballistic
particles without vortices. A reconstruction of the event for light
particles (M = 0.51) using the tracked filaments (b) before and
(c) at the reconnection. The filaments of the simulation with particles
are displayed as blue solid lines. The filaments corresponding to a
simulation with the same initial conditions but without particles are
shown as red dashed lines.

have investigated two different settings: a vortex dipole with
one trapped particle and a Hopf link with a number of particles
randomly positioned within the vortex. Whereas in the first
case the reconnection is triggered by the symmetry breaking
induced by the particle, in the second one vortices recon-
nect regardless of the presence of particles. In the case of
the dipoles, we observed that the t1/2 temporal reconnection
scaling is preserved independently of the particle mass and
size. During the reconnection process, we observe a net mo-
mentum transfer from vortices to particles in both directions
perpendicular to the axis of the vortex dipole. In the transverse
direction with respect to the dipole initial velocity, the transfer
is proportional to the mass of the particles, and it is almost
exactly compensated by an equal change in the vortex momen-
tum. In the direction of the dipole displacement, the particle
speedup after reconnection is not fully compensated by the
vortices. The net momentum difference is roughly indepen-
dent of the mass, and it could be associated with the emission
of a sound pulse, such as the one studied in [16]. In the case
of the Hopf link vortex, it was observed that the reconnection
process at large distances is almost unaffected by neutral or
light particles. On the contrary, if particles are heavy, it is
driven by the particle ballistic motion. At very close distances,
the reconnection is speeded up because of the interaction
between the particles and the reconnecting vortex. In general,
it was also observed that reconnection takes place generically
between a trapped particle and an approaching filament.

In conclusion, besides providing further insights into the
current knowledge of the vortex reconnection process, our
findings constitute theoretical support and a benchmark for the
superfluid 4He experiments at very low temperature, in which
the vortices are sampled by solid particles [15,18]. In partic-
ular, as has been proved in the case of Kelvin wave tracking
[28], we stress that the use of light particles is recommended
for reproducing the bare vortex dynamics, provided, of course,
that buoyancy effects remain negligible.
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APPENDIX: DEALIASING OF THE EQUATIONS OF
MOTIONS AND CONSERVATION OF THE INVARIANTS

The set of equations of motion (3) and (4) needs to be
dealiased in order to conserve the total momentum (5). The
equations are dealiased by performing a Galerkin truncation,
which consists in keeping only the Fourier modes with wave
numbers smaller than a UV cutoff kmax. The truncated equa-
tions of motion are

ih̄
∂ψ

∂t
= PG

⎡
⎣− h̄2

2m
∇2ψ − μψ + gPG

[|ψ |2]ψ +
Np∑

i=1

V i
pψ

⎤
⎦,

(A1)

Mpq̈i = −
∫

V i
pPG

[∇|ψ |2] dx +
Np∑
j �=i

∂

∂qi
V i j

rep, (A2)

where V i
p = Vp(|x − qi|) and PG is a Galerkin truncation

operator. PG acts on the function f (x) as PG[ f (x)] =∑
k f̂ (k)eik·xθH(kmax − |k|), where f̂ (k) is the Fourier trans-

form of f (x) and θH is a Heaviside theta function. It is
also assumed that the particle potential is always truncated:
V i

p = PG[V i
p ]. Equations (A1) and (A2) exactly conserve all

the invariants (Hamiltonian, fluid mass, and total momentum)
if the 2/3 rule is used, namely, if kmax = 2

3
Nres

2 , with Nres being
the number of uniform grid points per direction [34]. For a
pseudospectral code, this technique implies an extra compu-
tational cost of one extra back and forth fast Fourier transform.
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Chapter 5

Particles in superfluids

In this chapter, we provide an introduction to the dynamics of particles in low-temperature superfluids.

We will briefly present different models used to describe the dynamics of particles or impurities in

superfluids. Then, we will discuss the interaction between particles and Kelvin waves. Three works are

included at the end of the chapter.

One of the most natural ways of studying the dynamics of a fluid is to use particles that are transported
by the flow. If such particles are small enough and have the same density than the fluid, they can be
considered as tracers of the flow and their velocity is simply given by the one of the flow. Their dynamics
is then described by the equation

dX(t)

dt
= v(X(t), t), (5.1)

where v is the velocity field of the flow, and X the position of the particle. In that way, if one can measure
the instantaneous velocity of particles, one can thus infer or reconstruct the velocity field. Such an idea
has been largely used in the past in classical fluids with the experimental techniques of Particle image
velocimetry (PIV) and Particle tracking velocimetry (PTV) [Raf07; TB09]. Thanks to the incredibly fast
cameras and powerful lasers available today, those techniques are at the heart of current experiments in
classical turbulent research.

For incompressible flows, perfect tracers uniformly sample the fluid. While this is important to study
the velocity field, it might not be the best property to visualise certain structures of the flow. It is well
understood that particle inertia plays a crucial role in the spatial concentrations of particles [Bec+07;
Cal+08; GV08; TB09]. Indeed, whereas heavy particles show a tendency to escape from vortices, light
ones are captured by them [Max83]. This idea led to the visualisation of vortex filaments in the early
1990s [DCB91], and it has become now very standard.

In superfluids, the idea of using small objects to learn the properties of the flow has a long history.
Early experiments in superfluid helium used ions and electron bubbles to study quantum vortices [Don91].
There is a vast number of experimental studies on the interaction of ions and quantum vortices, but the
most significant breakthrough occurred in 2006. Using micrometre sized solid hydrogen particles, an
experimental group in Maryland succeeded to visualise quantum vortex filaments in superfluid helium
[BLS06]. Since then, particles are the main experimental tool to study the dynamics of quantum vortices
and quantum turbulence. Such particles are several orders of magnitude larger than the vortex core size
to be called tracers, and it is still not entirely clear how they affect quantum vortex dynamics. Address
such a critical issue for current superfluid experiments is the main objective of my ongoing ANR JCJC
project Lagrangian properties and universality of quantum turbulence.
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5.1 Experimental use of particles in superfluids

As already mentioned, the experimental use of electron bubbles to infer properties of quantum vortices has
a long history. Such ions get captured by vortices, and because of their charge, they can be manipulated
by using an external electric field. This idea was already used in the 50’s to visualise Abrikosov vortex
lattices [WP74; YGP79]. Once the electrons get trapped by quantum vortices inside a rotating superfluid
helium bucket, an electric field can drive them to boundaries of the experiment, where they can be used
to make a “photograph” of the lattice. In such a way, the first visualisation of quantum vortices was
obtained. Figure 5.1.a reproduces an experimental image published in reference [WP74].

the closed end of a flow channel containing superfluid helium. The
normal-fluid component carries the heat and moves away from the
heater at a mean velocity vn = q=ρST, where q is the heat flux, ρ is
the helium density, T denotes the temperature, and S represents
the specific entropy of helium (54). The superfluid component
moves toward the heat source, serving to eliminate any net mass
flow. It has been known for many years that, above a (small) critical
value of heat flux, the superfluid component in counterflow
becomes turbulent. This results in a tangle of quantized vortex
lines, whose dynamical behavior is an essential ingredient of
quantum turbulence (55). Counterflow allows a controlled forcing
of the superfluid state away from equilibrium.
A number of flow visualization experiments have been per-

formed in thermal counterflow. Early PIV experiments indicated
that average particle velocities were typically less than the nor-
mal-fluid velocity vn (26). Subsequently, using PTV techniques,
Paoletti et al. showed that, at low relative velocity, the particle
velocity distribution is indeed bimodal (56). Some particles move
in the opposite direction to the heat current. These particles are
interpreted as being trapped in the tangle of quantized vortices
generated by the counterflow [note that the vortex tangle moves
toward the heat source with a velocity that is generally different
from the superfluid velocity (48)]. The rest of the particles are
mainly influenced by Stokes drag, from the normal-fluid flow,
and their velocity agrees with the prediction of Landau and
Lifshitz (54). Note, however, that particle trapping is generally
a dynamical phenomenon; i.e., particles can also escape from
vortices, depending on the experimental conditions. More re-
cently, Chagovets and Van Sciver (19) also used PTV to show
that the bimodal velocity distribution occurs only at low relative
velocities and that above a critical velocity, associated with the
particles being untrapped from vortex lines, the velocity distri-
bution becomes monovalued, similar to that observed by Zhang
and Van Sciver, using PIV (26).

To unambiguously examine the normal-fluid motion in ther-
mal counterflow, the He*2 molecule visualization technique was
recently used (23). The He*2 tracers were produced by a tungsten
field-emission source in a glass counterflow channel. A focused
pump laser pulse at 910 nm was used to tag a line of molecules
across the channel by driving the molecules to a long-lived vi-
brational level a(1) (Fig. 3A). This tagged line was imaged sub-
sequently, using a probe laser pulse at 925 nm. Up to 40 images
were superimposed at each given pump–probe delay time to
achieve a good image quality. Typical summed images are shown
in Fig. 3B, suggesting a flat averaged normal-fluid velocity profile
that should be expected for turbulent flow, in a long enough
channel. The observed rapid growth of the averaged line width
with time further supports the claim that the normal-fluid flow is
turbulent (23). Note that, due to the mutual friction between the
two fluid components, dissipation occurs at all length scales in
the normal fluid, which contrasts with the situation in classical
turbulence, where dissipation is deemed to take place only below
a small length scale, called the Kolmogorov length scale (54).
The experiment revealed a unique normal-fluid turbulence in
counterflow (57).

Normal-Fluid Turbulence in Counterflow. The unique type of tur-
bulence just discussed obviously calls for further attention.
Studying it not only will likely broaden our understanding of
turbulence in general, but also might have practical significance
because the turbulent normal-fluid flow could, e.g., alter our
understanding of heat transfer. An experiment has been specif-
ically designed at Florida State University to examine the nor-
mal-fluid velocity field in counterflow. A thin line of He*2 tracers
is created via laser-field ionization in helium. To achieve the
required high electric field for ionizing ground state helium
atoms, laser intensity as high as 1013 W/cm2 is needed (58). Such
a high instantaneous laser intensity can be achieved by focusing
a femtosecond laser pulse through a tiny cross-section. The
molecule density so created is high enough to allow high-quality
single-shot imaging of the tracer line. Fig. 4 shows fluorescence
images of He*2 tracer lines that have been successfully generated
and imaged in counterflow, at 1.85 K, with a 35-fs laser pulse, at
55 μJ. At low heat fluxes, a straight tracer line deforms into
a parabolic shape, indicating the Poiseuille laminar velocity
profile of the normal fluid. At large heat fluxes, the tracer line
distorts, possibly due to the turbulent eddies in the normal fluid.
The local normal-fluid velocity could then be estimated by di-
viding the center displacement of a small line segment by the
drift time. Structure functions of the turbulent flow could be
computed based on the derived velocities (59), which should
allow us to gain information on the turbulent energy spectrum.
By creating multiple lines to include crosses or grid tracer
structure, measurements of normal-fluid vorticity and other
complex velocity derivatives can be made.
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Fig. 3. (A) Schematic diagram showing the optical transitions for imaging
the He*2 triplet molecules. The levels, labeled 0, 1, 2 for each electronic state,
are the vibrational levels of the corresponding state. (B) Averaged images of
a line of tagged helium molecules via the tagging fluorescence method
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Fig. 4. Fluorescence images showing the motion of a thin line of He*2 tracers in thermal counterflow. The tracer line is created via laser-field ionization by
focusing a femtosecond laser pulse into superfluid helium. The drift time denotes the time between the creation and the imaging of the tracer line. The
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Figure 3 Computed streamlines for particle motion for the two heat flux
cases in Fig. 2. a, q= 4 kW m−2 at T= 1.6 K corresponding to ReD = 41,000
and L0 = 1×1010 m m−3. b, q= 11.2 kW m−2 at T= 2.03 K corresponding
to ReD = 21,000 and L0 = 2.6×1010 m m−3.

tubes19 and over bluff bodies20. However, computing the Reynolds
number for the two cases in Figs 2 and 3 gives ReD ∼ 41,000 for
Fig. 2a and ReD ∼21,000 for Fig. 2b, which is a value lower by about
a factor of two even though it shows more turbulence than Fig. 2a.
This suggests that the Reynolds number as defined in equation (1)
may not be the appropriate parameter to describe the scale of the
turbulence in counterflow He(II). In other experiments not shown
here, we have attempted tomatch the Reynolds numbers at different
temperatures and heat currents; however, in all cases, the level of
turbulence is greater at higher temperatures.

Furthermore, it is worth noting that for classical fluids at
ReD > 10,000 considerably different flow structures are normally
present downstream of a cylinder. In particular, the large-scale
vortices behind the cylinder show vortex shedding, where the
structures are generated periodically and detach from the cylinder
producing a dynamic wake. Such time-dependent phenomena in
classical fluids result in pressure fluctuations that are not present in
He(II) counterflow in wide channels. In fact, the vortex structures
present in these counterflow He(II) experiments show behaviour

that is qualitatively similar to the steady wakes seen in classical flow
over a cylinder at low Reynolds number, ReD < 50 (ref. 21).

Finally, as can be seen in Fig. 3, the location of the large
vortices in front of the cylinder seems closer to the channel wall
than do those downstream of the cylinder. This asymmetry of
particle motion may be further evidence that the normal fluid
component interacts more strongly with the particles than does the
turbulent superfluid component. As the particle motion in front
of the cylinder should be determined by both the counterflowing
superfluid component and the normal fluid component, which has
a significant horizontal velocity component, one would expect the
normal fluid to move the vortex in front of the cylinder farther
away from it. Apart from these qualitative observations of particle
motion during counterflow around a cylinder and its explanation
in terms of interactions with both the superfluid and normal fluid
component, we have no theoretical justification for these results at
present. This is an area of current research.

It remains to be seen how the present results can help us
understand the flow of heat currents in counterflow He(II) around
bluff bodies. This topic is of significant interest to scientists and
engineers who use He(II) to cool large technical devices such
as superconducting magnets and particle physics accelerators.
The design of such devices is frequently based on extensions of
the two-fluid model and its application in complex geometries.
By visualizing counterflow around a cylinder, we show that the
corresponding heat current may have more complex behaviour
than one might assume.
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b)

d)

Figure 5.1: a) Early experimental visualisations of quantum vortices in a rotating bucket. Figure re-
produced from [WP74].b) PIV visualisation of a superfluid flow around an obstacle from T. Zhang and
Van Sciver [ZV05]. c) First visualisation of quantum vortices using hydrogen particles by Bewley et al.
[BLS06]. d) Fluorescence images of a thin line of He∗2 tracers in thermal counterflow, from [Guo+14].

Another remarkable achievement in the use of particles for studying superfluid helium was the devel-
opment of PIV in the early 2000 [Don+02; ZCV04; ZV05]. T. Zhang and Van Sciver [ZV05] succeed to
visualise a superfluid flow around a cylinder, observing the appearance of stationary normal fluid eddies
both downstream (at the rear) and upstream (in front) of the cylinder. However, its “pure” quantum
origin was later questioned and explained in terms of classical fluids [SB09a]. A PIV visualisation of that
flow is reproduced from reference [ZV05] in figure 5.1.b.

The real breakthrough, occurred in 2006 when entire vortex filaments were visualised. Bewley et al.
[BLS06] injected micrometer sized hydrogen particles in a superfluid helium experiment and observed that
they get trapped inside filaments. An image of quantum vortices, taken from [BLS06], is reproduced in
5.1.c. Since then, particle tracking has been used to study the dynamics of quantum vortices, including the
observation of Kelvin waves [Fon+14], vortex reconnections [Bew+08; FSL19] and to unveil the differences
between the velocity statistics of classical and quantum turbulent flows [Pao+08; LS14b; LS14a]. Today,
different groups in Grenoble, Prague and Tallahassee use hydrogen and deuterium particles to study
superfluid helium.
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Finally, it is worth mentioning that a new visualisation technique was developed by W. Guo et al.
[Guo+10; Gao+15] using helium excimers. By exciting or ionising helium atoms, it is possible to produce
He∗2 triplets. Such molecules form bubbles of a typical size of 6 Angstroms and can be visualised by a
laser-induced fluorescence technique. Above 1K, such particles are expected to follow mainly the normal
fluid and become excellent tracers of that component. Using this technique, Marakov et al. [Mar+15]
succeed to estimate structure functions in turbulent counterflow. Visualisations of the flow are displayed
in figure 5.1.d.

The list of references previously cited is certainly not exhaustive but gives a rough idea of some
experimental techniques and the first groups that used them. We refer the reader to the review article
[Guo+14] for more details on the visualisation of turbulent quantum flows.

5.2 Theoretical modelling of particles and impurities immersed in su-
perfluids

In Chapter 2 we discussed different models that are commonly used to describe the dynamics of a su-
perfluid. We highlighted the complexity of the system and the lack of a universal model able to describe
the whole range of scales and temperatures. When trying to describe the dynamics of particles, one faces
the same issue, and even further assumptions are needed. Basically, for each of the models presented in
Chapter 2, there exist one or several ways of incorporating the particles dynamics. In this chapter, we
will mainly discuss a simple model based on the Gross-Pitaevskii equation. This model was extensively
studied in the Ph.D work of Umberto Giuriato, from which I selected three publications included at the
end of the chapter. Other possible models will be briefly mentioned in Section 5.2.2.

5.2.1 Gross-Pitaevskii equation coupled with classical active particles

In this model, the idea is to introduce the particle dynamics in a self-consistent manner, taking advantage
of the Hamiltonian structure of the GP equation. We start we rewriting the Gross-Pitaevskii model

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g|ψ|2ψ − µψ + Vp(x)ψ, (5.2)

where we have included the potential Vp that we assumed to be localised around x = 0 and to have a
maximum strength V0 > 0 at x = 0. The ground state of the system can be easily found within the
Thomas-Fermi approximation, that consists on neglecting the kinetic term of GP. The density profile ρp

reads

ρp(x) = ρ0

(
1− Vp(x)

µ

)
θ

[
1− Vp(x)

µ

]
, (5.3)

where ρ0 = µ/g is the bulk density value and θ[ ] is the Heaviside function that ensures positivity. As
the potential is strong, that means V0 � µ, the density vanishes at the centre of potential, creating a
hole. This approximation, together with a numerical solution, are displayed in figure (5.2). A particle
immersed in a superfluid can be seen as a hole or a complete depletion of the condensate. The potential
Vp can be used to model a particle, and its support determines the particle shape. The simplest way to
provide some dynamics to the particle is to add to the GP Hamiltonian the extra degrees of freedom of
the particles.

We consider a set ofNp spherical particles of radius ap and massMp, described by the set of coordinates
q1(t),q2(t), . . . ,qNp

(t) and velocities q̇1(t), q̇2(t), . . . , q̇Np
(t). The Hamiltonian of the system consists of

the GP Hamiltonian containing a potential Vp for each particle centred on their position, plus the kinetic
energy of the particles. It reads

H =

∫ 
 ~2

2m
|∇ψ|2 +

g

2

(
|ψ|2 − µ

g

)2

+

Np∑

i=1

Vp(|x− qi|)|ψ|2

 dx +

Np∑

i=1

p2
i

2Mp
,+

Np∑

i<j

V ij
rep, (5.4)
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Figure 5.2: Left: Ground state ap of GP equation (5.2) obtained numerically. Right: One dimensional
cut of the ground state. The blue line shows the density profile and its compared to the Thomas-Fermi
approximation (5.3) (orange dashed line). The figure also displays the normalised potential used to
obtained this solution. The strength of the potential is V0 = 20µ. ξ is the healing length. Figure courtesy
of U. Giuriato, taken from his Ph.D. manuscript [Giu20]

where the momenta are pi = Mpq̇i and V ij
rep is a repulsive short-range potential to mimic a hard-sphere

behaviour between particles i and j. The corresponding equations of motion are directly obtained by
varying the associated action, and they are given by

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + (g|ψ|2 − µ)ψ +

Np∑

i=1

Vp(|x− qi|)ψ, (5.5)

Mpq̈i = −
∫
Vp(|x− qi|)∇|ψ|2 dx +

Np∑

j 6=i

∂

∂qi
V ij

rep. (5.6)

We will refer in the following to this model as the GP-P model. This set of equation fully describes the
dynamics of particles in a superfluid. Note that by definition, particles have a finite size, they are active
and modify the flow. They also interact with each other through the superfluid. This model was firstly
introduced by Winiecki and Adams in 2000 [WA00] to study vortex nucleation in three dimensions and
later used by Shukla et al. [SBP16] in two dimensions. Although it presents some technical complications
if one wants to ensure full numerical conservation of momentum (see [Giu20; GK20b]), the model remains
simple and allows for simulations with a relatively large number of particles. For this reason, we have
chosen this model to address several questions concerning the interaction between particles and quantum
vortices.

To provide an intuition of this model, let’s consider only one particle and take the limit where the
potential Vp is a δ-Dirac function. In that limit, the equation for the particle simplifies to

Mp
d2q

dt2
= −c∇ρ(q, t), (5.7)

where c is a suitable dimensional constant which value is not essential. This Newton equation tells that
particles tend to go where density, or pressure, is minimal. Particles are thus, roughly speaking, driven
by Bernoulli forces what allows the use of particles for visualising quantum vortices. In work [GK19],
included at the end of the chapter, we study the trapping of a particle by a quantum vortex.

We also notice that equation (5.7) is very different from the on of a tracer (5.1). At very low tem-
peratures, because of the absence of Stokes drag, particles do not sample the superfluid velocity ∇φ and
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inertial effects fully drive their dynamics. Therefore, at low temperatures particle tracking in quantum
fluids provides, at best, the dynamics of quantum vortices that is different from the ambient superfluid
flow. In the included publications, we show that even though particles are not point-like, have inertia and
strongly interact with quantum vortices, they can provide a lot of information on the vortices as well as
opening some exciting research directions.

5.2.2 Other models for particle dynamics

Impurity field description

One of the first attempts to describe the dynamics of impurities in a superfluid was made by E.P. Gross
himself in 1958 [Gro58] and shortly after resumed by Clark [Cla65] trying to provide some support for
the use of electron bubbles in superfluid helium. In the Gross-Clark model, the impurity is represented
by a new field ϕ satisfying the (linear) Schrödinger equation. The associated Hamiltonian is

H =

∫ (
~2

2m
|∇ψ|2 +

g

2

(
|ψ|2 − µ

g

)2

+
~2

2mI
|∇ϕ|2 − µI|ϕ|2 + g12|ψ|2|ϕ|2

)
(5.8)

where mI is the mass of the impurity, µI is its chemical potential and g12 the coupling constant between
the condensate and the impurity. In this model, the impurity has the same effect that the potential Vp

in the previous model. It depletes the condensate, but its shape can change in time. Several works have
used this model; here we cite only two that are very relevant for this chapter. The Gross-Clark model
was much later used by N. Berloff and P.H. Roberts [BR00] to study the trapping of an electron bubble
by a quantum vortex and more recently by Villois and Salman [VS18] to address the vortex nucleation
produced by an accelerated ion.

The model (5.8) readily generalises to the case of several impurities, and to the case where the impurity
self-interacts. The last case corresponds to mixtures of different BECs. Although challenging to realise
experimentally, it is particularly interesting the theoretical works by S. Rica and D.C. Roberts [RR09a;
RR09b], where they considered several impurities coupled with one large condensate. For this system,
the Hamiltonian is

H =

∫ 
 ~2

2m
|∇ψ|2 +

g

2
|ψ|4 + λ|ψ|2

NI∑

i=1

|ϕi|2 +

NI∑

i=1

~2

2mI
|∇ϕi|2 +

γ0

2
|ϕi|4 + γ

∑

j 6=i
|ϕi|2|ϕj |2


 . (5.9)

In [RR09a; RR09b], S. Rica and D.C. Roberts showed that i) in the limit of large coupling λ impurities
self-localise and thus can completely deplete the condensate. ii) There exists a condensate-mediated
attractive force between the impurities. Such an effect was also studied in the model (5.4) by Shukla et
al. [SBP16] and by U. Giuriato et al. [GKP19] in finite temperature two-dimensional superfluids.

We intuitively expect that for a mixture of two BECs, in which the mutual coupling and self-interaction
constant of the impurity are large enough, the two resulting coupled GP equation should be well described
by the GP-P model (5.4).

Vortex filament model

A different approach is again possible using the vortex filament method described in Section 2.2. The
basic idea is to consider that the superfluid velocity field has to satisfy free-slip boundary conditions at
the surface of the moving particle. Then, the particle is evolved by computing the net force exerted by
the fluid on the particle. Schwarz performed the first numerical and theoretical investigations in 1974
[Sch74]. After the experimental observation of quantum vortices, this idea was resumed and developed
further numerically by the Newcastle group [KBS06; KBS07; KBS08; Kiv08b; Kiv08a].

This model is costly and, as for vortex reconnections, it needs several ad-hoc patches to describe some
physical aspects of the system such as the trapping of a particle by a quantum vortex. However, as
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anyway the vortex filament is not intended to describe the physics of a superfluid at scales of the order
of the vortex core, those issues might be not very important.

Passive particles in the Hall-Vinen-Bekarevich-Khalatnikov model

If one is interested in the large scales of finite temperature superfluids described by the HVBK equations
presented in Section 2.4, it is also possible to include the particle dynamics. In this setting, the approxi-
mations are very crude, and they need to be interpreted with caution and be confronted with experimental
data whenever it is possible.

Particles in finite temperature superfluid helium experience a Stokes drag associated with the viscosity
of the normal fluid, while also feeling the pressure gradient forces from both fluid components. The
first strong approximation is to consider that particles are much smaller than the Kolmogorov scales of
the flow, so their action on the flow and any finite-size effects are neglected because the viscous term
immediately damps any disturbance of the flow. Besides, we also neglect the Basset history term. Such
approximations are very standard in the study of inertial particles in classical turbulence, and therefore
the resulting equations for particles in the HVBK framework are a generalisation of the famous M. Maxey
and J.J. Riley equations for point particles in classical fluids [Max83]. We do not provide here a derivation
of their equation of motion and we refer to [ZCV04; Poo+05; SB09b] for further reading. The equations
of motion for a particle immersed in a HVBK superfluid are

d2q

dt2
=

1

τp
(vn(q)− dq

dt
) + β

(
ρn

ρ

Dvn

Dt
+
ρs

ρ

Dvs

Dt

)
(5.10)

τp =
a2

p

3βν
, β =

3ρ

2ρp + ρ
(5.11)

where ρp is the particle density and ap its radius. D/Dt is the corresponding material derivatives. We
recall that the superfluid and normal velocities are denoted by vs and vn, respectively. Besides, the total
fluid density ρ = ρn + ρs is the sum of the normal and superfluid densities. The parameter β accounts
for added mass effects, while the Stokes time τp represents the particle response time to normal fluid
fluctuations. In its definition, it appears the kinematic viscosity of helium defined as ν = (ρn/ρ)νn.

This model completely neglects the trapping of particles by quantum vortices and their interaction
with them. Consistently with this fact, particles should be in principle smaller than the mean inter-vortex
distance, so that they do not interact actively with quantised vortices, and do not get often trapped by
them [SB09b]. In recent experiments, the inter-vortex distance is of the order of 10 microns [BSS14;
Roc+07; Rou+14], that is comparable to both the Kolmogorov scales and to the typical size of hydrogen
particles in experiments. Even though trapping is absent in the model, the term Dvs/Dt is related to
the superfluid pressure gradient, and it attracts particles towards vortices. With J. I. Polanco, we have
shown that this term is dominant at low temperatures and particles indeed cluster on vortex filaments
even if they are not quantised in this framework [PK20b].

5.3 Interaction between particles and Kelvin waves

One of the most striking experimental movies that were produced by the Maryland team, was the direct
visualisation of vortex reconnections and Kelvin waves [Bew+08; Fon+14], that is available on youtube1.
Particles trapped in vortices seem to follow the oscillations of Kelvin waves correctly. How is it possible
that such large particles, with a size of several microns, can move without perturbing much the vortex
that has a core size of the order of one Angstrom? How important is particle inertia? We address such
issues in the work [GKN20] included at the end of the chapter. In this section, we take a simple model

1https://www.youtube.com/watch?v=SlXIOeOkKxU
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derived in that work to further develop some concepts that are important to understand the interaction
between Kelvin waves and particles.

The model developed in [GKN20] is formally valid for a particle with a size similar to the vortex
core. However, we showed numerically that it still works for particles several tens of times larger than the
vortex 2, showing that the model captures the main physical ingredients. We present here a simplified
model that can be derived from [GKN20], that illustrates well the relevant physical process.

We consider the LIA description for the dynamics of an almost straight vortex line (see Section 3.3.1).
We use the cartesian parametrisation of the filament in complex variables s(z) = X(z) + iY (z) and we
consider a particle at z = 0. We imagine the situation where a Kelvin wave pulse (or wave packet) is
arriving from the left (z < 0) as in figure 5.3.a. The KW pulse will hit the particle, perturbing the particle

Figure 5.3: a) The initial configuration. A Kelvin wave pulse is moving towards a particle at rest. b)
Evolution of the pulse. The pulse hits the particle, this one start moving and excite KWs at the other
side. A fraction of KWs are transmitted, and another is reflected. c) Equivalent simulations with the
Gross-Pitaevskii model. Simulations performed by U. Giuriato.

at rest. Once the particle starts moving, it will excite KWs on its right, as drawn in 5.3.b. From the
point of view of the KW, the particle acts as a potential, where a fraction of the wave is reflected, and
another one is transmitted. This idea reminds us immediately the tunnel effect of an electron. In the
work [GKN20] we build this analogy mathematically. The dynamics of the system can be described by
following linear equation 3

i
∂s

∂t
= −ΓΛ

4π

∂2s

∂z2
+

6πap

Ωp
δ(z)

∂2s

∂t2
, with Ωp =

3

2

ρΓap

Mp + 1
2M0

. (5.12)

In the previous formula, M0 = ρ4πa3
p/3 is the mass of superfluid displaced by the particle and Λ is the

constant appearing in the LIA model. The frequency Ωp is the result of the Magnus force acting on
the trapped particle. For current experiments, it is in the range of 10 − 100 Hz, and it could be used
experimentally to determine if a particle is trapped by one or several vortices. This property is currently
under experimental investigation by collaborators.

The analogy between the particle and a Kelvin wave with an electron and a δ-potential is now manifest
by equation 5.12. The visualisations presented in figure 5.3.b, are actually numerical simulations of the
model presented in [GKN20] and 5.3.c presents the corresponding GP numerical simulations, where we
observe the discussed behaviour. To exploit further the analogy, we write the equation for an electron

2To simulate particles ∼ 105 larger than the vortex core, as in current experiments, is not feasible
3In reference [GKN20], the equation was not written explicitly in that form, but it can be deduced taking the limits

discussed in that work.
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and a δ-Dirac potential

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂z2
+ U0δ(z)ψ. (5.13)

We thus note that the only mathematical difference between equation (5.12) and (5.13), is the second
time derivative multiplying the δ-function, that reflects the inertia of the particle. We thus infer, that an
incoming Kelvin wave of frequency ω, feels the particle as an effective (particle) potential of strength

U0 ∝
apω

2

Ωp
. (5.14)

It follows that large scale (low frequency) Kelvin waves do not feel the presence of particles, and are
transmitted through the particle with no significant effect. In reference [GKN20], we observe that at
large scales, the Kelvin wave dispersion relation sampled by particles is the same as the theoretical one
discussed in Section 3.2.

5.4 Selected publications

In this chapter we integrally include three selected publications. These works are an important part of
the Ph. D. work of my student Umberto Giuriato.

• Umberto Giuriato and Giorgio Krstulovic. “Interaction between Active Particles and Quantum
Vortices Leading to Kelvin Wave Generation”. In: Scientific Reports 9.1 (Dec. 2019), p. 4839. issn:
2045-2322. doi: 10.1038/s41598-019-39877-w

• Umberto Giuriato, Giorgio Krstulovic, and Sergey Nazarenko. “How Trapped Particles Interact
with and Sample Superfluid Vortex Excitations”. In: Physical Review Research 2.2 (May 11, 2020),
p. 023149. issn: 2643-1564. doi: 10.1103/PhysRevResearch.2.023149

• Umberto Giuriato and Giorgio Krstulovic. “Active and Finite-Size Particles in Decaying Quantum
Turbulence at Low Temperature”. In: Physical Review Fluids 5.5 (May 29, 2020), p. 054608. issn:
2469-990X. doi: 10.1103/PhysRevFluids.5.054608

In the first publication, we study the capture of a particle by a quantum vortex. We build a reduced
Hamiltonian model to describe the dynamics of the particle. The trapping of a particle is thus seen as a
central force problem in classical mechanics. Particularly interesting is the scaling invariance

ap → λap,q→ λq, and t→ λ2t, for allλ > 0, (5.15)

found in the reduced equations describing the trapping of a particle. Such invariance could be used to
justify that the current work should apply to realistic particle sizes, after a proper rescaling. Such scaling
was also found to be valid in vortex reconnections in the work [GK20b], included in Chapter 4.

We also study how the vortex filament is deformed as a consequence of the long-range vortex-particle
interaction. Besides, we demonstrate that when a particle moves close to a vortex, it can trigger KWs by
a linear resonance. Such a mechanism could perhaps be used to excite KWs experimentally in a controlled
manner.

The second publication concerns the interaction between KWs and trapped particles by the vortex.
We developed there the theory presented in the previous section. The most remarkable result is the study
of the KW dispersion relation sampled by the particles. Mimicking experiments, we consider an array
of particles trapped in the vortex. We predict quantitatively and observe the appearance of Brillouin
zones with bands and gaps. Such study naturally opens the way to investigate the propagation of KWs
in disordered media and the possibility of Anderson localisation in such system.

Finally, the third work addresses the decay of a quantum turbulent tangle containing a large number of
particles. We study the effect of particles on Eulerian and Lagrangian observables and discuss similarities
and differences between classical and quantum Lagrangian turbulence.
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Interaction between active particles 
and quantum vortices leading to 
Kelvin wave generation
Umberto Giuriato   & Giorgio Krstulovic  

One of the main features of superfluids is the presence of topological defects with quantised 
circulation. these objects are known as quantum vortices and exhibit a hydrodynamic behaviour. 
Nowadays, particles are the main experimental tool used to visualise quantum vortices and to study 
their dynamics. We use a self-consistent model based on the three-dimensional Gross-pitaevskii (Gp) 
equation to explore theoretically and numerically the attractive interaction between particles and 
quantized vortices at very low temperature. particles are described as localised potentials depleting 
the superfluid and following Newtonian dynamics. We are able to derive analytically a reduced central-
force model that only depends on the classical degrees of freedom of the particle. such model is found 
to be consistent with the Gp simulations. We then generalised the model to include deformations of 
the vortex filament. The resulting long-range mutual interaction qualitatively reproduces the observed 
generation of a cusp on the vortex filament during the particle approach. Moreover, we show that 
particles can excite Kelvin waves on the vortex filament through a resonance mechanism even if they 
are still far from it.

Quantum vortices have a long history in physics of superfluids and superconductors. Already in the 40’s Onsager 
had suggested the existence of quantised flows. This idea was further developed by Feynman by introducing the 
concept of quantum vortices1. What makes these vortices fascinating is that they appear as topological defects of 
the order parameter describing the system. As a consequence their charge or circulation is quantised, making 
them topological protected objects. Their core size varies form a few Angstroms in superfluid 4He to micrometers 
in Bose-Einstein condensates (BECs). In systems such as 4He, 3He and atomic BECs, quantum vortices behave as 
hydrodynamic vortices, reconnecting and rearranging their topology, forming in this way complex vortex tangles. 
Such out-of-equilibrium state is today known as quantum turbulence2. In rotating BECs, quantised vortices nat-
urally appear and they have been studied since the early 2000s3,4. In superfluid helium, ions and impurities have 
been extensively used since long time to investigate the properties of quantum vortices1. However, an important 
experimental breakthrough occurred in 20065, when quantum vortices were directly visualised by using 
micrometer-sized hydrogen particles. These impurities are trapped inside the vortex core and they can be directly 
visualised by using standard particle-tracking techniques, that are commonly exploited in classical hydrodynamic 
turbulence. Thanks to this method, quantum vortex reconnections6 and Kelvin waves propagating along the vor-
tex filaments7 have been observed. In addition, the employment of particles has been helpful to enlighten similar-
ities and differences between classical hydrodynamic and quantum turbulence8,9. For superfluid helium, the 
typical size of hydrogen particles is several orders of magnitude larger than the vortex core, whereas recent exper-
iments have used ⁎He2 excimers that are slightly larger than the vortex core10. Therefore, understanding the inter-
action between particles and vortices has become crucial for current experiments.

In general, utilising particles to unveil the properties of a fluid is a common technique in classical hydro-
dynamics. For instance, air bubbles are used to visualise classical vortices in water since the pioneering work 
of Couder et al. in 199111 and tracers (very small and neutrally-buoyant particles) are followed by using 
ultra-fast-cameras to determine the statistics of turbulent flows12. When particles are not tracers, they manifest 
inertia with respect to the fluid flow, deviating from its stream lines. Although complex, their dynamics is well 
understood in classical fluids if their size is small enough13,14.
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Superfluids differ in several aspects to classical fluids. Firstly, at very low temperature, an object moving at low 
velocity experiences no drag. Secondly, the quantum nature of vortices makes the vorticity field (the curl of the 
velocity) a Dirac-δ distribution supported on the vortex filaments. Finally, at finite temperature, they are modelled 
by an immiscible mixture of two components: the actual superfluid and a normal fluid. The latter is described 
by the (viscous) Navier-Stokes equations. Such mixture of fluids is responsible for some quantum effects with 
no classical analogous such as the fountain effect and second sound1. The dynamics of a particle moving in a 
finite temperature superfluid happens to be richer than in an ordinary fluid. Its equations of motion have been 
generalised to the case where the flow is prescribed by the two-fluid model15,16. This model provides a large-scale 
description of a finite temperature superfluid where vortices are described with a coarse-grained field, therefore 
the quantised nature of superfluid vortices is missing. A different model that does account for the quantised 
nature of superfluid vortices, was introduced by Schwartz and it is known as the vortex filament method17. Also 
in this case, the dynamics of particles has been addressed both theoretically and numerically18,19. Eventually, in 
the limit of very low temperature, superfluids can be described by another important model, the Gross-Pitaevskii 
(GP) equation. This model derives from a mean field approximation of a quantum system and directly applies 
to weakly-interacting BECs, but it is also expected to qualitatively apply to other types of superfluids. The GP 
equation governs the dynamics of the macroscopic wave function of the system, hence quantum vortices are nat-
urally included. In the GP framework, impurities and particles are often described in terms of classical fields20–23. 
In particular, it was shown by Roberts and Rica22 that, depending on the coupling constants, the impurity field 
separates from the condensate and the two fields become immiscible. In this regime, an impurity can be seen as 
a hard-core particle described with classical (Newtonian) degrees of freedom24–26. Such approach is numerically 
much cheaper than the classical field description, and thus allow for simulations of a large number of particles27. 
It also suitable for developing analytical predictions.

In this Report we study numerically and analytically the interaction of quantum vortices and particles by using 
the Gross-Pitaevskii model coupled with a particle having classical degrees of freedom. We take advantage of the 
Hamiltonian structure of the system to derive a simplified model for the particle motion that it is then directly 
confronted with numerical simulations of the full GP model. In particular, we study the trapping of particles by 
a straight vortex, where an explicit analogy of a Newtonian central force problem can be established. The model 
is then generalised to describe the deformation of the vortex filament. The consequences of the long-range inter-
action between the particle and the filament are analytically studied and a prediction for the generation of Kelvin 
wave is obtained.

Results
Model for particles in a superfluid. We consider a superfluid at very low temperature with one spherical 
particle of radius ap and mass Mp immersed in it. The superfluid is described by a complex field ψ(x, t) and the 
particle classical degrees of freedom are its position q = (qx, qy, qz) and momentum = =


M p p pp q ( , , )x y zp . The 

dynamics of the system is governed by the following Hamiltonian:
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where m is the mass of the fundamental bosons constituting the superfluid, μ is the chemical potential and the 
coupling constant g a m4 /s

2π=  depends on the s-wave scattering length as. The potential V x q( ) 0p μ| − | >
 

is localised around q and it determines the shape of the particle. Its presence induces a full depletion of the super-
fluid around the position q up to a distance ap. The equations of motion for the field and the particle position are 
directly obtained by varying (1) and read
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The Hamiltonian (1), the total superfluid mass ∫ ψ= | |M m xd2  and the total momentum 
∫ ψ ψ= ∇ −⁎P (i

2
 

⁎ψ ψ∇ +x p)d  are conserved quantities. The connection of Eq. (2) with hydrodynamics is made through the 
Madelung transformation x m ex( ) ( )/ i x( )m

ψ ρ= φ  that maps the GP model into the continuity and Bernoulli 
equations of a fluid of density ρ and velocity vs = Δφ.

In absence of the particle, the GP equation has a simple steady solution corresponding to a constant flat con-
densate ψ ρ μ= =∞ ∞ m g/ / . If (2) is linearised about ψ∞, large wavelength waves propagate with the phonon 
(sound) velocity c g m/ 2ρ= ∞

 and dispersive effects take place at length scales smaller than the healing length 
g/22ξ ρ= ∞ .

Another important steady solution corresponds to a straight quantum vortex

ψ ρ= .φx y z x y m e( , , ) ( , )/ (3)
i m x y

v v
( , )v

The vortex density ρv vanishes at (0, 0, z) and the phase is given by 
mvφ κϕ=  , with ϕ the angle in the (x, y) 

plane and κ a non-zero integer. The corresponding velocity field vv satisfies



3Scientific RepoRts |          (2019) 9:4839  | https://doi.org/10.1038/s41598-019-39877-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

�
C

κ ϕ
κ

π ξ=
| |

Γ = ⋅ = =
⊥m

h
m

cv
x

v land 1 d 2 2 ,
(4)v v∮ˆ

where ϕ̂ is the azimuthal versor and x⊥ = (x, y, 0). Similarly, in the following we will denote q⊥ = (qx, qy, 0) and 
q⊥ = |q⊥|. The close path  surrounds the vortex, whose circulation is thus given by κΓ. We will consider κ = ±1 
because it is the only stable solution. Note that the vortex core size is given by the healing length ξ, ρv and vv are 
radial functions and ρv → ρ∞ away from the vortex28.

When a particle is present, the ground state (without vortices) corresponds to a flat condensate with a strong 
density depletion at places where V x q( )p μ| − | > . A good approximation when ξap   is given by the 
Thomas-Fermi ground state that is obtained neglecting the kinetic term. It reads

ρ ρ ρ
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with θ the Heaviside function. The size of the particles is thus roughly determined by the relation Vp(ap) ≈ μ. The 
results presented in this work are independent of the functional shape of Vp, provided that it is isotropic.

In numerics, we express the particle mass as M Mp 0= , where M0 is the mass of the displaced superfluid. 
Therefore, neutral-mass particles have 1 = , heavy particles have 1 >  and light particles have 1< . 
Lengths are expressed in units of ξ, times in units of τ = ξ/c, velocities in units of c and energies are normalised by 
M c0

2. Details on the numerical implementation and the particular choice of Vp are given in Methods.

Interaction between particles and quantum vortices. We begin by presenting some numerical exper-
iments where a particle is attracted and captured by a vortex. We integrate the model (2) in a 3D periodic domain 
of size L = 256ξ with an initial condition consisting of one particle at rest and one straight vortex initially sepa-
rated by a distance q q0 ξ=⊥ 

. The domain contains image vortices in order to preserve periodicity that are not 
displayed in figures. Their effect on the particle has been checked to be negligible. Snapshots of the superfluid 
density field with the particle at different times are displayed in Fig. 1. The top row refers to a relatively small 
particle (ap = 7.6ξ), while the bottom row to a large one (ap = 23.5ξ). Both particles have a neutral relative mass 

= 1 . Note that hydrogen particles used for visualization of quantum vortices in superfluid helium have a rel-
ative mass 0 7 ∼ .  and a typical size of ξ∼a 10p

3 . Simulating such particle size is not achievable numerically, 
however a clear difference is already observed for our large particle. In both cases, the particle is attracted by the 
vortex. Before the merging, while the particle is moving closer to the vortex, a deformation of the vortex line is 
observed. Such deformation is a cusp regularised at the scale of the healing length by the dispersion of the GP 
equation. Initially, the cusp develops perpendicularly to the particle velocity. Later, it curves towards the particle, 
until the contact point the vortex separates into two branches. The two contact points then slide on the particle 
surface towards opposite directions. The oscillation of the trapped particle excites helicoidal waves on the fila-
ment. Such waves, that propagate along the vortex line, are known as Kelvin waves. We note that the vortex defor-
mation is less marked for smaller particles and the amplitude of Kelvin waves increases with the particle size. A 
similar behaviour has been already observed in the hydrodynamical model adopted in refs15,29,30, as well as in the 

Figure 1. Snapshots of the superfluid density and a neutral-mass particle during the trapping (times varies 
from left to to right). Vortices are displayed in red, particles in green and sound waves are rendered in blue. Top: 
small particle (ap = 7.6ξ). Bottom: large particle (ap = 23.5ξ). Images were produced with VAPOR rendering 
software.
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classical field impurity model studied by Berloff and Roberts21. The trapping process was then interpreted as a 
reconnection of the straight vortex with its images inside the particle, whose presence is necessary to set the 
boundary conditions for the flow around the particle.

The model (2) also allow us to observe the sound emitted by the particle-vortex pair during the trapping 
process. In a first stage, a big pulse is emitted at the moment of the trapping due to the strong acceleration expe-
rienced by the particle. In a later time, for the smaller particle a clear quadrupolar radiative pulse is observed 
(t = 1548τ, top row of Fig. 1). Remarkably, this kind of pattern is expected in superfluids when some symmetry 
cancels the first order of the multipolar radiative expansion. For instance, this is the case in 2D counter-rotating 
vortices31,32. Here, the symmetry could be related to the two antisymmetric traveling waves emerging from the 
particle and meeting at the boundary of the periodic domain. This issue will be investigated further in a future 
work. Finally, the particle remains trapped inside the vortex and coexists with a bath of sound waves. For the big 
particle, all the phenomena are amplified. Movies of the numerical simulations can be found as a Supplementary 
Information.

From these simulations it is manifest that the trapping of a particle by a quantum vortex is accompanied by a 
myriad of complex physical phenomena. In the next sections, we take advantage of the simplicity of the model to 
derive effective equations for the particle and the vortex Filament dynamics.

Reduced theoretical model for the particle-vortex interaction. In the following we set the origin of the reference 
frame at the intersection between the unperturbed vortex line and its orthogonal plane where the particle lies. At 
t = 0, the vortex line coincides then with the z axis. To derive a simplified theory, we consider the following ansatz 
for the superfluid field:

ψ
ρ

ρ ρ= | − | φ∞

m
ex q q x x q( ; , ) ( ) ( ) ,

(6)
i m x q q

v p
( ; , )


 

where /v v
ρ ρ ρ= ∞

 and ρ ρ ρ= ∞/p p

 are the normalised ground states of an isolated vortex and an isolated par-
ticle given in (3) and (5) respectively. At first approximation, we neglect the deformation of the vortex. This last 
assumption is valid at the stages where the particle is attracted by the vortex, but still far from it. We will consider 
the vortex deformation in the last section. The ansatz (6) also neglects small density variations due to sound emis-
sion and might not be valid at the exact moment of the trapping, but it gives a good description elsewhere. The 
phase φ leads to the superfluid velocity field vs = ∇φ and it is determined by imposing the boundary conditions 
around the particle and at infinity:

aq n v n x x q v vs t and
(7)x qs p s v

⋅ = ⋅ ∀ . .| − | =  → .
| − |→∞

where n = (x − q)/|x − q| and vv the vortex velocity field (4). Since vv describes a non-uniform irrotational flow, we 
have to take into account how the superfluid velocity field is modified when the particle accelerates in it. As it is 
done in classical fluid mechanics13–15, we include in the superfluid velocity the corrections to the pure vortex flow 
vv that are generated by the moving particle. We set vs = vv + vp + vBC, or in terms of the phase φ = φv + φp + φBC.

The potential φp describes the flow of a sphere of radius ap moving in a uniform flow given by the relative 
velocity 
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 ⋅a n v q n) ( )p v . In practice, it is obtained by a Taylor expansion of the vortex velocity flow around the particle 
and hence φBC is expressed in terms of its gradients13–15. This flow gives a contribution of order
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where we have used | | ∼ ⊥qv q( ) 1/v . We include in our calculations φBC up to ( )2ε .
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We use the ansatz (6) to explicitly perform the space integrals. From (5), we observe that for a strong localised 
potential Vp μ

 the field 

ρ− x1 ( )p  is supported on a ball of center q and radius ap, up to a layer of size ξ. We use 

this fact to reduce the domain of integration. Inside this ball and if ε 1, we can assume that ρ ρ≈ ⊥qx( ) ( )v v 

 and 
≈ ⊥qv x v( ) ( )v v . All the integrations can be then carried out. Details on these computations are given in Methods. 

The Hamiltonian components (10) eventually read
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where C = 1/2 and overbars denote constants at the leading order. Eadd is the classical added mass energy in three 
dimensions33 modified by the density profile. Gathering all the terms, we obtain the reduced Hamiltonian (RH)
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In (13) the added mass has been absorbed in the effective particle mass M M C M C M( )eff p v 0 v 0ρ ρ= + = +
 

 
and the particle momentum has been redefined as = Mp qeff  . Note that, as vρ  only depends on q⊥, the coordinate 
qz of the particle is cyclic and can be trivially integrated. The dynamics thus simplifies to a motion in the plane 
perpendicular to the vortex. The reduced model (13), therefore describes a classical central force problem in two 
dimensions with a potential given by its last term. Note that the same calculations can be performed in two 
dimensions, by redefining the phase (8) which leads to the constant C = 1.

The reduced Hamiltonian (13) can be further simplified using the asymptotic behaviour of 

ρv. At large dis-

tances, ρ ξ ξ ξ∼ − − +⊥ ⊥ ⊥
q q O q1 / 2 / ( / )v

2 2 4 4 6 6 , hence at the leading order ≈ −H Hp
GP

int
GP and the main contribu-

tion comes only from Hhydro
GP . Finally, at lowest order, we obtain the effective Hamiltonian (EH) for the particle 

dynamics
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The equations of motion for the particle position are then:

 ̈ ̈
π

+ = −
+ Γ

=⊥
⊥

⊥C C
q

qq q( ) (1 )
4

, 0,
(15)

z

2

2 4

Note that the added mass effect is suppressed for neutral-mass particles having = 1 and the particle size 
explicitly appears only at high order terms. The attractive force scaling as q 3

⊥
−  was first proposed by Donnelly34 as 

the result of a pressure gradient. Equation (15) has been also studied for neutral-mass particles in the framework 
of pure hydrodynamical models15,16.

Finally, note that if we replace in (13) the density by its leading order ρ =


1v , then the associated equations of 
motion are invariant under the following scaling transformation:

a a t tq q, , (16)p p
2 λ λ λ λ→ → → ∀ ∈ +

Such invariance will be also preserved in terms coming from higher orders in ε.

Numerical measurements and comparison with theory. We compare now our reduced model to the numerical 
experiment presented in Fig. 1. We first consider a small neutral-mass particle of size ap = 2.7ξ. For this particle, 
the condition (9) is valid for a wide range of separations and the deformation of the vortex during the particle 
approach is negligible. We measured the variation of the different components of the Hamiltonian (10) as a func-
tion of distance between the particle and the vortex. Figure 2a displays such energies (markers) compared to the 
respective theoretical predictions (lines).

The striped region identifies the particle radius ap/ξ where the particle and the vortex overlap. Since the added 
mass energy Eadd (11) only modifies the particle inertia but has no effect in determining the force in the r.h.s. of (15), 
we subtract it from the hydrodynamic component Hhydro

GP  and the total GP energy HGP = H − K. We have used the 
Padé approximation given in Methods as an analytical expression for the vortex density profile 


ρv, so that both 

asymptotics (large and short vortex-particle separations) are reproduced. Even if our model is not supposed to be 
quantitatively accurate for ∼⊥q ap, we can still observe a quite good agreement. Remarkably, the hypothesis that 
leads to neglect Hq

GP is perfectly valid up to a distance about twice of the particle radius. Moreover, H Hp
GP

int
GP≈ −  

and thus during the particle approach ≈H HGP
hydro
GP . Figure 2b shows in a log − log plot the absolute value of the 

measured energies for large distances. Clearly, all the energy contributions follow the predicted q 2
⊥
−  scaling, as 

long as the vortex-particle separation is large. We have checked that the data in Fig. 2 are almost independent of 
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the particle mass. Discrepancies between data and theory might be due to sound radiation or to sub-leading terms 
in the boundary conditions of the superfluid velocity. We conclude that the effective potential energy is relatively 
well described by U(q⊥) in Eqs (14) and(15) gives a good approximation for the motion of the particle.

Equation (15) can be straightforwardly integrated and the solution for the particle-vortex distance reads

q t E
M

t q q q t( ) 2 ,
(17)eff

2
0
2

0 0= + +⊥
⊥

where q0 = q⊥(t = 0), q q t( 0)0 = =⊥  and E H t t p Mq p[ ( 0), ( 0)] /2zeff
2

eff= = = −⊥  is the conserved energy in the 
effective model. In the case of a neutral-mass particle with zero initial velocity Eq. (17) reduces to the one derived 
by Barenghi et al.30. In Fig. 3 the prediction (17) and the one obtained numerically from RH (13) are compared 
with numerical data.

Figure 3a shows the particle-vortex distance for neutral-mass particles of different sizes initially located at a 
distance q0 = 45.3ξ. The markers denote the capture times, after which particles keep moving inside the vortex. 
The assumption (9) is ideally satisfied for point-like particles but it reasonably applies as long as the particle 
radius is sufficiently small compared to its distance to the vortex. Indeed, for the particle ap = 7.6ξ the accordance 
with theory is good, while for the one having ap = 23.5ξ is just qualitative. For such particle, the full reduced 
Hamiltonian gives a better description. In addition, the motion curve of a particle of radius ap = 2 × 23.5ξ, ini-
tially located at 2q0 is in good agreement (pink dashed-dot-dotted curve) with the scaling relation (16). It is inter-
esting to note that close to the capture time the particle-vortex separation scales as

Figure 2. (a) Different energies as a function of the vortex-particle distance q⊥/ξ during the approach of a 
particle with size ap = 2.7ξ. The initial separation is q⊥ = 45.3ξ and the particle has zero velocity. Markers are 
numerical data and lines theoretical curves of corresponding colours. (b) Same energies as in (a) in (log − log 
scale). Initial q⊥ = 85.1ξ and initial velocity q c0 04 = − .⊥ .

Figure 3. (a) Measured vortex-particle separation as a function of time for neutral-mass ( = 1 ) particles of 
different sizes moving towards a straight vortex (solid lines). The initial condition is q⊥ = 45.3ξ and q = 0. Round 
markers indicate the corresponding trapping times. †The pink dash-dot-dotted line refers to a big particle 
initially at q⊥ = 90.6ξ rescaled using Eq. (16) with λ = 2. The figure also displays the predictions RH (13) in 
dashed lines of the corresponding colours, the theoretical prediction (17) of the effective model EH (dotted 
golden line) and the scaling q t t( )

1
2∼ −⁎ , obtained by fitting the numerical data (dash-dotted black line). (b) 

The same as (a) but for particles with ap = 2.7ξ and different masses. Data from GP simulation are displayed in 
solid lines whereas the predictions (17) are in dotted lines. The dashed golden line refers to a GP simulation with 
a vortex containing Kelvin waves of rms amplitude 0.5ξ.
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where we have set 


= =tq( 0) 0 for sake of simplicity. In Fig. 3a such scaling is also apparent up to a separation of 
ξ∼q 30  for the particle with ap = 7.6ξ (dotted-dashed line). The capture time t* predicted by the effective model 

is compatible with the one observed in the GP simulation with a relative error of 5%. The scaling (18), that is also 
observed in vortex reconnections35, suggests the idea that the trapping process could be seen as reconnection of 
the vortex with its images inside the particle. Finally, in Fig. 3b the vortex-particle separation has been measured 
for a small particle (ap = 2.7ξ) with the same initial condition but with different masses. Remarkably, the heavier 
the particle, the better the agreement with theory. This could due to the fact that light particles are more sensitive 
to sound waves and compressible effects not taken into account in the theory. For completeness, we also show the 
case of a vortex filament perturbed with small-amplitude Kelvin waves (dashed golden line). As expected, the 
effect of Kelvin waves is sub-leading and no difference is appreciable with respect to the unperturbed case.

It is well known in classical hydrodynamics that light particles go into vortices whereas the heavy ones escape 
from them11. The same situation takes place for a particle in a superfluid, even if there is no Stokes drag at zero 
temperature. Indeed, as a central force problem, the effective Hamiltonian (14) conserves the angular momentum 

= × ⋅⊥ ⊥ ˆ


 M zq q( )z eff . This conserved quantity leads to the emergence of a repulsive potential M q/2z
2

eff
2

 ⊥ in the 
e f fe c t ive  Ham i l ton i an  for  q ⊥ .  T h e re fore  t h e re  e x i s t s  a  c r i t i c a l  ang u l ar  m om e ntu m 
  π= + + ΓC C M(1 )( ) /2crit 0  such that for 

 <z crit particles collapse into the vortex and escape from it for 
 >z crit. Now, if the particle is initially at rest in the reference frame moving with vortex flow, i.e. 

⊥q  = vv(q⊥), the 
condition on the critical value of z  is expressed in terms of the mass, as 1 <  for trapping and  > 1 for 
escaping. At 1 =  the model (14) predicts a closed circular orbit, i.e. a particle tracing the flow. However, this 
orbit is unstable and modified by high order terms (see Methods) that lead to a collapse also in this case. The three 
situations = 1  and  1>  are manifest in Fig. 4a, where we display the trajectories of a small particle 
(ap = 2.7ξ) with initial velocity 


q⊥ = vv(q⊥) but different masses. For the  = 1 case the prediction given by (13) 

works better than the leading order solution. This is consistent with the fact that the terms proportional to q 2
⊥
−  

cancel for = z crit, so that the next-to-leading order becomes predominant.
Figure 4b shows that the angular momentum is conserved up to 4%. Note that the escaping particle feels the 

attraction of image vortices in the periodic box that break down the conservation of 
z.

Generation of cusps and Kelvin waves on the vortex filament. We now address the effect of the 
particle on the vortex filament. As the vortex remains almost straight, it can be parametrised as z z zR s( ) ( ( ), )= , 
where s(z) is a bi-dimensional vector. The ansatz (6) can be generalised by replacing ⊥x  in ρv and φv by −⊥ zx R( ). 
Assuming 

| | ⊥z qs( )  and small deflections |∂ |s 1z 
, all the calculations made in the previous section to reduce 

the Hamiltonian can be performed in the same way if we keep only contributions at the first order in s(z). The 
vortex deformation appears in the term HGP in (13) and simply corresponds to the Local Induced Approximation 
(LIA) Hamiltonian28 (see Methods). The effective vortex-particle Hamiltonian (14) becomes

∫
ρ

π ρ π
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eff
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2
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where from now on q⊥ = (qx, qy). In principle Λ is a non-local operator yielding the correct Kelvin wave disper-
sion relation28. For the moment, we treat it as a constant. Up to a logarithmic correction, this is equivalent to con-
sider the limit of large-scale vortex deformations. Although rough, such approximation provides a qualitatively 

Figure 4. (a) Trajectories of small particles (ap = 2.7ξ) with 


= =⊥ ⊥t qq v( 0) ( )v  and q⊥(t = 0) = 22.6ξ. GP data 
are displayed in solid lines, predictions of EH (14) in dotted lines and the predictions of RH (13) in dashed lines 
of the corresponding colours. (b) Relative variation of angular momentum as a function of time for the same 
simulations of (a).
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good description of the vortex dynamics. The equations of motion coupling the vortex filament and the particle 
are thus found to be:
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where z AA( )i ij jε× =ˆ , with εij the Levi-Civita symbol. The l.h.s of Eq. (21) can be straightforwardly derived fol-
lowing the calculations performed in refs36,37. Note that the r.h.s. of equation for ̈qz is negligible in the limit s 1z|∂ |   
and | | | |q s . In Eq. (21) a point force is exerted by the particle giving rise to the deformation of the vortex line, 
while the dispersive term leads to Kelvin wave propagation. This simplified model reproduces the generation of a 
cusp similar to the one observed in the numerical simulations of the full GP model, as apparent in Fig. 5a.

In previous works, such cusp-shaped deformations have been interpreted as the result of the vortex reconnec-
tion with the images inside the particle21. Such effect is not taken into account in our model and the formation of 
a cusp is the result of a simple action-reaction mechanism between the particle and the vortex. In addition, the 
curvature of the vortex filament during the trapping is not well described by the universal theoretical prediction 
for pure vortex reconnections obtained by Villois et al.35 (data not shown).

From the particle-vortex model (20,21) we can extract further analytical predictions. Since 
| | ⊥s q , we can 

set q s q− ≈⊥ ⊥ in the model. The particle thus decouples from the vortex and just drives the forcing acting on it. 
We write s(z, t) and q(t) in complex variables as = +s z s z t is z t( ) ( , ) ( , )x y  and q t q t e( ) ( ) i t t( )q= | | Ω , and linearise (21) 
for small s. The equation now reads

κ
π

κ
π ρ
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= −
ΓΛ

+
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+ Γ− Ω +

∞

s
t

i k s i F
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4

,
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k k
k

i t kq t2 0
3
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0

0
2

q z
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where sk̂ is the Fourier transform of s(z) and k a wave-vector. We have now phenomenologically included the 
non-local operator Λk that in Fourier space reads Λ = − − ka K ka K ka a k2(1 1 ( )/ ( ) )/( )k 0 0 0 1 0 0

2, with Kn the 
modified Bessel function of order n and a0 = 1.1265ξ. The operator Λk has been defined in order to obtain the 
correct Kelvin wave relation dispersion ω κ π= ΓΛ k /4k

W
k

K 2  computed in refs28,38 and the cut-off a0 has been fixed 
to satisfy the known GP small-k asymptotic expansion38. First, let us consider the case of radial approach (Ωq = 0) 
with vertical velocity =q 0z . Integrating Eq. (22), it follows that the spectrum of the vortex displacement obeys the 
scaling s kk

2 4| | ∼ −ˆ  at large scales, up to a logarithmic correction. Such scaling corresponds to the deformation of 
the vortex line which starts to develop already at the early times of the trapping process. We compute the spectra 
using the tracked vortex lines obtained from GP simulations by using the method explained in refs39,40. They 
present a good agreement with theory (see Fig. 5b). Finally, if 

 ≠q 0z  or Ωq ≠ 0, the particle-vortex model predicts 
the generation of Kelvin waves when the particle is still distant. Indeed, when the particle is far from the vortex, 

Figure 5. (a) Cusp generated during the trapping of a neutral-mass particle of size ap = 7.6ξ at the capture time 
t*. The initial particle condition is q⊥ = 45.3ξ and q = 0. Red solid line is the vortex line tracked during GP 
simulation, whereas green solid line is s(z, t*) computed with the dynamics (20, 21). (b) Spectrum of vortex 
displacement measured from GP simulation at different times during the trapping of a particle. The parameters 
are the same as in (a). (c) Spectrum of vortex displacement measured from GP simulation during the motion of 
a particle. The parameters for the particle are ap = 7.6ξ, q⊥(t = 0) = 22.6ξ, q⊥(t = 0) = vv(q⊥) and 

q c0 27z = .  (see 
Methods). The inset shows the superfluid density and the particle where Kelvin waves are clearly present on the 
vortex filament.
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the time dependence of |q(t)| and the one of Ωq(t) are much slower than the one of s(t) and they can be treated as 
constants in Eq. (22). Therefore, the model (22) predicts a linear resonance if k qk

W
q z

Kω = Ω + 
. As a conse-

quence, any motion of the particle not purely radial generates waves on the filament. In order to check this claim, 
we performed a GP simulation with a particle orbiting around the vortex while moving parallel to it. A movie of 
the simulation is available as Supplementary Information. The corresponding vortex displacement spectrum is 
presented in Fig. 5c, where the development of a resonance is clearly visible. The resonant mode predicted by the 
model (22) is kξ = 0.24, compatible with the position of the observed peak. In the inset a snapshot of the super-
fluid density shows the corresponding Kelvin waves generated on the filament. Actually, all the small-k modes of 
the filament are growing during the first stages of particle motion. Indeed, the forcing driven by the particle pro-
duces an oscillation in time of such modes, with low frequency and high amplitude. Note that the considerations 
made from Eq. (22) could be in principle formalised using a multi-time asymptotic expansion.

Discussion
We have studied the interaction of a particle and a quantum vortex in a self-consistent framework given by 
the particle-superfluid Hamiltonian (1). The superfluid is described by the Gross-Pitaevskii equation and the 
particle through classical degrees of freedom. This minimal system is able to extend results obtained in more 
complex models21,30 with a much lower numerical cost. The simplicity of the model allowed us to derive the 
reduced Hamiltonian (13) for the particle dynamics, that also includes corrections due to the vortex density 
profile. Similar theoretical computations can be straightforwardly performed in the case of non-local models of 
superfluids, that are more adequate for describing superfluid helium. In such models, the vortex density profile 
shows oscillations as a function of the distance to the core41,42, which could have some impact on the dynamics 
of small and light particles. In our derivation, we have neglected acoustic radiation and interaction of vortices 
with with sound waves. Compressibility effects of this kind might be also important for light particles and they 
could be included, in principle, generalising the ansatz (6). The Gross-Pitaevskii model used in this work has a 
very simple equation of state valid in the weak coupling limit. When the coupling is not so weak, like in superfluid 
helium, the equation of state can be easily modified changing the type of non-linearity of the model to account for 
the effect of beyond-mean-field quantum fluctuations43,44. It would be interesting to study how these fluctuations 
modify the particle dynamics. In the same spirit, at extremely low temperatures, quantum fluctuations could 
excite low-amplitude Kelvin waves45. However, we expect this effect to be negligible as it was shown in Fig. 3b.

The vortex-particle interaction leads to the trapping of the particle by the vortex. The bounded state with a 
particle trapped inside a vortex line possesses an energy lower that the state in which the vortex and the particle 
are far apart. This energy gap, known as substitution energy, was first computed by Parks and Donelly46. It simply 
corresponds to the vortex kinetic energy contained in the volume occupied by the particle. We have checked 
that this estimate gives the good order of magnitude for the incompressible kinetic energy difference. However, 
it overestimates it as it does not account for dynamical processes like the generation of Kelvin waves after the 
capture. The substitution energy was then used in ref.46 to assess the life time of a Brownian ion inside a vortex in 
presence of an electric field. The model used in this Report can be trivially extended to describe a charged particle 
by adding an external potential, and similar considerations could be easily rephrased. We have observed that 
the vortex considerably stretches while the particle is pulled out from it by an external force (data not shown). 
Therefore, even at zero temperature, the energy needed to remove a particle can be much larger than the substi-
tution energy. The release of a particle from a vortex is an interesting problem for traditional and modern experi-
ments with superfluids. We plan to use the model studied here to study this issue in a future work.

We have observed a non-trivial dynamics of vortex filament if a particle moves around it. The vortex dynamics 
has been included in the effective model (19), and we explained the motion of the vortex as the result of a mutual 
long-range interaction between the particle and the vortex itself. Moreover, we highlighted that long-range 
particle-vortex interaction is sufficient to generate Kelvin waves on the filament even if the particle never touches 
the vortex. It would be interesting to include such a simple interaction term in the vortex filament model, to study 
the effect of a large number of particles. In this regard, note that the model (2) can be trivially extended to include 
many particles, both at zero and finite temperature27. It is then natural to use it for studying the effect of particles 
in a quantum turbulent regime. Indeed, it is still not clear how the dynamics of active particles modify the evo-
lution and decay of complex tangle of quantised vortex lines. Addressing such issues is fundamental for current 
experiments, since particles are nowadays the main tool for tracking and visualising vortices in superfluid helium.

Methods
Numerical methods and parameters. Equations (2) are solved with a standard pseudo-spectral code and 
a 4th order Runge-Kutta scheme for the time stepping in a domain of size L with Np mesh points per dimension. 
We set c = ρ∞ = 1. The steady states for the particle and the vortex are prepared separately by performing imagi-
nary time evolution of the GP equation and then they are multiplied to obtain the wished initial condition. To 
impose the initial flow around the particle, the initial condition is evolved for a short time (~40τ) using GP with-
out the particle dynamics. In Fig. 5c, the target velocity in the z component is reached by adding an external force 

ξ= × − M cF (0, 0,2 10 / )3
0

2  that then is switched off.
The particle potential is a smoothed hat-function =
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Δ
V r( ) 1 tanhV r
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2
 and the mass displaced by the 

particle is measured as ∫ ∫ρ ψ ψ= − | | | |∞ ∞M L x x(1 d / d )0
3

p
2 2 , where ψp is the steady state with just one particle. 

Since the particle boundaries are not sharp, we measure the particle radius as πρ= ∞a M(3 /4 )p 0
1
3  for given values 

of the numerical parameters η and Δl. For all the particles V0 = 20. The parameters used are the following. For 
ap = 2.7ξ: Np = 512, η = ξ and Δl = 0.75ξ. For ap = 7.6ξ: Np = 256, η = 2ξ and Δl = 2.5ξ. For ap = 23.5ξ: Np = 256, 
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η = 20ξ and Δl = 4ξ. Finally, for ap = 47ξ: Np = 512, η = 43ξ and Δl = 5ξ. Only for the last case L = 512ξ, while for 
all the others L = 256ξ.

In theoretical predictions we have used the Padé approximation ρ = + + + +


r a a r a r b r( )/(1v
2

1 2
2

3
4

1
2

+b r a r )2
4

3
6  where r x /ξ= | | . The coefficients are: a1 = 0.340038, a2 = 0.0360207, a3 = 0.000985125, b1 = 0.355931, 

b2 = 0.037502.

Derivation of the reduced model for the particle trapping. We report here the calculations leading to 
the reduced Hamiltonian (13). We denote by an overbar some constants that at the leading order are independent 
of q. The quantum energy term Hqnt

GP contains gradients of the density and it is sub-leading when aq p ξ| | >
.We 

thus we set H Hqnt
GP

qnt
GP≈ . As discussed in the text, 


ρ− x1 ( )p  is supported on a ball of center q and radius ap 

denoted by aq( , )p . At the leading order we also have 
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The second term is computed integrating by parts, using the incompressibility of the flows and neglecting the 
gradients of ρv:
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where the term proportional to ξ ⊥q/4 4 turns out to be repulsive if ξ< +a C(1 2 )p
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Vortex deformation. We can give a rough derivation of the effective vortex-particle Hamiltonian (19) by 
assuming a small deformation of the vortex line. Similarly to the previous calculations, we neglect the gradients 
of pρ . At the leading order, the terms Hhydro
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where Ld is a cut-off of the order of the inter-vortex distance. The last integral has been performed numerically 
using ρv  obtained by imaginary time evolution of the GP equation in a infinite domain. The quantum energy term 
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Finally, in Eq. (19) the constant is Λ = Λ + Λhydro qnt. This oversimplified derivation does not recover the full 
dispersion relation of Kelvin waves as it neglects non-linear interactions and the 3D modifications of vv due to 
vortex deformations. For a more accurate discussion see refs28,38,47.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding authors on 
request.
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Particles have been used for more than a decade to visualize and study the dynamics of quantum vortices
in superfluid helium. In this work we study how the dynamics of a collection of particles set inside a vortex
reflects the motion of the vortex. We use a self-consistent model based on the Gross-Pitaevskii equation coupled
with classical particle dynamics. We find that each particle oscillates with a natural frequency proportional to
the number of vortices attached to it. We then study the dynamics of an array of particles trapped in a quantum
vortex and use particle trajectories to measure the frequency spectrum of the vortex excitations. Surprisingly, due
to the discreetness of the array, the vortex excitations measured by the particles exhibit bands, gaps, and Brillouin
zones, analogous to the ones of electrons moving in crystals. We then establish a mathematical analogy where
vortex excitations play the role of electrons and particles that of the potential barriers constituting the crystal.
We find that the height of the effective potential barriers is proportional to the particle mass and the frequency of
the incoming waves. We conclude that large-scale vortex excitations could be in principle directly measured by
particles and novel physics could emerge from particle-vortex interaction.

DOI: 10.1103/PhysRevResearch.2.023149

I. INTRODUCTION

When a fluid composed of bosons is cooled down, a
spectacular phase transition takes place. The system becomes
superfluid and exhibits exotic physical properties. Unlike any
classical fluid, a superfluid flows with no viscosity. This is
an intriguing example of the manifestation of pure quantum-
mechanical effects on a macroscopic level. The first discov-
ered superfluid is liquid helium 4He in its so-called phase
II, below the critical temperature Tλ � 2.17 K. In one of the
first attempts of describing the behavior of superfluid helium,
London suggested that superfluidity is intimately linked to
the phenomenon of Bose-Einstein condensation (BEC) [1]. In
the same years, Landau and Tisza independently put forward
a phenomenological two-fluid model, wherein superfluid he-
lium can be regarded as a physically inseparable mixture of
two components: a normal viscous component that carries the
entire entropy and an inviscid component with zero entropy
[2,3].

Because of its intrinsic long-range order, a superfluid
can be described by a macroscopic complex wave function.
A stunning quantum-mechanical constraint is that vortices

*Corresponding author: umberto.giuriato@oca.eu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

appear as topological defects of such order parameter. In
three dimensions, such defects are unidimensional structures,
usually referred to as quantum vortices. Indeed, the circula-
tion (contour integral) of the flow around a vortex must be
a multiple of the Feynman-Onsager quantum of circulation
h/m, where h is the Planck constant and m is the mass of the
Bosons constituting the fluid [4]. Such peculiarity is necessary
to ensure the monodromy of the wave function. In superfluid
helium, quantum vortices have a core size on the order of
an angstrom. At low temperatures, below 1 K, the normal
component is negligible and vortices are stable and do not
decay by any diffusion process, unlike their classical coun-
terparts. The understanding of superfluid vortex dynamics has
a direct impact on many interesting, complex nonequilibrium
multiscale phenomena, such as turbulence [5–7].

Most of the experimental knowledge on superfluid vortices
is based on indirect measurement of their properties. The early
efforts in the observation of quantized vortices were made in
the framework of rotating superfluid helium, by using electron
bubbles (ions) as probes [8]. Since then, impurities have
been extensively used to unveil the dynamics of superfluid
vortices. An important breakthrough occurred in 2006, when
micrometer-sized hydrogen ice particles were used to directly
visualize superfluid helium vortices [9]. Thanks to pressure
gradients, particles get trapped inside quantum vortices and
are subsequently carried by them. Hence, it has been possible
to observe vortex reconnections and Kelvin waves (helicoidal
displacements that propagate along the vortex line) by means
of standard particle-tracking techniques [10]. Furthermore,
the particle dynamics unveiled important differences between

2643-1564/2020/2(2)/023149(12) 023149-1 Published by the American Physical Society
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velocity statistics of quantum and classical turbulent states
[11,12]. In experiments, such particles are used as tracers,
despite their very large size compared to the vortex core.
Therefore, it is of the utmost importance that the mechanisms
driving their dynamics are fully comprehended. Specifically,
how well is vortex dynamics reflected by the motion of the
particles trapped in it? How much does their presence in the
core modify the propagation of Kelvin waves? Would they
affect the reconnection rates?

Describing the interaction of particles with isolated vortex
lines or complex quantum vortex tangles is not an easy
task. Depending on the scale of interest, there are different
theoretical and numerical models that can be adopted. A big
effort has been made in adapting the standard dynamics of
particles in classical fluids to the case of superfluids described
by two-fluid models [13,14]. This is a macroscopic model in
which vorticity is a coarse-grained field and therefore there is
no notion of quantized vortices. A medium-scale description
is given by the vortex filament model, where the superfluid is
modeled as a collection of lines that evolve following Biot-
Savart integrals. In this approximation, circulation of vortices
is by construction quantized but reconnections are absent and
have to be implemented via some ad hoc mechanism. Finite-
size particles can be studied in the vortex filament frame-
work but the resulting equations are numerically costly and
limited [15]. A microscopic approach consists in describing
each impurity by a classical field in the framework of the
Gross-Pitaevskii model [16–18]. In principle, such method
is valid for weakly interacting BECs, and is numerically and
theoretically difficult to handle if one wants to consider more
than just a few particles. In the same context, an alternative
possibility is to assume classical degrees of freedom for the
particles, while the superfluid is still a complex field obeying
the Gross-Pitaevskii equation. This idea of modeling parti-
cles as simple classical hard spheres has been shown to be
both numerically and analytically very powerful [19–22]. In
particular, such minimal and self-consistent model allows for
simulating a relatively large number of particles, and describes
well the particle-vortex interaction [22]. Although formally
valid for weakly interacting BECs, it is expected to give a
good qualitative description of superfluid helium.

In this paper we investigate how particles trapped in quan-
tum vortices interact with vortex excitations and in particular
how well they can be used to infer properties of superfluid
vortices. We use the Gross-Pitaevskii equation coupled with
inertial and active particles obeying classical dynamics to
answer this question. We first address how the Magnus force
acting on trapped particles induces oscillations at a certain nat-
ural frequency. This quantity may be experimentally measured
to determine the number of vortices composing a polarized
bundle (see a discussion later in this paper). Second, in order
to understand the effect of particle inertia, we analyze the
spectrum of vortex excitations in the case when a continuous
distribution of mass is contained inside the vortex core. Then,
we study an array of particles trapped inside a vortex, in a
setting similar to the one observed in experiments. Surpris-
ingly, the dispersion relation of vortex waves measured by
the particles is found to contain band gaps and the periodicity
typically observed in the energy spectra of solids. We explain
the numerical observation applying the concepts used in the

standard Kronig-Penney model [23,24], which describes the
motion of electrons in a unidimensional crystal. Finally, based
on our results, we discuss in which regimes particles could be
reliably used to sample vortex excitations.

II. THEORETICAL BACKGROUND

A. Model for superfluid vortices and active particles

We consider a superfluid at very low temperature con-
taining Np spherical particles of mass Mp and radius ap. We
describe the system by a self-consistent model based on the
three-dimensional Gross-Pitaevskii equation. The particles
are modeled by strong localized potentials Vp, which com-
pletely deplete the superfluid up to a distance ap from their
center position qi. Particles have inertia and obey a Newtonian
dynamics. The Hamiltonian of the system is

H =
∫ ⎛

⎝ h̄2

2m
|∇ψ |2 + g

2
|ψ |4 +

Np∑
i=1

Vp(r − qi )|ψ |2
⎞
⎠dr

+
Np∑

i=1

p2
i

2Mp
+

Np∑
i< j

V i j
rep, (1)

where ψ is the wave function that describes the superfluid
and m is the mass of the condensed bosons interacting with
an s-wave scattering length as, so that the coupling constant
is g = 4πash̄

2/m. The potential V i j
rep = ε(r0/|qi − q j |)12 is a

repulsive potential of radius r0 between particles. See Refs.
[20,22] and the next section for further details about the
model. The equations of motion for the superfluid field ψ and
the particle positions qi = (qi,x, qi,y, qi,z ) are

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + (g|ψ |2 − μ)ψ +

Np∑
i=1

Vp(|x − qi|)ψ,

(2)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (3)

This model has been successfully used to study vortex nucle-
ation [19] and trapping of particles by quantum vortices [22].
We denote by GP the Gross-Pitaevskii model without particles
and by GP-P the full coupled system (2) and (3).

In the absence of particles, the chemical potential μ fixes
the value of the condensate ground state ψ∞ = √

ρ∞/m =√
μ/g. Linearizing around this value, wave excitations are

described by the Bogoliubov dispersion relation

�B(k) = c|k|
√

1 + ξ 2|k|2
2

, (4)

where k is the wave number of the excitation. Large-
wavelength excitations propagate with the phonon (sound)
velocity c =

√
gρ∞/m2, while at length scales smaller than

the healing length ξ =
√

h̄2/2gρ∞ excitations behave as free
particles.

The close relation between the GP model and hydrody-
namics comes from the Madelung transformation ψ (x) =√

ρ(x)/m ei m
h̄ φ(x), which maps the GP (2) into the continuity
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and Bernoulli equations of a superfluid of density ρ and ve-
locity vs = ∇φ. Although the superfluid velocity is potential,
the phase is not defined at the nodal lines of ψ (x) and thus
vortices may appear as topological defects. The simplest case
corresponds to a straight quantum vortex given by

ψv(x, y, z) =
√

ρv(x, y)/m ei m
h̄ φv(x,y), (5)

where ρv(x, y) vanishes at the vortex core line (0, 0, z). The
core size of a vortex is on the order of the healing length
ξ and the phase φv = nv h̄

m ϕ, with ϕ the angle in the (x, y)
plane, ensures the monodromy of the solution (5) only if
nv is an integer number. The corresponding velocity field is
vv = nv h̄

m
ϕ̂

|x⊥| , where ϕ̂ is the azimuthal unit vector and x⊥ =
(x, y, 0). The circulation along a closed path C surrounding the
vortex is therefore quantized:

� =
∮

C
vv · dl = nv

h

m
= 2πnv

√
2cξ . (6)

Actually, for |nv| > 1 vortices are structurally unstable and
split into single-charged vortices. We shall consider only nv =
±1 vortices. Note that the Bogoliubov spectrum (3) obtained
in the GP framework describes well the excitations of atomic
BECs, but does not match the one observed in superfluid
helium. In particular, the dispersion relation never changes
convexity and the roton minimum is absent. Nevertheless, the
hydrodynamic description of vortices and of their large-scale
excitations (summarized in the following section) is similar
both in helium and in the GP model.

B. Frequency spectrum of superfluid vortex excitations

Excitations are present in quantum vortices because of
thermal, quantum, or turbulent fluctuations. They are waves
propagating along the vortex line with a certain frequency
�v(k), where k is the (one-dimensional) wave number of the
excitation. At scales larger than the vortex core size (kξ � 1),
such excitations are known as Kelvin waves (KWs) and they
play the important role of carrying energy toward the smallest
scales of a superfluid [25]. At such scales, the dynamics of
a vortex line can be described by the vortex filament model,
according to which the motion of the filament is determined
by the self-induced velocity vsi of the line on itself [8]. This
model involves nonlocal contributions and a singular integral
that needs to be regularized [26]. Note that this model has
also been derived at large scales also in the framework of
the GP equation [27]. The simplest approximation that can be
done is the well-known local-induction approximation (LIA),
where only the contribution to vsi due to the local curvature at
each point of the filament is considered. Such approximation
is valid when the curvature is much larger than the vortex core
size. The LIA model reads [28]

ṡ(ζ , t ) = vsi(ζ , t ), vsi(ζ , t ) = �

4π
�

∂s
∂ζ

× ∂2s
∂ζ 2

, (7)

where s(ζ , t ) is the curve that parametrizes the filament, and
ζ is the arclength. The parameter � > 0 is in principle a
nonlocal operator yielding the correct Kelvin wave dispersion
relation. At a first approximation and for the sake of simplicity
in analytical treatments, it can be considered as a constant. In
the case of small displacements of a straight filament oriented

along the z axis, the vortex line can be parametrized as
s(z, t ) = sx(z, t ) + isy(z, t ). At the leading order (7) reduces
to

ṡ(z, t ) = vsi(z, t ), vsi(z, t ) = i
�

4π
�

∂2

∂z2
s(z, t ). (8)

The LIA equation (8) admits solutions in the form of heli-
coidal waves propagating along the vortex line with a disper-
sion relation

�LIA(k) = −��

4π
k2. (9)

A better description of vortex waves was formally derived
from the Euler equations for an ideal incompressible fluid by
Sir W. Thomson (Lord Kelvin) [29] in the case of a hollow
vortex, namely if the vorticity is concentrated in a thin tube of
radius a0. In this case the frequency of propagation is given
by the well-known Kelvin wave dispersion relation

�KW(k) = �

2πa2
0

[
1 −

√
1 + a0|k|K0(a0|k|)

K1(a0|k|)

]
, (10)

where Kn(x) is the modified Bessel function of order n and a0

depends on the model of the vortex core. It has been shown by
Roberts [30] that the small wave number limit of expression
(10) is valid also for large-scale waves propagating along the
superfluid vortex described by the GP equation:

�v(k) −→
kξ�1

�KW(ka0 → 0) = − �

4π
k2

(
ln

2

a0|k| − γE

)
,

(11)

where a0 = 1.1265ξ and γE ∼ 0.5772 is the Euler-
Mascheroni constant. On the other hand, at small scales
the excitations of a quantum vortex behave as (GP) free
particles and the dispersion relation is simply given by [30]

�v(k) −→
kξ�1

−�B(kξ → ∞) = − �

4π
k2. (12)

Note that all the frequencies (9)–(12) have an opposite sign
with respect to the circulation �; namely KWs rotate opposite
to the vortex flow vv. Since there is not an analytic expression
for the full dispersion relation of vortex excitations of the GP
model, in the numerics presented in this work we use a fit of
the dispersion relation that matches both asymptotic (10) and
(12). It reads

�fit
v (k) = �KW(k)

[
1 + ε 1

2
(a0|k|) 1

2 + ε1(a0|k|) + 1
2 (a0|k|) 3

2
]
.

(13)

The dimensionless parameters ε 1
2

= −0.20 and ε1 = 0.64 are
obtained from the measured dispersion relation of a bare
vortex tracked in a GP simulation without particles. In Fig. 1
the spatiotemporal spectrum of a bare GP vortex is compared
with the result of the fit (solid green line), together with the
asymptotics. Note that in Eq. (13) we used the full Kelvin
wave frequency relation (10) (dashed cyan line) instead of
the asymptotic (11) (dotted yellow line). This is because its
large-k limit �KW(k) ∼ �

2πa2
0
(a0|k|) 1

2 can be straightforwardly
adjusted to obtain the free particle dispersion relation (12)
(dash-dotted magenta line).
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FIG. 1. (a) Spatiotemporal spectrum of a GP bare vortex loaded
with small-amplitude Kelvin waves. Solid green line is the fit (13).
Dashed cyan line is KW dispersion relation (10). Dotted yellow
line is the small-k asymptotic (11), with b0 = a0eγE /2. Magenta
dash-dotted line is the large-k asymptotic (12). The resolution of
the simulation is N⊥ = N‖ = 256 in a computational domain of size
L⊥ = L‖ = 256ξ . (b) A zoom close to small wave numbers.

III. MOTION OF PARTICLES TRAPPED
BY QUANTUM VORTEX

We are interested in the behavior of particles captured by
quantum vortices. Since hydrogen and deuterium particles
used to visualize vortices in superfluid helium experiments
are considerably larger than the vortex core (typically ap ∼
104ξ ) they could be captured not by an isolated vortex but
by bundles of many polarized vortices. In such complex
system, the large particle size and inertia might affect the
vortex dynamics. It is then natural to try to understand how
the dynamics of vortices is modified by the presence of the
particles, or in other terms, how well particles track superfluid
vortices.

An amazing piece of experimental evidence is that trapped
particles distribute themselves at an almost equal spacing (see
for instance Ref. [10]). In this work we do not address the
physical origins of this distribution, but we adopt it as a
hypothesis for setting the initial condition of our simulations.

We start our discussion by presenting the settings of the
GP-P model in our simulations. The GP-P equations are inte-
grated in a 3D periodic domain of dimensions L⊥ × L⊥ × L‖.
The initial conditions consist of a perturbed straight vortex
containing small-amplitude vortex excitations. The vortex is
loaded with a number of particles and then evolved under
GP-P dynamics. The computational domain contains three
other image vortices in order to preserve periodicity. Only
one vortex contains particles whereas the three others are
bare. We have used resolutions up to 256 × 256 × 1024 and
5123 collocation points. We express the particle mass as Mp =
MM0

p , where M0
p is the mass of the displaced superfluid.

Therefore, light, neutral, and heavy particles have M < 1,
M = 1, and M > 1, respectively. Lengths are expressed in
units of ξ , times in units of τ = ξ/c, and velocities in units of
c. Further details on the numerical implementation are given
in Appendix A.

FIG. 2. Visualization of particles trapped by superfluid vortices
from GP simulations. Vortices are displayed in red, particles in green,
and sound waves are rendered in blue. (a) A single particle of size
ap = 13.1ξ trapped in a vortex filament. (b) An array of particles of
size ap = 13.1ξ and relative distance d = 51.2ξ . (c) A wire made
of 50 overlapping particles of size 2.7ξ trapped in a vortex filament.
(d) An array of particles of size ap = 13.1ξ trapped in a bundle of
4 vortex filaments. Movies of the simulations are available in the
Supplemental Material [34].

Figure 2 displays the four different configurations studied
in this work. Figure 2(a) shows one particle moving in a
quantum vortex which clearly induces KWs on the filament.
Figure 2(b) displays an array of particles initially set at equal
distances. We have checked that provided that particles are
distant enough, they remain equally distributed along the vor-
tex, with very small fluctuations along its axis. Figure 2(c) dis-
plays a snapshot in the case where particles strongly overlap
creating an almost continuous distribution of mass inside the
vortex. Producing this state is possible by properly adjusting
the repulsive potential V i j

rep in Eq. (3). The purpose of studying
this configuration is twofold. First, from the theoretical point
of view it will provide an easier way to describe the role of
the particle mass in the vortex dynamics and its effect on
vortex excitations. On the other hand, such setting is similar to
recent experiments that study the nanowire formation by the
coalescence of gold nanofragments on quantum vortices [31]
or experiments with vibrating wires inside quantum vortices
in superfluid 3He and 4He [32,33]. Finally, Fig. 2(d) displays
a bundle of four equally charged vortices loaded with an
array of particles. In all cases, we clearly see the interaction
between particles and vortices producing sound (phonon) and
Kelvin waves. Movies of the simulations are available in the
Supplemental Material [34].

A. Natural frequency of particles trapped by superfluid vortices

We first consider the dynamics of a particle trapped by
an almost straight superfluid vortex. At the leading order
this is the classical hydrodynamical problem of a moving
sphere with nonzero circulation in an ideal fluid. The main
force acting on the particle is the Magnus force, which arises
from the pressure distribution generated at the boundary of
the particle in such configuration [35,36]. We introduce the
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complex variable q(t ) = qx(t ) + iqy(t ) for the center of the
particle in the plane orthogonal to the vortex filament, and
v = vx + ivy for the velocity of the ambient superfluid flow.
In these variables, the equation of motion for the particle in
the absence of any external force is [36]

q̈(t ) = i�p[q̇(t ) − v], �p = 3

2

ρ�ap

Meff
p

, (14)

where Meff
p = Mp + 1

2 M0
p = (M + 1

2 )M0
p is the effective mass

of the particle and M0
p = 4

3πρa3
p is the displaced mass of the

fluid. In Eq. (14), the fluid is assumed to be incompressible
with density ρ ∼ ρ∞, which is a good approximation when
the particle size is larger than the healing length. From (14)
we can derive the temporal spectrum of the particle position

|q̂(ω)|2 = �2
p|v̂(ω)|2

ω2(ω − �p)2
, (15)

where q̂(ω) = ∫
q(t )e−iωt dt and v̂(ω) = ∫

v(t )e−iωt dt . The
vortex line tension, which is responsible for the propagation
of Kelvin waves [37], is implicitly contained in the superfluid
flow v in Eq. (14). It generates particle oscillations in the
rotation direction opposite to the flow generated by the vortex.
However, from Eq. (15) we see that the particle motion is
dominated by a precession with frequency �p, which has
the same sign of � and therefore has the same direction of
the vortex flow. Such frequency is the natural frequency of
the particle: expressing it as a function of M we get

�p = 9

4π

�

a2
p(2M + 1)

. (16)

For current experiments using particles as probes, such char-
acteristic frequency is of order 10–100 Hz, which is actually
measurable [38].

We have performed a series of numerical experiments with
particles trapped in a superfluid vortex excited with small-
amplitude Kelvin waves. Measurements of temporal spectra
(15) for particles characterized by different values of �p are
reported in Fig. 3. In the x axis of the plot we have the angular
frequencies with the same sign of �. The different natural
frequencies have been obtained varying the mass and the size
of the particles. The observed peak at �p is well predicted by
Eq. (15). The natural frequency is also observed for particles
in the particle-array configuration. In particular, if particles
are attached to a bundle of Nv quantum vortices instead of
a single filament, the corresponding characteristic frequency
is Nv times larger. The case of a bundle of Nv = 4 is also
reported in Fig. 3, in a remarkable agreement with theory.
This has an important experimental implication. Measuring
the natural frequency �p could give an independent estimate
of the circulation (and therefore of the number of vortices) in
the bundles visualized by the particles in superfluid helium
experiments.

Note that in general the vortex line tension could have a
nontrivial coupling with the particles and lead to a modifica-
tion of the precession frequency �p. Indeed, in the idealized
derivation of Eq. (14), it is assumed that the particle center
coincides with the center of a straight vortex line. In principle,
one should solve Eq. (14) together with the equation of
motion of the vortex, taking into account the proper boundary
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FIG. 3. Temporal spectra of the particle positions for different
values of the natural frequency �p, obtained varying mass and size
of the particles. The expected natural frequency |�theory

p | (16) is the
dotted vertical line. Inset: Comparison of the measured natural parti-
cle frequency with the theory. A dagger (†) indicates that the particle
considered belongs to a particle array. An asterisk (∗) indicates that
the particle considered is trapped in a bundle of 4 vortices.

conditions between a sphere and a vortex filament [26], which
will include restoring forces maintaining the particle trapped.
Accounting for such phenomena might lead to a more accurate
prediction of the precession frequency. However, the GP
system naturally contains all these effects. Therefore, given
the agreement between the prediction (16) and GP numerical
simulations, we conclude that the modification of the particle
natural frequency �p due to the coupling at the particle-vortex
boundary is a negligible effect. The simple formula (16) can
be thus safely used as a first estimate in current experiments.

B. Dispersion relation of a massive quantum vortex

As already mentioned above, in order to study the dynam-
ics of an array of particles and their interaction with vortex
waves in a setting like Figs. 2(b) or 2(d), it is instructive to
first analyze the case of a massive quantum vortex, as the
one in Fig. 2(c). Our considerations are necessary to give
a picture of the role of inertia in the propagation of vortex
wave excitations. They are not meant to model a real wire,
for which some results are well known in literature [39,40]
and which has been used to measure the quantized circulation
in superfluid helium [41,42]. We consider a wire of length
Lw, radius aw, and mass Mw, filling a superfluid vortex. The
effective mass is Meff

w = Mw + M0
w and the displaced mass is

now M0
w = ρLwπa2

w. Since such wire possesses a circulation,
each mass element is driven by the Magnus force as in
Eq. (14), but with a different prefactor [35]

�w = ρ�Lw

Meff
w

, (17)

which arises because of the geometrical difference between
a spherical particle and a cylinder. We allow the wire to
deform, which means that the complex variable q is now a
function of the z component too. Such physical system is
analogous to a massive quantum vortex with a finite size core,
which is already well known in literature [39,40], and it has
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been used to measure the quantized circulation in superfluid
helium [41,42]. If the curvature radius is much greater than
the wire radius and the healing length, the flow velocity v

can be approximated by the self-induced velocity of the vortex
filament on itself. In the LIA approximation, the self-induced
velocity is simply given by vsi in Eq. (8). The dynamics of the
wire is therefore driven by the equation

q̈(z, t ) = i�w

[
q̇(z, t ) − i

�

4π
�

∂2

∂z2
q(z, t )

]
. (18)

In this simplified model, we are neglecting modes propagating
along the wire due to elastic tension and the wave number
dependence of the added mass. This choice is done because
we want to focus on the inertial effects that will be relevant in
the case of a particle array, developed in the following section.
Equation (18) allows as a solution linear circularly polarized
waves in the form q(z, t ) = q0ei(�±

Mt−kz), where the frequency
is given by

�±
M(k) = �w

2
± 1

2

√
�2

w + �w��

π
k2. (19)

More generally, one can consider a phenomenological extrap-
olation based on a more realistic model for the self-induced
velocity of the vortex in Eq. (18), so that the dispersion
relation of waves propagating along the wire is generalized
as

�±
M(k) = 1

2

[
�w ±

√
�2

w − 4�w�v(k)
]
, (20)

where �v(k) is the bare vortex wave frequency and depends
on the model chosen for the self-induced velocity. We will
refer to (20) as the “massive vortex wave” dispersion relation.
In the LIA approximation we have �v(k) = �LIA(k) (9) and
we recover Eq. (19), but a more accurate result is expected if
the wave propagation is instead described by �KW(k) or by the
measured dispersion relation �fit

v (k) (13). Note that the zero
mode of the branch �+

M coincides with �w and does not vanish
even if Mw = 0 because of the added mass M0

p . This is related
to the fact that the wire possesses an effective inertia because
during its motion it has to displace some fluid [39,43]. In the
limit kξ � 1, the result (20) can be obtained from the one
derived in Ref. [40] using fluid dynamic equations to study
ions in superfluid helium.

We build numerically a massive vortex placing a large
number of small overlapping particles along a vortex fil-
ament. We set the repulsion between particles at a radius
r0 = 2Lw/(Npap) (see Appendix A), so that they are kept at
constant distance r0/2. Such system mimics a continuum of
matter with total mass given by the sum of all particle masses
Mw = NpMp = NpM0

pM. We have checked that the repulsion
among particles leads to matter sound waves with frequencies
that are subleading with respect to other terms present in
Eq. (18). We initially excite the system with small-amplitude
Kelvin waves and we let it evolve under GP-P dynamics.
Figure 2(c) shows a typical snapshot of the system but in
the case of a larger initial perturbation (in order to enhance
visibility). We then use the particle positions to construct the
spatiotemporal spectrum Sq(k, ω) ∼ |q̂(k, ω)|2, with q̂(k, ω)
the time and space Fourier transform of q(z, t ) (see Appendix
B for further details). Density plots of Sq(k, ω) are displayed
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FIG. 4. Spatiotemporal spectra of massive vortices for different
masses. The vortex length is Lw = 128ξ and there are Np = 50
particles of radius ap = 2.7ξ , with repulsion radius r0 = 2Lw/(Npap).
Dotted yellow line is the Bogoliubov dispersion relation �B(k) (4).
Dashed cyan line is low-k KW dispersion relation �KW(k) (10). Solid
cyan line is full fitted vortex wave dispersion relation �fit

v (k) (13).
Dash-dotted green lines are massive vortex wave dispersion relation
�M(k) (20) computed using low-k KW dispersion relation. Solid
green lines are massive vortex wave dispersion relation computed
using full fitted vortex wave dispersion relation. Dotted horizontal
white line is the natural frequency �w (17). The other parameters of
the simulations are L⊥ = L‖ = 128ξ and N⊥ = N‖ = 256. (a) M =
0.5; (b) M = 5; (c) M = 1; (d) same as (c), but displaying the full
range.

in Fig. 4 for different values of the particle mass. For a
better presentation, we have chosen � < 0 so that vortex wave
frequencies lie in the upper plane. This convention will be
adopted also in the following section.

We first observe that the massive vortex is able to capture
the Bogoliubov dispersion relation �B(k) (4) due to the pres-
ence of excitations in the superfluid, as displayed by yellow
dotted lines in Fig. 4. The bare Kelvin wave dispersion rela-
tion �KW(k) and the measured bare vortex frequency spec-
trum �fit

v (k) are displayed by the cyan dashed and solid lines,
respectively. They coincide in the limit kξ � 1, as expected.
The corresponding massive vortex wave predictions (20) are
also displayed in green dashed and solid lines. For low masses,
the effect of inertia is negligible, so that massive vortex wave
(20) and bare vortex wave (13) predictions are similar. As
the mass increases, the wire inertia becomes important and
the measured frequencies of the wire excitations decrease at
small scales, in good agreement with the massive vortex wave
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prediction. The model (20) is not expected to give a good ex-
planation for the negative branches, as it neglects the details of
the internal structure of the wire, as well as the dependence on
the wave number of the effective mass. Such features, which
are out of the scope of the present work, are taken into account
in Ref. [40] in the case of an elastic and massive hollow vortex
(with no notion of the free-particle behavior of vortex excita-
tions at small scales). The predicted natural frequency of the
wire �W = |�+

M(0)| is clearly reproduced by the numerical
measurements and it does not become infinite when M → 0
because of the added mass effect. For completeness, Fig. 4(d)
displays the dispersion relation over the full accessible range
of wave numbers. The dispersion curves are bent due to the
discreteness of the wire at scales of order kξ ∼ 0.8. Note that
the KW dispersion relation (dashed cyan line) seems to be
very similar to the fitted one (solid cyan line). However, the
difference between the two is apparent in Fig. 4(d). Moreover,
it is clear how the massive vortex wave dispersion relation
computed using �v(k) = �fit

v (k) (solid green line) fits the data
for all the masses analyzed. In particular, in Fig. 4(d), it is
shown that it can predict the dispersion relation of a massive
vortex wire with relative mass M = 1 up to a wave number
kξ ∼ 0.7. This is not the case for the massive vortex wave
dispersion relation computed using �v(k) = �KW(k) (dashed
green line). We thus conclude that the main effect of the
inertia of the particles constituting the wire is to modify the
frequency spectrum of vortex waves, as follows from simple
hydrodynamical considerations.

C. Frequency gaps and Brillouin zones for an array
of trapped particles

Now we shall address the main question of this work. How
well do particles, seating in a quantum vortex, track vortex
waves? In order to study this problem, we consider an array of
particles as the one displayed in Fig. 2(b). Particles are placed
in a quantum vortex, initially separated by a distance d . The
system is excited by superimposing small-amplitude KWs.
We can build a discrete spatiotemporal spectrum Sq(k, ω)
of the measured vortex excitations by using the displace-
ment of particles in the plane perpendicular to the vortex.
In Figs. 5(a) and 5(c) we display the particle spatiotemporal
spectra for an array of Np = 20 particles of size ap = 2.7ξ

with masses M = 5 and M = 1, respectively, placed at a
distance d = 12.8ξ . The Bogoliubov waves are still weakly
sampled by the particles, as displayed by yellow dotted lines.
Surprisingly, a higher-frequency branch appears. Such pattern
is similar to those observed in the typical energy spectra
of crystals [24]. Particles are actually able to sample the
vortex excitations only in the first Brillouin zone; namely
they cannot see wave numbers larger than π/d . However,
spatiotemporal spectra can be also computed by directly using
the superfluid wave function. Performing the time and space
Fourier transform of ψ we define the spectrum Sψ (k, ω) =
|ψ̂ (kx = 0, ky = 0, k, ω)|2. The corresponding spectra Sψ are
shown in Figs. 5(b) and 5(d) where wave numbers go now
up to kd ∼ 10, giving access to all the small scales solved
by the numerical simulations. Several Brillouin zones are
clearly appreciated, as well as the opening of band gaps in
the dispersion relation. At the same time, Bogoliubov modes
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FIG. 5. Spatiotemporal spectra computed from the particle po-
sitions (left) and from the wave function ψ (right) for an array of
particles with mass M = 5 (top) and M = 1 (bottom). Solid green
lines are the contour plot of the dispersion relation (22) computed
with �fit

v (13). Dashed cyan line is low-k KW dispersion relation
�KW(k) (10). Solid cyan line is the fitted vortex wave dispersion
relation (13). Dotted yellow line is Bogoliubov dispersion relation
�B(k) (4). Dash-dotted horizontal white line is the predicted natural
frequency �p. The other parameters of the particles are d = 12.8ξ ,
ap = 2.7ξ , r0 = 4ap. The size of the computational box is L⊥ = L‖ =
256ξ , with N⊥ = N‖ = 512 collocation points.

can be observed and also bare vortex waves. The latter belong
to the image vortices in the computational domain, where no
particles have been attached.

The presence of particles clearly affects the propagation of
waves along the vortex line inducing high-frequency excita-
tions not only for small but also for large wavelengths. The
intuitive idea is that when a vortex wave reaches a particle, it
is partially reflected or transmitted, depending on the mass and
the size of the particles, and eventually on its own frequency.
This reminds us of the standard quantum-mechanical problem
of an electron described by the (linear) Schrödinger equation
hitting a potential barrier. Furthermore, if particles are set at
almost equal distances, the system is similar to an electron
propagating in a periodic array of potential barriers, as in the
Kronig-Penney model [23,24]. In order to apply quantitatively
this intuition and explain the opening of band gaps in the
dispersion relation of vortex wave excitations, we start by
considering an artificial system made of segments of bare
quantum vortex of length (d − Lw), alternated with massive
vortex wires of length Lw. A sketch of the problem is given
in Fig. 6(a). To recover the excitations in the case of the
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FIG. 6. (a) Sketch of the lattice vortex wave model. Bare vortex
segments are in red and massive vortex segments are in green.
(b) Right-hand side of Eq. (22) computed with LIA as a function of
ωτ for an array of particles with radius ap = 2.7ξ and mass M = 5.
Bands of allowed frequencies are displayed in gold. (c) The same as
(b) but for particles with mass M = 1.

particle array, we will later take the limit Lw → 0, keeping
the mass of the wires equal to the effective mass of the
particles. The resulting effective theory must be intended
as an asymptotic limit of the actual system for long waves
kap � 1, in which the nonlinear interactions of the vortex
excitations are neglected and the complexity of the vortex-
particle boundary is ignored. The accuracy of such model has
to be checked by comparing its predictions with the results of
the GP simulations. The motion of the bare vortices is driven
by the self-induced velocity that leads to the propagation
of vortex waves, while the wires are driven by the Magnus
force. For the sake of simplicity, we first consider the LIA
approximations (8) and (18), respectively. The dynamics is
thus given in each zone by

q̇(z, t ) = i
�

4π
�

∂2

∂z2
q(z, t ) (I),

q̈(z, t ) = i�w

[
q̇(z, t ) − i

�

4π
�

∂2

∂z2
q(z, t )

]
(II), (21)

where (I) is the region 0 < z < d − Lw and (II) is the region
d − Lw < z < d . Note that the use of LIA in the system (21)
is rather qualitative, given the high level of complexity of the
problem. In particular it ignores the nonlocal dynamics of the
vortex, does not reproduce the good dispersion relation of
vortex excitations, and may not be able to take into account
the exact boundary condition between the particles and the
vortex. However, it allows us to introduce some general
physical concepts and perform a fully analytical treatment of
the problem. The effective model will be then generalized in
order to take into account a more realistic description of vortex
waves and provide quantitative predictions. The dispersion
relation can be found borrowing standard techniques from
solid state physics, in particular by adapting the solution
of the Kronig-Penny model [23,24]. We look for a wave
solution q(z, t ) = �(z)eiωt , where the spatial function �(z)
can be written in the form �(z) = eikzu(z) according to the
Bloch theorem, where u(z) is a periodic function of period
d [44]. The key point is the imposition of continuity and
smoothness of the function �(z) as well as periodicity of

u(z) and its derivative. These constraints lead to an implicit
equation relating the frequency of the excitations ω, the wave
number k, and all the physical parameters. The full derivation
is explained in Appendix C. The last step in order to describe
the excitations of the particle array is to take the limit Lw → 0
at constant Meff . The dispersion relation is finally determined
by the implicit equation

cos(kd ) = cos(αωd ) − sin(αωd )

αωd
Pω2, (22)

where P = 3πdap/���p and αω satisfies the equation
�LIA(αω ) = ω:

αω =
√

−4πω

��
. (23)

In Figs. 6(b) and 6(c) the right-hand side of Eq. (22) is plotted
as a function of ωτ for heavy and light small particles (that
is, low and high �p). The curve must be equal to cos(kd ) and
this selects the only allowed frequencies (displayed in gold).
It is exactly the same mechanism that leads to the formation
of energy bands in crystals [24].

The previous calculations can be directly generalized for
more realistic wave propagators (see Appendix C). In partic-
ular, if we consider a dispersion relation �v(k) for the vortex
excitations, the only change in the result (22) is the functional
dependence of αω (23), which must satisfy �v(αω ) = ω.
Furthermore, the constant P becomes independent of any
adjustable parameter: P = 3πdap/��p. We consider the dis-
persion relation �fit

v (ω) (13) that matches large- and small-
scale excitations and we invert it numerically to find αω.

In Fig. 5 the contour plot of the theoretical prediction
(22) obtained this way is compared with the numerical data
(solid green lines), exhibiting a remarkable agreement with
the observed excited frequencies. From Fig. 6(b), we remark
that the only allowed negative frequencies lie in a thin band
around �p. This is also in qualitative agreement with the
data. Note that the bare Kelvin wave dispersion relation (10)
(dashed cyan line) and the fitted bare vortex wave dispersion
relation (13) (solid cyan line) are very similar in Fig. 5. The
reason is that the smallest scale that can be solved by the
considered array of particles is kξ = 0.25 (i.e., kd = π ), and
for wave numbers smaller than this value �fit

v (k) tends to
�KW(k) by construction.

In order to make a closer connection with experiments, we
now describe an array of larger particles of size ap = 13.1ξ

and relative mass M = 1 set in a single quantum vortex and
in a bundle composed of four vortices. The corresponding
spatiotemporal spectra Sp(k, ω) are displayed in Fig. 7. In
principle such setting should not be well described by our
theoretical approach. However, the excitation curves can be
reproduced by using the model before the limit Lw → 0 (C6)
and phenomenologically replacing Lw = 2ap while keeping
�eff

w = �eff
p . The agreement is remarkably good, considering

the rough modeling that has been done. The case of a bundle
in Fig. 7(b) is even more striking. At large scales, we could
expect that such system is analogous to a hollow vortex with
four quanta of circulation and some effective core size. We
have estimated the effective core size by measuring the mean
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FIG. 7. Spatiotemporal spectra computed from the particle posi-
tions for an array of large particles of radius ap = 13.1ξ and mass
M = 1 placed at a distance d = 51.2ξ . The repulsion radius is r0 =
2ap. Solid green lines are the contour plot of the dispersion relation
(22) computed with �fit

v . Dashed cyan line is low-k KW dispersion
relation �KW(k). Solid cyan line is the fitted vortex wave dispersion
relation. Dash-dotted horizontal white line is the predicted natural
frequency �p. (a) Particles set in a single vortex. Dashed greed line is
the dispersion relation (C6) before the limit computed using a finite
Lw = 2ap. For the LIA calculations � = 2.6. (b) Particles set in a
bundle of 4 vortices. The dispersion relation (22) has been computed
using �fit

v with an effective core size of a0 = 12ξ (see text). The
other parameters of the simulations are L⊥ = 1024ξ , L‖ = 256ξ , and
N⊥ = 1024, N‖ = 256.

distance between the vortices. The theoretical prediction (22)
combined with this phenomenological approach still impres-
sively matches the numerical data.

IV. DISCUSSION

In this work we have presented a theoretical and numerical
study of the interaction between quantum vortices and a
number of particles trapped in them. We have first pointed out
that a trapped particle oscillates with a well-defined natural
frequency that depends on its mass and the circulation of the
flow surrounding it. Because of the typical values of particle
parameters used in current superfluid helium experiments,
such frequency should be measurable. This measurement can
thus provide an independent way of estimating the number
of vortices constituting the bundles at which particles are
attached.

Based on the experimental evidence that particles spread
along quantum vortices keeping a relatively constant interpar-
ticle distance, we have studied how the particles modify the
vortex excitations. The most exciting result of this work is the
strong analogy with solid state physics. Here, particles play
the role of ions in the periodic structure of a crystal and vortex
excitations that of the electrons. When an electron propagates,
it feels the ions as the presence of a periodic array of potential
barriers. One of the simplest and idealized descriptions of this
physical phenomenon is the Kronig-Penney model, where the
barriers have a constant height U0. Similarly, vortex waves
propagate and interact with particles and we have shown that a

similar theoretical approach can be used. The main difference
is that the constant height of the barriers in the standard
Kronig-Penney model induces constant shift of the energy
(frequency here). As a consequence, the lowest energy level
in a crystal is different from zero (unlike the case of free
electrons). Instead, in the vortex case, the interaction potential
is due to the Magnus force and depends on the frequency.
Comparing the models, we can then establish a mathematical
analogy (see Eq. (22) and Refs. [23,24]) by noticing that the
effective potential in the case of vortex excitations is given by

U0 ∼ ω2/�p ∝ ω2Meff
p . (24)

The height of the potential is thus proportional to the squared
frequency of the incoming wave and to the particle mass. In
particular, for very low frequencies the presence of particles
does not perturb much the vortices and large-scale Kelvin
waves could be tracked by directly measuring the particle
dynamics. Moreover, we observe that for particles with a
higher natural frequency �p (namely lighter and smaller
particles), the value of U0 and of P in Eq. (22) decrease. As a
consequence, the bands of allowed frequencies are broadened.
Ideally, in the limiting case of particles with zero mass, the
natural frequency is infinite and P and U0 vanish. Therefore
Eq. (22) gets simplified dramatically and becomes cos(kd ) =
cos(αωd ). This implies

ω(k) = �v

(
k + 2nπ

d

)
, n ∈ Z, (25)

which is just the vortex wave dispersion relation, but repeated
with period kd = 2π/d . In other words, light and small par-
ticles can follow the filament without modifying the vortex
waves. On the contrary, particle inertia reduces the excited
frequencies (in absolute value) of vortex excitations. This fact
(actually coming from simple linear physics) should be taken
into account when one tries to measure the Kelvin waves
experimentally.

In this work we did not take into account the relevance of
buoyancy effects for light and heavy particles. We can esti-
mate it by comparing the buoyancy force Fb = (Mp − M0)g̃,
where g̃ ∼ 9.8 m/s2 is the gravitational acceleration, with the
Magnus force that drives the particles FM = 3

2ρ�apu, where u
is the typical particle velocity estimated as u ∼ �pap. It turns

out that Fb/FM = C(M − 1)(2M + 1), where C = 32
81π2 g̃a3

p

�2 .
This expression strongly depends on the particle size. For
instance, given that the quantum of circulation in superfluid
helium is � ∼ 10−7 m2/s, we get that C ∼ 4 × 10−3 for a
particle of size ap = 1 μm and therefore the buoyancy is
negligible. However C becomes of order 1 for a particle of
size ap = 7 μm. We conclude that small and light particles
would be the most suitable for tracking the vortex excitations.

Several questions can be immediately raised. If particles
are not actually equally distributed along the vortex but in-
stead they present some randomness, vortex waves will then
propagate in a disordered medium. It will be natural then to
study the possibility of Anderson localization in such a system
[45,46]. Such situation could perhaps appear if the vortex lines
are excited by external means, for instance close to the onset
of the Donnelly-Glaberson instability [47,48].
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The physical system studied in this work is a first idealized
picture of what happens in real superfluid helium experiments.
The most evident difference is that the size of particles is
typically orders of magnitude larger than the vortex core
size (ap ∼ 104ξ ). However, the prediction (22) comes from
an asymptotic theory in which kap � 1 and particles can be
considered pointlike, independently of the functional form of
�v(k). Therefore, we expect that our result should still apply
for wavelengths larger than the particle size. Such long waves
are indeed observed in experiments [10]. In particular, the fact
that particle inertia does not affect the (low) frequency Kelvin
waves should be still valid. A more quantitative prediction for
vortices in He II would be always Eq. (22), but with αω such
that ω = �He(αω ), where �He(k) is the true vortex excitation
dispersion relation in superfluid helium. In any case all the
main conclusions remain valid, since the analogy with a crys-
tal is independent of �v(k). Moreover, the behavior at large
scales is expected to work quantitatively also for superfluid
helium vortices because �He(ka0 → 0) ∼ �KW(ka0).

Furthermore, we have used arrays of particles with all
identical masses. Instead, in actual experiments there is not a
perfect control on the mass and size of particles. In particular,
the mass distribution of particles could be polydispersed. In
this case, new gaps in the dispersion relation are opened
revealing much more complex configurations. A preliminary
numerical study confirms this behavior and it will be reported
in a future work. In any case, the basic interaction between
one particle and vortex waves remains the same regardless of
the presence of some disorder. Therefore, large-scale Kelvin
waves are not disturbed by the particles. Studying in detail
the effects of different species of particles trapped in a vortex
can be done systematically in the same spirit of the effective
theory developed in the present work, for example adapting
tight-binding models [24] to the vortex-particles system. We
think that this is a worthy research direction that could es-
tablish new and deeper connections with concepts already
known in solid state physics, introducing a plethora of novel
phenomena in the framework of quantum fluids.

Last but not least, note that the basic equations considered
in this work to build up the effective model are based on clas-
sical hydrodynamics. Therefore, one could expect that most of
the phenomenology remains valid in a classical fluid provided
that a mechanism to sustain a vortex exists. Such mechanism
could be for instance provided by two corotating propellers
at moderate speeds. Since these systems are achievable in
much less extreme conditions than in cold superfluid helium
and because the manipulation of particle parameters is much
simpler, it could be possible to build analogs of solid state
physics phenomena by using classical fluid experiments.
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APPENDIX A: NUMERICAL SCHEME AND PARAMETERS

Equations (2) and (3) are solved with a standard pseu-
dospectral code and a fourth-order Runge-Kutta scheme for
the time stepping in a 3D periodic domain of dimensions
L⊥ × L⊥ × L‖ with N⊥ × N⊥ × N‖ collocation points. We set
c = ρ∞ = 1.

The ground states with particles and straight vortices are
prepared separately by performing imaginary-time evolution
of the GP equation. In order to have an initial state with zero
global circulation (and therefore ensure periodic boundary
conditions) we need to add in the computational box three im-
age vortices with alternating charges. The state with bundles
of Nv = 4 vortices [Fig. 2(d)] is prepared imposing a phase
jump of 2Nvπ around a vortex (including its images). Then,
imaginary-time evolution of the GP equation is performed for
a time ∼150τ , so that the vortex filaments separate and the
bundles form. KWs are generated from the state with straight
vortices slightly shifting each xy plane of the computational
domain. Then the states with KWs and particles are multiplied
to obtain the desired initial condition. Just one vortex filament
is loaded with particles, while the three other images remain
bare. The initial condition is evolved for a short time (∼40τ )
using GP without the particle dynamics in order to adapt the
system.

The particle potential is a smoothed hat function Vp(r) =
V0
2 (1 − tanh[ r2−η2

4�l2 ]) and the mass displaced by the particle
is measured as M0

w = ρ∞L⊥L2
‖ (1 − ∫ |ψp|2 dx/

∫ |ψ∞|2 dx),
where ψp is the steady state with just one particle. Since the
particle boundaries are not sharp, we measure the particle
radius as ap = (3M0

p/4πρ∞)
1
3 for given values of the numer-

ical parameters η and �l . For all the particles V0 = 20. The
parameters used are the following: for ap = 2.7ξ , η = ξ and
�l = 0.75ξ ; for ap = 7.6ξ , η = 2ξ and �l = 2.5ξ ; and for
ap = 13.1ξ , η = 10ξ and �l = 2.8ξ .

The parameter r0 of the potential V i j
rep = ε(r0/|qi − q j |12)

is the radius of the repulsion between particles. The parameter
ε is fixed numerically in order to impose an exact balance
between the repulsive force and the GP force − ∫

Vp(|x −
qi|)∇|ψ |2 dx in the ground state with two particles placed
at distance 2ap when r0 = 2ap. The parameters used for the
repulsion are the following: for the wires in Fig. 4, r0 =
2Lw/(Npap) and ε = 4.4 × 10−5; for the array of particles
in Fig. 5, r0 = 4ap and ε = 4.4 × 10−5; and for the array of
particles in Fig. 7, r0 = 2ap and ε = 1.7 × 10−3.

APPENDIX B: SPATIOTEMPORAL SPECTRA

We use the particle positions to define the spatiotemporal
spectra of vortex excitations by computing

Sq(k, ω) = Cq

∣∣∣∣∣∣
∫ Np∑

j=1

q(z j, t )e−i(kz j+ωt )dt

∣∣∣∣∣∣
2

, (B1)
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where z j is the z component of the particle j. Similarly, the
spatiotemporal spectrum of the superfluid wave function is
defined as

Sψ (k, ω) = Cψ

∣∣∣∣
∫

ψ (x, y, z, t )e−i(kz+ωt ) dx dy dz dt

∣∣∣∣
2

. (B2)

Note that in Eq. (B2) an average of ψ in the x and y directions
is implicit. The normalization constants Cq and Cψ are set
such that the full (k, ω) integrals of the spatiotemporal spectra
are 1. In order to enhance the small-scale excitations, in the
density plots shown in the present work, both the spectra (B1)
and (B2) are further normalized with the frequency-averaged
spectra, respectively

∫
Sq(k, ω) dω and

∫
Sψ (k, ω) dω. All the

color maps shown in the present work are in log scale.

APPENDIX C: DERIVATION OF THE KRONIG-PENNEY
DISPERSION RELATION FOR VORTEX WAVES

We look for a linear wave solution q(z, t ) = �(z)eiωt of
the system (21) and in particular we want to know which
frequencies ω are excited. The function �(z) must satisfy the
system

∂2

∂z2
�(z) + α2

ω�(z) = 0 (I),

∂2

∂z2
�(z) + β2

ω�(z) = 0 (II), (C1)

where αω and βω are such that

�LIA(αω ) = ω, �LIA(βω ) = ω − ω2

�w
, (C2)

which means

αω =
√

−4πω

��
, βω =

√
4π

��

(
ω2

�w
− ω

)
. (C3)

Since the system (C1) is a linear and homogeneous differ-
ential equation with periodic coefficients of period d , it admits
a solution in the form �(z) = eikzu(z), where u(z) is a periodic
function of period d . The solutions of (C1) in the two regions
(I) and (II) are

�I(z) = eikzuI(z) = eikz[Aei(αω−k)z + Be−i(αω+k)z],

�II(z) = eikzuII(z) = eikz[Cei(βω−k)z + De−i(βω+k)z]. (C4)

The coefficients A, B, C, D are fixed by imposing continuity
and smoothness of the function �(z) and periodicity of u(z)
and its derivative:

�I(0) = �II(0),

�′
I(0) = �′

II(0),

uI(d − Lw) = uII(−Lw),

u′
I(d − Lw) = u′

II(−Lw). (C5)

The system (C5) is a homogeneous linear system for the
variables A, B, C, D. It admits nontrivial solutions only if the
determinant of the coefficients is equal to zero. This implies

the following condition:

cos(kd ) = cos(βωLw) cos[αω(d − Lw)]

−α2
ω + β2

ω

2αωβω

sin(βωLw) sin[αω(d − Lw)], (C6)

which determines implicitly the dispersion relation ω(k). Such
expression is structurally identical to the standard Kronig-
Penney condition but the functions αω and βω are different.
The limit Lw → 0 is applied to Eq. (C6), substituting at
the same time the mass of the massive vortex segment Meff

w
with the mass of the particle Meff

p . In this way the system
becomes a vortex filament loaded with massive point par-
ticles (see Fig. 6). The limit implies βω → ∞, βωLw → 0,
sin(βωLw) ∼ βωLw, αω � βω, and β2

ωLw ∼ 6πapω
2/���p,

so that Eq. (C6) becomes Eq. (22).
The previous result can be extended to the case of more

realistic vortex waves with some caveat. We can formally
rewrite the model (21) as

q̇(z, t ) = iL̂v[q(z, t )] (I),

q̈(z, t ) = i�w{q̇(z, t ) − iL̂v[q(z, t )]} (II), (C7)

where L̂v is the linear nonlocal differential operator that
generates the vortex wave dispersion relation �v(k). Namely,
calling s(z, t ) = ∑

k sk (t )eikz the wave operator simply reads

L̂v[s(z, t )] =
∑

k

�v(k)sk (t )eikz. (C8)

The system (C1) thus becomes

L̂V[�(z)] − ω�(z) = 0 (I),

L̂V[�(z)] −
(

ω − ω2

�v

)
�(z) = 0 (II). (C9)

The functions (C4) are still a solution of (C9), but now αω and
βω are defined as

�v(αω ) = ω, �v(βω ) =
(

ω − ω2

�w

)
. (C10)

In general such equations cannot be inverted explicitly, but αω

and βω can be found numerically. In particular the inversion
is intended with respect to �v(k > 0). The functions αω and
βω are well defined (at least for ω/� > 0) because any model
for the self-induced velocity of a vortex generates a dispersion
relation �v(k) that is monotonically increasing for positive k.
For evaluating the limit Lw → 0, Meff

w → Meff
p , we note that

limLw→0 �v(βω ) = ∞. Therefore, we can explicitly use the
asymptotics of �v(k) for large k, which is just the free particle
dispersion relation (12) and can be inverted explicitly:

βω −→
Lw→0

√
4πω2

��w
, (C11)

so that β2
ωLw ∼ 6πap/��p. In this way we recover Eq. (22),

with αω defined as in (C10) and the amplification factor P is
now independent of any free parameter:

P = 3πdap

��p
. (C12)
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The evolution of a turbulent tangle of quantum vortices in the presence of finite-size
active particles is studied by means of numerical simulations of the Gross-Pitaevskii
equation. Particles are modeled as potentials depleting the superfluid and described with
classical degrees of freedom following a Newtonian dynamics. It is shown that particles do
not modify the building-up and the decay of the superfluid Kolmogorov turbulent regime.
It is observed that almost the totality of particles remains trapped inside quantum vortices,
although they are occasionally detached and recaptured. The statistics of this process
is presented and discussed. The particle Lagrangian dynamics is also studied. At large
timescales, the velocity spectrum of particles is reminiscent of a classical Lagrangian
turbulent behavior. At timescales faster than the turnover time associated with the mean
intervortex distance, the particle motion is dominated by oscillations due to the Magnus
effect. For light particles, a nonclassical scaling of the spectrum arises. The particle velocity
and acceleration probability distribution functions are then studied. The decorrelation time
of the particle acceleration is found to be shorter than in classical fluids, and related to the
Magnus force experienced by the trapped particles.

DOI: 10.1103/PhysRevFluids.5.054608

I. INTRODUCTION

When a fluid is stirred, energy is injected into the system exciting structures at different scales.
In particular, in three-dimensional classical flows, the energy supplied at large scales is transferred
toward small scales in a cascade process. Eventually, it reaches the smallest scales of the system,
where dissipation acts efficiently. In the presence of a very large separation between the injection and
dissipation scale, this cascade scenario proposed by Richardson leads to a fully developed turbulent
state that can be described by the Kolmogorov phenomenology [1]. Kolmogorov turbulence is
expected to be universal, and it is in fact commonly observed in nature, industrial applications,
and in more exotic flows such as superfluids.

A superfluid is a peculiar flow, whose origin is a consequence of quantum mechanics. At finite
temperature, a superfluid is considered to be a mixture of two components: the normal fluid, which
can be described by the Navier-Stokes equations, and the superfluid component with zero viscosity
[2]. At very low temperatures, the normal component can be neglected and the fluid becomes
completely inviscid. As a consequence, an object moving at low velocities does not experience
any drag from the fluid. However, when the object exceeds a critical velocity, quantum vortices are
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nucleated [3,4]. Quantum vortices (or superfluid vortices) are the most fundamental hydrodynamical
excitations of a superfluid. They are topological defects (and nodal lines) of the macroscopic wave
function describing the system, and as a consequence their circulation is quantized. In superfluid
helium, the core size of quantum vortices is of the order of 1 Å. Despite the lack of viscosity,
quantum vortices can reconnect and change their topology (see, for instance, [5–8]), unlike classical
(prefect) fluids.

When energy is injected in a low-temperature superfluid at scales much larger than the mean
intervortex distance �, a classical Kolmogorov regime is expected. Such a behavior has been
observed numerically [9–11] and experimentally [12,13]. Indeed, at such scales the quantum nature
of vortices is not important and the superfluid behaves like a classical fluid. At the scales of the
order of � and smaller, the isolated nature of quantized vortices becomes relevant. The system
keeps transferring energy toward small scales but through different nonclassical mechanisms [14].
An example of such mechanisms is the turbulent Kelvin wave cascade. Kelvin waves are helical
oscillations propagating along quantum vortices, and the energy can be carried toward small scales
thanks to nonlinear wave interactions. This energy cascade has been successfully described in the
framework of weak-wave turbulence theory [15,16]. The resulting theoretical predictions have been
observed numerically in vortex-filament and Gross-Pitaevskii numerical simulations [17–19].

Flow visualization is certainly a fundamental issue in every fluid dynamics experiment. Among
the techniques that have been developed to sample a fluid, particle image velocimetry (PIV) and
particle tracking velocimetry (PTV) are two of the most common methods [20]. The use of particles
as probes has also been adapted to the study of cryogenic flows, in particular in superfluid helium
4He experiments [21], where micrometer-sized hydrogen and deuterium particles have been used.
For instance, hydrogen ice particles have been successfully employed to visualize isolated or
reconnecting vortex lines [22], as well as the propagation of Kelvin waves [23]. Moreover, the
observation of power-law tails in the probability density of the particle velocity is an important
difference with respect to classical turbulent states [24–26]. Similar deviations from classical
behaviors have recently been reported also for the acceleration statistics [26,27]. Particles in such
experiments typically have a size that can rise up to several microns, which is many orders of
magnitude larger than the size of the vortex core in superfluid helium. For instance, the solidified
hydrogen particles produced in the experiments [22,23] are slightly smaller than 2.7 μm, while
in [25,26] their size is between 5 and 10 μm. Although it has been seen that particles unveil the
dynamics of quantum vortices, it is not yet clear how much they affect the dynamics of quantum
turbulent flows.

Several theoretical efforts have been made in the past decade in order to clarify what is the
dynamics of particles in a superfluid and how particles interact with quantum vortices. For example,
the vortex-filament (VF) method can be coupled with the classical hydrodynamical equations of a
sphere, allowing us to study different specific problems. The interaction between one particle and
one vortex has been addressed [28,29], as well the backreaction of tracers in a thermal counterflow
[30,31]. In the context of finite-temperature superfluids, the spatial statistics of particles have been
recently addressed in simulations of the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model [32].

Finally, since the work of Winiecki and Adams [4], particles described by classical degrees of
freedom have been implemented self-consistently in the framework of the Gross-Pitaevskii (GP)
equation [33–37]. Although the GP model is formally derived for dilute Bose-Einstein condensates,
it is considered a general tool for the study of superfluid dynamics at very low temperature. Indeed,
unlike the VF method or the HVBK model, it naturally contains quantum vortices as topological
defects of the order parameter. It was found analytically and confirmed numerically that the GP
model can reproduce the process of trapping of large active inertial particles by straight vortex
lines [34], in accordance with hydrodynamical calculations [28,29]. In this framework, the interplay
between many trapped particles and Kelvin waves has also been investigated [36].

In the present work, we study the influence of particles on quantum turbulent flows at very
low temperature by using the GP model coupled with classical particles. In particular, we study
the evolution of a free decaying superfluid turbulent vortex tangle loaded with finite-size active
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particles. We consider spherical particles of different masses and having a diameter up to 20 core
sizes. Such a size is about 1000 times smaller than that of solidified particles used in superfluid
helium experiments. Nevertheless, it is slightly smaller than or comparable to the mean intervortex
distance in our simulations, similar to current experiments. We also study the different regimes of
the turbulent evolution from the Lagrangian point of view. The paper is organized as follows. In
Sec. II we describe the Gross-Pitaevskii model coupled with classical particles. We also review the
standard properties of the model and give the basic definitions used later to analyze the flow. We
also describe the numerical method used in this work. Then, in Sec. III, we present our main results.
In particular, in Sec. III A we address whether the presence of particles affects the scales of the
flow at which Kolmogorov turbulence takes place. Section III B is devoted to a study of the particle
dynamics inside the vortex tangle, their trapping by vortices, and their dynamics at scales larger and
smaller than the intervortex distance. Particle velocity and acceleration statistics are then presented
in Sec. III C. Finally, Sec. IV contains our conclusions.

II. MODEL FOR PARTICLES IN A LOW-TEMPERATURE SUPERFLUID

A. Gross-Pitaevskii equation coupled with particles

We describe a superfluid of volume V at low temperature by using the complex field ψ , which
obeys the GP dynamics. We consider Np particles in the system. Each particle is characterized by
the position of its center of mass qi and its classical momentum pi. The presence of a particle of
size ap generates a superfluid depletion in a spherical region of radius ap. This effect is reproduced
by coupling the superfluid field with a strong localized potential Vp, which has a fixed shape and is
centered at the position q j (t ).

All the particles considered have the same size, as well as the same mass Mp. The Hamiltonian
of the system is given by

H =
∫ ⎛

⎝ h̄2

2m
|∇ψ |2 + g

2

(
|ψ |2 − μ

g

)2

+
Np∑

i=1

Vp(|x − qi|)|ψ |2
⎞
⎠dx +

Np∑
i=1

p2
i

2Mp
,+

Np∑
i< j

V i j
rep, (1)

where m is the mass of the bosons constituting the superfluid, and g is the nonlinear coupling
constant between the bosons, related to the s-wave scattering length as so that g = 4πash̄

2/m.
The chemical potential is denoted by μ. The particle interaction potential V i j

rep is responsible for
short-range repulsion between particles, so that they behave as hard spheres and do not overlap.
A detailed discussion on the inclusion of this short-range repulsion and the effect on the particle
collisions in the model (1) can be found in [33]. The equations of motion that govern the superfluid
field and the particle positions are obtained varying the Hamiltonian (1):

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + (g|ψ |2 − μ)ψ +

Np∑
i=1

Vp(|x − qi|)ψ, (2)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (3)

This model has been successfully used to study vortex nucleation [4], trapping of particles by
quantum vortices [34], and the interaction between particles trapped inside quantum vortices and
Kelvin waves [36]. We denote by GP the Gross-Pitaevskii model without particles, and by GP-P the
full coupled system (2) and (3).

In the case in which particles are absent, the chemical potential μ fixes the value of the ground
state of the system ψ∞ = √

ρ∞/m = √
μ/g. Large-wavelength perturbations around this state are

sound waves that propagate with the speed of sound c =
√

gρ∞/m2, while they become dispersive

at length scales smaller than the healing length ξ =
√

h̄2/2gρ∞.

054608-3



UMBERTO GIURIATO AND GIORGIO KRSTULOVIC

The GP model describes a superfluid with zero viscosity. Using the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), the GP equation (2) is mapped into the continuity and Bernoulli equations

of a superfluid of density ρ and velocity vs = ∇φ. A superfluid flow is potential, but the phase
is not defined at the nodal lines of ψ (x). Therefore, the vorticity is concentrated along these
filaments, which are the topological defects usually called quantum vortices. The effective size
of the quantum vortex core coincides with the healing length ξ , and the contour integral of the
superfluid velocity around a single vortex filament is the Feynman-Onsager quantum of circulation
κ = h/m = 2π

√
2cξ .

Using the Madelung transformation and the Helmholtz decomposition, the kinetic term of
the superfluid energy density is decomposed into incompressible, compressible, and quantum
energy [9]:

EGP
kin = h̄2

2mV

∫
|∇ψ |2 dx = E I

kin + EC
kin + EQ

= 1

2V

∫ (
[(

√
ρvs)I]2 + [(

√
ρvs)C]2 + κ2

4π2
[∇√

ρ]2

)
dx, (4)

where (
√

ρvs )I = PI[
√

ρvs] and (
√

ρvs)C = vs − (
√

ρvs)I, the operator PI[·] being the projector
onto the space of divergence-free fields. The other energies of the superfluid are the internal energy
Eint = (2V )−1

∫
g(ρ/m − μ/g)2 dx, where the energy of the ground state is subtracted, and the

interaction energy with the particles EGP
P = V −1

∫ ∑Np

i Vp(|x − qi|)ρ dx, so that the total energy is
given by Etot = EGP

kin + Eint + EGP
P . From these definitions follow the corresponding energy spectra

defined in terms of the Fourier transform of the fields [9].

B. Numerical methods and parameters

In the simulations presented in this work, we solve the system (2) and (3) in a cubic periodic box
of side L = 341ξ with Nc = 5123 collocation points by using a standard pseudospectral method.
We use a fourth-order Runge-Kutta scheme for the time-stepping and the standard 2/3 rule for the
dealiasing. In numerics, we fix c = 1 and ψ∞ = 1.

To produce a homogeneous and isotropic tangle of quantized vortex lines, we impose an initial
Arnold-Beltrami-Childress (ABC) flow, following the procedure described in [38]. In particular, we
use a superposition of k = 1 × 2π/L and k = 2 × 2π/L basic ABC flows: vABC = v(1)

ABC + v(2)
ABC,

with

v(k)
ABC = [B cos(ky) + C sin(kz)]x̂ + [C cos(kz) + A sin(kx)]ŷ + [A cos(kx) + B sin(ky)]ẑ, (5)

and the parameters A = 0.5196, B = 0.5774, and C = 0.6351. The basic ABC flow is a stationary
(periodic) solution of the Euler equation with maximal helicity. The resulting wave function contains
a tangle whose nodal lines follow the ABC vortex lines. The initial mean intervortex distance is
�(t = 0) ∼ 25ξ . As the flow is prepared by minimizing the energy, most of the energy of the system
is in the incompressible part of the energy and resulting from the vortex configuration.

The ground state for the particles consists in a number of particles (we use Np = 200 and 80) of
the same size and mass, randomly distributed in the computational box. Particles are initially at rest.
This state is prepared using the imaginary-time evolution of Eq. (2). Then, the initial condition for
the simulations is obtained by multiplying the wave function associated with the ABC flow and the
wave function associated with the particle ground state. An example of an initial field containing
particles is displayed in Fig. 1(d).

Because of the presence of a healing layer, the particle boundary is never sharp, independently
of the functional form of the potential Vp. The superfluid field vanishes in the region where
Vp > μ, and at the particle boundary the fluid density passes from zero to the bulk value ρ∞
in approximately one healing length. The potential used to model each particle is a smoothed
hat-function Vp(r) = V0

2 (1 − tanh [ r2−ζ 2

4�2
a

]), where the parameters ζ and �a are set to model the
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FIG. 1. Visualizations of the superfluid vortex tangle. Vortices are represented as isosurfaces in red of the
density field (ρ = 0.15ρ∞), sound is rendered in blue, trapped particles in green, and free particles in purple.
The upper row is without particles, the lower row is with 200 neutrally buoyant particles of radius ap = 4ξ .
(a,d) The ABC initial states. (b,e) The most turbulent regime (t = 1.3TL). (c,f) A late time (t = 8.1TL). TL

denotes the large-eddy-turnover time (see the text).

particle. Their values are listed in Table I. In particular, ζ fixes the width of the potential and it
is related to the particle size, while �a controls the steepness of the smoothed hat-function. The
latter needs to be adjusted in order to avoid the Gibbs effect in the Fourier transform of Vp. Since
the particle boundaries are not sharp, the effective particle radius is defined as ap = (3M0/4πρ∞)

1
3 ,

where M0 = ρ∞L3(1 − ∫ |ψp|2 dx/
∫ |ψ∞|2 dx) is the fluid mass displaced by the particle and ψp

is the steady state with just one particle. Practically, given the set of numerical parameters ζ and
�a, the state ψp is obtained numerically with imaginary-time evolution and the excluded mass
M0 is measured directly. Particles attract each other by a short-range fluid mediated interaction

TABLE I. Simulation parameters.

Run Np ap M ζ �a V0/μ γ /μ

I 0
II 200 4.0ξ 0.125 1.5ξ 1.2ξ 20.0 1.4 × 10−4

III 200 4.0ξ 0.25 1.5ξ 1.2ξ 20.0 1.4 × 10−4

IV 200 4.0ξ 1.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

V 200 4.0ξ 2.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

VI 80 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VII 200 10.0ξ 0.125 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VIII 200 10.0ξ 0.25 8.0ξ 2.0ξ 20.0 5.8 × 10−4

IX 200 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4

054608-5



UMBERTO GIURIATO AND GIORGIO KRSTULOVIC

[33,35], thus we use the repulsive potential V i j
rep = γ (2ap/|qi − q j |)12 in order to avoid an overlap

between them. The functional form of V i j
rep is inspired by the repulsive term of the Lennard-Jones

potential, and the prefactor γ is adjusted numerically so that the interparticle distance 2ap minimizes
the sum of V i j

rep with the fluid-mediated attractive potential [33,35]. We express the particle mass
as Mp = MM0, where M0 is the mass of the superfluid displaced by the particle. Namely, heavy
particles have M > 1 and light particles have M < 1. In Table I all the parameters for the particles
used in the simulations presented in this work are reported. In the following, we will refer to each
simulation specifying the size and the mass of the particles used.

Note that although the model (1) is a minimal model for implementing particles in the GP
framework, we cannot add to the system an arbitrary number of particles. Indeed, since particles
have a finite size, they occupy a volume at the expense of the superfluid field, and packing effects
could become important if the filling fraction is too high. Moreover, the potential Vp must be updated
at each time step, which is numerically costly. Finally, note that the the evaluation of the force term
(3) acting on particles requires us to know the value of the fields at intermesh points. When the
number of particles in the simulation is not large, the force fGP

i (qi ) = −(Vp ∗ ∇ρ)[qi] (3) can be
computed with spectral accuracy using a Fourier interpolation. Such a method has been used in
[34–36], where the particle dynamics is extremely sensitive. In this work, the use of a Fourier
interpolation for each particle is numerically unaffordable, due to the large number of particles
involved and the resolutions used. Instead, we use a fourth-order B-spline interpolation method,
which has been shown to be highly accurate with a reduced computational cost [39] and particularly
well adapted for pseudospectral codes. Indeed, the use of a Fourier interpolation to evaluate the
three-dimensional force for Np particles requires ∼3NpNc operations and evaluations of complex
exponentials (Nc = 5123 in the present work). Such a cost quickly becomes too expensive at high
resolutions and/or a large number of particles. On the contrary, B-spline interpolation requires just
one fast Fourier transform of a field per component, and an interpolation using only four neighboring
grid points per dimension [39]. Such a scheme saves a factor ∼Np of computational cost compared
to Fourier interpolation. Note that in the previous discussion, we have not taken into consideration
parallelization issues, where local schemes (B-splines) are much more advantageous than global
ones (Fourier transforms). Nevertheless, some issues with physical quantities at small scales arising
from the B-spline interpolation are discussed in the Appendix.

III. PARTICLES IMMERSED IN A TANGLE OF SUPERFLUID VORTICES

Superfluid turbulence in the context of the GP model has been studied extensively
[9,11,38,40,41]. In general, quantum turbulence develops from an initial state with a vortex
configuration where the incompressible kinetic energy is mainly contained at large scale. During
the evolution, vortex lines move, interact among themselves, and reconnect, creating complex vortex
tangles. Through this process, sound is produced and incompressible kinetic energy is irreversibly
converted into quantum, internal, and compressible kinetic energy. Eventually, the compressible
energy produced in the form of acoustic fluctuations starts to dominate, thermalizes, and acts as a
thermal bath providing an effective dissipation acting on the vortices. As a consequence, vortices
shrink and eventually disappear through mutual friction effects following Vinen’s decay law [19,42].
In particular, it has been shown that the decrease of the incompressible kinetic energy behaves in a
similar manner to decaying classical turbulence [9]. To make a connection with decaying classical
Kolmogorov turbulence, the incompressible energy dissipation or dissipation rate is usually defined
in the context of GP turbulence as

ε = −dE I
kin

dt
. (6)

As in decaying Navier-Stokes turbulence, in GP the most turbulent stage is achieved around the time
when this quantity is maximal. About this time, the classical picture holds and the incompressible

054608-6



ACTIVE AND FINITE-SIZE PARTICLES IN DECAYING …

FIG. 2. (a) Time evolution of the superfluid energy components in the cases with no particles (dashed
line), 200 small particles (dotted line), 200 large particles (solid line), and 80 large particles (dash-dotted
line). (b) Incompressible energy dissipation rate for different numbers of particles with different sizes and
different masses (solid lines). Dash-dotted horizontal lines of the corresponding colors indicate the value of the
maximum of dissipation, obtained averaging over the shaded region. The dissipation is expressed in units of its
maximum εmax in the case without particles.

energy spectrum satisfies the Kolmogorov prediction

E I
kin = Cε2/3k−5/3,

where C is the Kolmogorov constant, the value of which has been found to be close to 1 in GP
turbulence [11,38,41].

The first purpose of this work is to check whether and to what extent the presence of particles
in the system modifies Kolmogorov turbulence. We add to the ABC initial condition a number
of randomly distributed particles and let the system evolve under the dynamics (2) and (3). In
Figs. 1(a), 1(b) and 1(c), the three stages of the evolution (initial condition, turbulent vortex tangle,
and residual filaments in a bath of sound, respectively) are visualized in the case of 200 neutrally
buoyant particles of radius 4ξ . See the supplemental material [43] for movies of this simulation and
others with particles of a different size. Trapped particles by vortices are displayed in green, whereas
free ones are displayed in purple. The algorithm to distinguish a trapped particle from a free one is
based on the circulation around it and it is discussed in Sec. III B.

In Fig. 1 we observe that the building up and decay of the turbulent tangle is not strongly
modified by the presence of particles. Moreover, it can be noticed how during the first stages of the
evolution of the system the majority of particles gets trapped into the vortices. At zero temperature,
as there is no normal component in the flow, no drag is experienced by the particles and their
motion is completely driven by the pressure gradients. As a consequence, they are attracted by
quantum vortices [28,34,44]. During the turbulent regime, violent and strongly nonlinear events
like reconnections dominate the vortex dynamics and the flow evolution. A fundamental question
is whether and how much the hydrodynamical attraction between vortices and particles is sufficient
to keep them attached to the filaments. Indeed, since quantum vortices are actually the main actors
of turbulence in superfluid, if particles are really able to follow them in this regime, it is a good
indication that they are suitable for use as probes.

In the following subsection, we will quantitatively study the effect of particles on quantum
turbulent flows. We will first focus on the large scales of the flow, where Kolmogorov turbulence
takes place. Then the particle dynamics and their statistics will be addressed.

A. The effect of particles on Kolmogorov superfluid turbulence

We shall start our analysis by comparing the temporal evolution of global quantities. In Fig. 2(a)
the time evolution of the different components of the energy is displayed. Times are expressed in
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FIG. 3. (a) Time evolution of the mean intervortex distance for different numbers of particles of different
sizes and different masses. (b) Incompressible energy spectrum for different numbers of particles of different
sizes and different masses. Inset: Compensated incompressible energy spectrum. Solid lines refer to particles of
size ap = 4ξ , dashed lines refer to particles of size ap = 10ξ . The dotted line is the classical scaling εmaxk−5/3.
The spectrum is computed averaging over times in the shaded region.

units of the large-eddy-turnover time defined as TL = L/2vrms, where vrms =
√

2E I
kin(t = 0)/3 is

the root-mean-square velocity associated with the initial vortex tangle, and L/2 is its characteristic
length scale. We compare the case in which no particles are present in the flow to the cases having
particles of different sizes and of relative mass M = 1. The net transfer of incompressible energy
toward compressible, quantum, and internal energy is qualitatively unchanged in the various cases.
The only difference is a slightly lower value of the incompressible energy in the case of large
particles, in favor of the internal energy of the superfluid. Such an effect is more evident if the
number of large particles is increased, and could be related to an increment of the filling fraction
�, namely the fraction of the total volume occupied by the particles. In fact, for Np = 200 particles
of radius ap = 4ξ the filling fraction is � = 0.1%, for Np = 80 particles of radius ap = 10ξ it is
� = 0.8%, and for Np = 200 particles of radius ap = 10ξ we have � = 2.1%. The kinetic and
repulsion energies of the particles, as well as the particle-vortex interaction EGP

P , are negligible
compared with the other energies throughout the duration of the simulations (data not shown).

The dissipation rate of the incompressible kinetic energy is reported in Fig. 2(b) for particles of
different masses and different sizes. The dissipation increases in the early stages when the energy
begins to be transferred to the smaller scales, it reaches a maximum when all the scales are excited,
and then it starts to decay since no forcing is sustaining the turbulence. We observe that the evolution
of the dissipation is clearly not significantly modified by the presence of particles. In particular, the
value of the maximum of dissipation, which is the signature of the most turbulent state reached by
the tangle, is slightly lower only in the case in which many large particles are moving in the system.
In particular for this case, it is about 90% of εmax, the value measured in the case with no particles.
The shaded region in Fig. 2(b) represents the most turbulent time of the simulations. We consider
that in this short stage the system is in a quasisteady state, and we perform the temporal average of
certain physical quantities in order to improve statistical convergence.

Another important quantity that is not affected much by the interplay between tangle and
particles is the mean intervortex distance �, whose time evolution is reported in Fig. 3(a). The
mean intervortex distance is then estimated as � = √

V/Lv, where Lv is the total vortex length in the
system. This latter is estimated using the method introduced in [9], where Lv is shown to be related
to the proportionality constant between the incompressible momentum density J I(k) of the flow and
the spectrum of a two-dimensional point-vortex J2D

vort (k):

Lv

2π
=

∑
k J I(k)∫

J2D
vort (k) dk

. (7)
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FIG. 4. Closeup of the superfluid vortex tangle at the early stage of the simulation (upper row: t = 0.27TL)
and during the turbulent regime (lower row: t = 1.1TL) for the cases with no particles [left column (a),(d)],
small particles [central column (b),(e): ap = 4ξ ], and large particles [right column (c),(f): ap = 10ξ ]. Vortices
are represented as isosurfaces of the density field (ρ = 0.15ρ∞) and rendered in red, sound is rendered in blue,
trapped particles in green, and free particles in purple.

The spectra of momentum densities are the angle average of the norm in Fourier space of the
momentum density J = ρvs, and the incompressible part is obtained projecting onto the space of
divergence-free fields. We have checked the validity of this formula by using the vortex filament
tracking method described in [45] at some checkpoints.

In the turbulent regime, where the dissipation gets its maximum, the total length of the entangled
vortices is also larger by a factor 4 compared to the initial condition, and the distance between the
filaments is minimum. The value �min ∼ 14ξ of the intervortex distance in this regime will be used as
a characteristic small length scale of the Kolmogorov turbulent regime. Such length is smaller than
the diameter of the largest particles considered (2ap = 20ξ ), but nevertheless this has no appreciable
repercussions on the behavior of the observables studied. Furthermore, as shown in Fig. 3(c), the
scaling of the incompressible energy spectrum E I(k) averaged around the maximum of dissipation
is unaltered by particles in the system. Figure 3(b) displays the incompressible energy spectrum. It
is apparent that the scaling of the spectrum is always compatible with classical turbulence at scales
larger than the intervortex distance, and the way in which the energy is accumulated at smaller
scales is not modified by the particles. In the inset of Fig. 3(b), the spectrum is compensated by
the Kolmogorov prediction E I(k) = Cε

2/3
maxk−5/3 for classical hydrodynamic turbulence. The dotted

horizontal black line shows that the value of the constant C in the Kolmogorov law is a number of
order 1 for superfluid turbulence.

The only appreciable difference observed between the case with and without particles is that in
the early stages of the evolution, the trapping of particles perturbs the vortex filaments and excites
Kelvin waves. A comparison between the volume renderings can be seen in the upper row of Fig. 4.
Such perturbations propagate during the evolution of the tangle. At the times when turbulence is
developed, the details of the vortex configurations are completely different (see the lower row of
Fig. 4). Nevertheless, the statistical properties of the system in this regime remain unchanged. We
stress that the intervortex distance in quantum turbulence experiments lies typically in the range
10–100 μm, which is equal to or slightly larger than the particle size [24,25,27]. In this sense,
the simulations presented here are compatible with the experimental parameters. They thus support
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FIG. 5. (a) Fraction of trapped particles as a function of time for different numbers of particles of different
sizes and different masses. Inset: The same for longer time in the case of 200 neutrally buoyant particles of size
ap = 4ξ . (b) Comparison between the fraction of multiply trapped particles as a function of time for neutrally
buoyant particles. (c) Volume rendering of large particles (ap = 10ξ ) multiply trapped by quantum vortices.
Vortices are rendered in red, sound in blue, particles in green. (d) Probability density function of the continuous
time spent by particles inside vortices for different species of particles. The dotted blue line corresponds to the
same simulation of blue circles (particles with size ap and mass M = 1) but averaged over the full simulation
times). Inset: Absolute value of the circulation around a single particle of size ap = 4ξ and mass M = 1 as a
function of time. The PDF is computed averaging over times in the shaded region.

the belief that active particles have effectively no influence on the typical development and decay
of quantum turbulence. This numerical fact helps to validate past and future experiments that use
particles as probes of superfluids.

On the other hand, because of the lack of a Stokes drag in the system, particles cannot be treated
as simple tracers of the superfluid velocity vs. Nevertheless, if they remain trapped inside the vortices
they can track the evolution of the vortex filaments, which are the structures that effectively become
turbulent. With the purpose of characterizing this scenario, in the next subsection we investigate the
motion of particles once they are immersed in a tangle of quantum vortices.

B. Motion of particles in the superfluid vortex tangle

Looking at the time evolution of the vortex tangle (see Fig. 1 and movies in the supplemental
material), the first thing that is apparent is how particles quickly get trapped into vortex filaments.
This dynamics is expected and it has been studied in the case in which vortices move slowly [34].
It is a consequence of the pressure gradients. However, it is less obvious if such behavior remains
dominant when turbulence take place and reconnections become frequent.

We study the evolution of particles and compute whether they are free or trapped by vortices.
The temporal evolution of the fraction of trapped particles is displayed in Fig. 5(a) for all runs.
This measurement is made by computing the circulation � = ∮

C vs · dx of the superfluid velocity vs
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along contours C encircling each particle, and counting for which particles it is different from zero.
Specifically, we compute the circulation along many parallel square contours of side 2(ap + �x )
around each particle, where �x is the grid spacing. If the circulation around at least one of these
contours is different from zero, the particle is considered as trapped [46]. For practical reasons,
due to the parallelization of the numerical code, we consider only contours perpendicular to the z
axis of the computational box. As a consequence, the protocol is not able to grasp vortices that are
crossing the particles exactly on a plane perpendicular to the z axis. This means that our estimation
of the fraction of trapped particles is effectively a lower bound. However, it should be noticed that
this pathological situation is an extremely rare situation that does not change the conclusions of our
analysis.

In the initial condition the particles are placed randomly in the computational box. It happens
then that some of them are already positioned inside a vortex. In the case of particles with a
size comparable to the intervortex distance, the majority of particles are in this situation. In the
first stages of the evolution of the flow, the number of trapped particles increases rapidly until
it becomes stationary always at times much smaller than one TL. The time needed to reach a
stationary state depends slightly on the mass of the particles, as well as the fraction of trapped
particles once a steady regime is reached. The steady value of N trap

p /Np is between 80% and 90%
for small particles (2ap < �), while on average the totality of particles of size 2ap ∼ � is found
to be trapped by vortices, independently of the filling fraction. When the system reaches the most
turbulent regime (indicated by the shaded region), the fraction of trapped particles does not undergo
any appreciable changing. In the inset of Fig. 5(a), N trap

p /Np is also shown for late times in the case of
small particles of relative mass M = 1. It manifestly remains stable. This means that even when the
density of vortex lines is decaying (along with the intensity of turbulence), the particles stay trapped
inside vortices. Note that in this work we are dealing with homogeneous and isotropic decaying
quantum turbulence at low temperature. We mention that the fraction of trapped particles measured
in thermal counterflow simulated by means of the VF method is lower that the one observed
here [31].

The circulation around each superfluid vortex filament is equal to a single quantum of circulation
κ . As a consequence, measuring the circulation along a closed line C allows us to count the number
of filaments in the region delimited by the line, provided that the quanta of circulation around every
filament have the same sign. This is true also if the vortices are trapping particles, because their
topological nature does not change. In Fig. 5(b) we show again the fraction of trapped particles, but
now separating the number of particles trapped by multiple vortices. It turns out that at least the
5–10 % of the particles with size 2ap ∼ � are always attached to at least two different filaments.
Sometimes even more vortices pass simultaneously through the same particle, as can be visualized
in the volume plot of Fig. 5(c).

Once a particle is trapped by a vortex, it can experience violent events, for instance during vortex
reconnections. In such circumstances, such a particle could be detached and expelled from the vortex
until it will eventually get trapped by another vortex of the tangle. We compute the probability
density function (PDF) of the continuous time intervals �ttrap spent by the particles inside the
vortices regime. The PDFs for particles of different sizes and masses are displayed in Fig. 5(d).
For all the species of particles examined, the probability distribution seems to follow roughly a
power-law scaling in time ∼(�ttrap)−α , with α ∼ 1.67. The PDF certainly vanishes much slower
than an exponential decay at large �t trap, which would typically result from a standard escape
problem over energy barriers. We checked that the intermittency of the circulation and the shape
of the trapping time PDF are not characteristic of the most turbulent regime, since they persist also
at the late times of the simulations [see the dotted blue line in Fig. 5(d)]. Therefore, many particles
spend a time at least of the order of the simulation time (∼10TL) inside a vortex filament, i.e., the
typical escape time from the vortices is virtually infinite. This observation is exemplified in the
inset of Fig. 5(d), where the evolution of the circulation around a single-small neutral particle is
reported (the qualitative behavior is the same for the other particles). It is also clear that the time
spent by the particles with zero circulation around them (namely free from vortices) is short. Since
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FIG. 6. Frequency spectrum of the particle velocity for particles of different masses and different sizes,
compensated with the prediction for the Lagrangian spectrum in classical turbulence ∝ ε/ω2: (a) small particles
with ap = 4ξ ; (b) large particles with ap = 10ξ . The dash-dotted gray line is the frequency spectrum of a
single small particle trapped in a straight vortex slightly perturbed. Dotted lines of corresponding colors are the
prediction for the particle natural frequency �p. The dashed red line is the scaling due to vortex reconnection
or Kelvin waves ∝ |ω|−1. The dashed golden line is the spectrum evaluated at late times in the simulation
(6TL < τ < 7TL).

we established that particles immersed in a tangle spend most of the time inside vortex filaments, in
the following we study their motion once they get trapped.

At large scales, the vortex tangle seems to behave as a classical hydrodynamic turbulent system.
Therefore, the first natural question is whether the particles can trace such large-scale fluctuations.
In classical turbulence, it is well known that the Lagrangian velocity spectrum scales as

〈|v̂p(ω)|2〉 = Bεω−2, (8)

where B is a constant of order unity and v̂p(ω) is the Fourier transform of the Lagrangian
particle velocity vp(t ) [47,48]. Such scaling is valid in the inertial range 2π/TL � ω � 2π/τη,
where τη is the Kolmogorov timescale. In our case, we build an analog of the Kolmogorov
time scale under the assumptions that the dissipation rate εmax is the only important physical
parameter in the classical turbulence regime and that the Kolmogorov turbulent cascade ends
at the intervortex distance �min. Therefore, we define the smallest timescale of the classical
turbulence regime as τ� = (�2

min/εmax)1/3, and we expect classical turbulent phenomenology to
hold for times τ� � t � TL. In Fig. 6, the measurement of the frequency spectrum of the particle
velocity 〈|v̂p(ω)|2〉 = 〈| ∫ q̇(t )e−iωt dt |2〉 during the turbulent regime is shown for different species
of particles, compensated with the classical scaling εmaxω

−2. Note that the average that defines
the spectrum is meant over different realizations. In numerics we average over all the particle
trajectories during the turbulent regime. At frequencies ω < τ�/2π , the spectra approach a plateau
of value 1, confirming that particles sample well the flow and their behavior is described by the
standard classical turbulence picture at large scales. Note that the classical temporal inertial range
of our simulations is pretty small, since TL ∼ 5τ�. For comparison, we also present the velocity
spectrum of a particle of size ap = 4ξ and mass M = 1, computed in a temporal window at much
later times, when Kolmogorov turbulence has decayed and only a few vortices are left. Note that a
ω−2 scaling of the Lagrangian velocity spectrum has also been observed in numerical simulations
of the vortex filament model [49], although not in the Kolmogorov inertial range and not related to
the energy dissipation rate nor to Kolmogorov turbulence.

As expected, in our simulations no Kolmogorov scaling is observed at small timescales. Indeed,
one of the most striking features of quantum turbulence is the crossover between the classical
Kolmogorov regime and the physics taking place at scales smaller than the mean intervortex
distance. Unlike classical turbulence (see, for instance, [47]), there is still a nontrivial scaling at
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timescales shorter than τ�. Such a difference is a consequence of the quantum nature of the system,
here manifested by the presence of quantized vortices.

When a particle is trapped by a vortex, the superfluid flow turns around it. As a consequence,
while the particle moves, it experience a Magnus force. This lift force is simply expressed as
FMagnus = 3

2ρ∞ap� × (q̇ − vs ), where the circulation vector � is oriented along the vortex filament,
and the superfluid velocity vs contains the contributions of the mean flow and the vortex motion
[36,50]. The Magnus effect induces a precession of the particle about the filament with the
characteristic angular velocity

�p = 3

2

ρ∞ap

Meff
p

�, (9)

where the particle effective mass Meff
p = Mp + 1

2 M0 = (M + 1
2 )M0 takes into account the added

mass effect due to the mass of the superfluid displaced by the particle M0. As mentioned in
[36], for current experiments with hydrogen particles in superfluid helium, this frequency is of
order 10–100 Hz. If the Magnus force is the main force acting on a trapped particle, the Newton
equation Meff

p q̈ = FMagnus implies the following expression for the frequency spectrum of the
particle velocity:

〈|v̂p(ω)|2〉 = �2
p

�2(ω − �p)2
〈|� × v̂s(ω)|2〉. (10)

Independently of the external superfluid velocity, the expression (11) predicts that the spectrum
〈|v̂p(ω)|2〉 must be peaked around the natural frequency of trapped particles ω = �p. Such behavior
has been studied in detail in the case of particles trapped inside slightly perturbed straight vortex
filaments [36]. The spectrum of this simple configuration is also reported for comparison in Fig. 6(a)
for a small particle of relative unit mass. A clear bump in the frequency spectrum, corresponding
to �p, is still visible when particles are immersed in a complex quantum vortex tangle. For the
large particles, the presence of a peak is less evident because the natural frequency is lower, and
therefore a longer sampling (in time) would be necessary to resolve it properly (2π/�p = 0.7TL for
the particles of size ap = 10ξ and mass M = 1). Moreover, as large particles are multiply trapped
by many vortices, the resulting motion is certainly more complex than a precession with a single
characteristic angular frequency of one single vortex. The broadness of the peak around the Magnus
frequency for the small particles in Fig. 10(a) could also be related to this fact.

At small timescales, a different scaling of the velocity spectrum is observed for the light
particles, now in agreement with 〈|v̂p(ω)|2〉 ∝ |ω|−1. This behavior is consistent with the fact
that at scales smaller than the intervortex distance, the typical velocities of a superfluid turbulent
tangle are supposed to scale as vfast (t ) ∝ √

κ/|t − t0|, because the circulation becomes the only
relevant physical parameter, and the motion of vortices is dominated by their mutual advection and
reconnections. In this scenario, if particles are sufficiently light to be able to follow the fast vortex
dynamics, we can substitute 〈|v̂p(ω)|2〉 ∼ v̂2

fast (ω) ∝ κ|ω|−1. Another effect that could contribute
to the same result is the attraction of particles by the vortices, since the scaling in time of the
particle-vortex distance is the same as that of vortex reconnection [34]. Note that for the heaviest
particles, such fast scaling is absent since their reaction is probably too slow to be sensible to the
fast fluctuations of the tangle.

C. Particle velocity and acceleration statistics

Unlike classical turbulence, where the statistics of the one-point particle velocity v is known
to be Gaussian [1], experiments in superfluid helium using hydrogen and deuterium particles as
tracers have reported long tails, with a v−3 power-law scaling in their velocity distribution [24–26].
Such scaling has been related to the singular velocity field of quantized vortices [51,52]. At low
temperatures, as Stokes drag is negligible, particles should not move with the superfluid flow
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FIG. 7. (a) Probability density function of the single-component particle velocity, for different species of
particles. The dotted golden line is the Eulerian velocity field ∇φ, corresponding to the simulation without
particles at the time 1.4 TL . The data for the particles are averaged in time between t = 1.2TL and 1.6TL . Inset:
Standard deviation of the particle velocity as a function of the particle mass. (b) The same as (a) but with the
velocities normalized by the standard deviation σv . Dotted lines are Gaussian, dash-dotted line is a power-law
scaling |vi|−3.

and such scaling can be understood as a consequence of quantum vortex reconnections sampled
by trapped particles [7,24]. Furthermore, in Ref. [25], by using particle tracking velocimetry in
counterflow turbulence, it was shown that while varying the sampling scale, the velocity PDFs
continuously change from Gaussian statistics to power-law tails, the crossover taking place at scales
of the order of the intervortex distance. In this final subsection we present measurements of particle
velocity and acceleration statistics within the GP-P model.

We start the discussion by presenting the Eulerian velocity field. Formally, the velocity of
the superfluid is simply given by ∇φ. This field contains the density fluctuations, as well as the
divergence of the vortex velocity flow close to its core. This divergence leads to the well-observed
v−3 scaling of velocity PDF [51,53,54]. The PDF of ∇φ is displayed in Fig. 7. We turn now to
analyze the particle velocity PDFs. We compute the velocity PDFs for all runs in the turbulent
regime. Data are filtered with a Gaussian convolution in order to smooth out the noisy oscillations
at frequencies ω < ωnoise = 50 (2π/τ�) (see Appendix). In Fig. 7 the PDF of the single-component
velocity is plotted for all the species of analyzed particles. In Fig. 7(a), velocities are expressed
in terms of the speed of sound c, whereas in Fig. 7(b) they are normalized by their root-mean-
squared values. The root-mean-squared values are displayed in the inset of Fig. 7(a) as a function
of the mass for the two particle sizes. It is apparent from Fig. 7(b) that the particle statistics
exhibits a Gaussian distribution. Note that Gaussian velocity statistics was also observed in thermal
counterflow simulations of the vortex filament method with tracers particles [30]. The absence of
power-law tails could be a consequence of weak statistical sampling of large velocity fluctuations
due to the low number of particles present in the system and/or by compressible effects of the GP
model. We will comment more about this in Sec. IV.

We would like to remark here that high-frequency fluctuations are strongly sensitive to numerical
artifacts. In the Appendix, inspired by the experimental results of Ref. [25], we have computed
the velocity PDFs of the velocity fluctuations filtered at a given frequency ωc. The frequency was
varied from values lower to larger than 2π/τ�. For one simulation we have compared two different
interpolation methods to evaluate the force term in Eq. (3) needed to drive the particles. It turns out
that for the fourth-order B-spline method, the velocity PDFs start to develop tails while the filtering
scale is varied, eventually leading to a v−3 scaling. However, when using Fourier interpolation,
which is an exact evaluation (up to spectral convergence of the pseudospectral code) of the force
term, the PDFs do not develop any tail and remain Gaussian. We have decided to keep this example
with spurious numerical effects in the Appendix, as it might be useful for future numerical studies
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FIG. 8. (a) Probability density functions of the single-component particle acceleration. (b) Probability
density functions of the norm of the particle acceleration. The dotted line is a Gaussian, the dashed line is a χ3

distribution, and the dash-dotted line is an exponential tail e−|a|/σ|a| . Inset: Probability density functions of the
natural logarithm of the norm of the particle acceleration. The dashed golden line is a log-normal distribution.

and data analysis of similar problems. We have checked that the results presented in the paper are
independent of the interpolation scheme.

We turn now to study the acceleration statistics. As displayed in Fig. 8(a), the PDF of the
acceleration presents some deviations from a Gaussian distribution at large values. The norm of
the acceleration has also an exponential tail for |a| > σ|a|, as displayed in Fig. 8(b). The core of
the PDF in this case is a χ3 distribution, which is expected for the norm of a vector with Gaussian
components. In classical Lagrangian turbulence, the norm of the particle acceleration is observed
to obey a log-normal distribution [55]. In the inset of Fig. 8(b), we compare our data with such
distribution. For the lightest and smallest particle, the small accelerations appear to be more probable
than in the classical case. Note that, as pointed out in [55], small values of the acceleration are very
sensible to experimental (numerical) errors. By contrast, the large accelerations are less probable
than a log-normal distribution. This observation is compatible with classical numerical calculations
in the framework of the viscous vortex filament model, in which it has been shown that, because of
inertia, solid particles undergo less rapid changes of velocity than fluid particles [56].

Finally, in Fig. 9, we show the two-point correlator of the particle acceleration, defined as

ρa(t ) = 〈ai(t0)ai(t0 + t )〉 − 〈ai(t0)〉〈ai(t0 + t )〉
σa(t0)σa(t0 + t )

. (11)

FIG. 9. Acceleration two-point correlator, plotted vs time normalized by the dissipation timescale τ� (a),
and by the Magnus natural frequency 1/�p. (b) Markers indicate the time of acceleration decorrelation ta.
Inset: ta normalized by 1/�p as a function of the particle relative mass.
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In classical Lagrangian turbulence, the decorrelation time ta [such that ρa(ta) = 0] is related to
the Kolmogorov timescale ta = 2τη [57]. This is not the case in quantum turbulence. Figure 9(a)
displays the autocorrelation ρa(t ) for all the simulations. It is apparent that the acceleration
decorrelates much faster than τ�, the equivalent of the Kolmogorov timescale in our system. This
fact is a consequence of the myriad of physical phenomena taking place at smaller scales. As most
particles are trapped by vortices, they oscillate at the Magnus frequency �p in Eq. (9). If time is
normalized by �p (9), then ta�p becomes of order 1, at least for the heaviest particles [see Fig. 9(b)
and the inset therein]. For the lightest particles, the decorrelation time is even lower, meaning that
they are sensible to other mechanisms, such as reconnection events between vortex filaments and
Kelvin wave excitations at even smaller scales.

IV. DISCUSSION

In this work, we used the Gross-Pitaevskii model to study free decaying quantum turbulence at
zero temperature in the presence of finite-size active particles. We considered different families of
spherical particles having sizes smaller than and of the order of the mean intervortex distance. We
first performed a standard analysis of the observables commonly used for studying Kolmogorov
turbulence, such as the energy decomposition, the temporal evolution of mean energy, the rate of
incompressible kinetic energy, and the mean intervortex distance. Although particles are active and
get captured by vortices generating Kelvin waves, there is not a significant impact at scales larger
than the intervortex distance, where Kolmogorov turbulence takes place. Monitoring the motion of
the particles in the system, we confirmed their tendency to remain trapped into vortex filaments
during the evolution of the tangle, with intermittent episodes of detachment and recapture. This
behavior is independent of the vortex line density. We also found that particles can be easily captured
simultaneously by several quantum vortices.

We also studied turbulence from the Lagrangian point of view. In particular, we computed the
power spectra of the particle velocities. At large scales the particle dynamics is compatible with
that of Lagrangian tracers in classical turbulence, while at short timescales the Magnus precession
around the filaments caused by the vortex circulation is dominating the motion. Such information
can be extracted consistently both in the frequency spectrum of the velocity and in the decay time
of the correlation of the acceleration. Furthermore, if particles are light enough, faster frequencies
are also excited. This suggests (as intuitively expected) that light particles can be more sensitive to
the small-scale fluctuations of the flow.

Finally, we investigated the particle velocity statistics. The distribution of the particle velocity
is Gaussian, in contrast with the power-law scaling |vi|−3 recently observed in superfluid helium
experiments [24,25]. There are several reasons why power-law tails are absent in our simulations.
First, since the simulation of each particle has an important numerical cost, the number of particles
is restricted only to a couple of hundred. Due to this issue, vortex reconnections might be unlikely
sampled by the sparse distribution of particles. Note also that, as particles have a finite size,
increasing their number keeping the size of the system constant will increase substantially the filling
fraction. In this case, turbulence could even be prevented by the presence of particles. Although
interesting, this limit is beyond the scope of this work. Secondly, the GP model is compressible,
and particles moving at large velocities are slowed down by vortex nucleations. This certainly
reduces large velocity fluctuations, perhaps limiting the development of power-law tails. It would
be interesting to address such issues in generalized GP models, including a roton minimum and
high-order nonlinearities. Moreover, our simulations are by definition at zero temperature, and
particles do not follow the singular superfluid velocity field because of the lack of viscosity in
the system. Indeed, in the GP model the pressure gradients that drive the particle dynamics are
always regular because of the vanishing density at the vortex cores, unlike other models such as
the vortex filament method. As a consequence, the divergence of the superfluid velocity along the
vortex lines cannot be experienced by the particles. Conversely, at finite temperature the superfluid
and the normal component can be locked thanks to mutual friction. In this case, since particles
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would sample the normal fluid velocity because of Stokes drag, they might be able to sample the
1/r flow around a quantum vortex. Finally, we observed that fast velocity fluctuations are highly
sensitive to interpolation and filtering methods that could even lead to power-law tails. These tails
are completely spurious, and special care is needed while analyzing numerical or experimental data.
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APPENDIX: NUMERICAL ARTIFACTS ON THE PARTICLE VELOCITY STATISTICS:
COMPARISON BETWEEN B-SPLINE AND SPECTRAL INTERPOLATION METHODS

As explained in the main text, we evaluate the force fGP
i = −(Vp ∗ ∇ρ)[qi] (3) at the particle

position qi using a B-spline interpolation method [39] at each time step. Such a method is precise
and computationally cheap, but it turns out to present some issues that we have to take care of.
To check the reliability of the method, we rerun a simulation using Fourier interpolation for one
species of particles in the time window corresponding to the turbulent regime. Fourier interpolation
is exact in the sense that it uses the information of the full three-dimensional field, which is resolved
with spectral accuracy (i.e., discretization errors are at most exponentially small with the number
of discretization points). The numerical cost of this method is that of one Fourier transform (per
particle). In Fig. 10 the velocity and acceleration spectra computed using B-spline and Fourier
interpolation methods are compared. Clearly, the B-spline interpolation introduces nonphysical fast
oscillations, but at the frequencies ω < ωnoise = 50(2π/τ�) the behavior of the spectra is unchanged.
Nevertheless, some differences in the features of particle statistics are still visible at fast timescales
once the noise is filtered out.

We use a Gaussian convolution to perform a filtering of the velocity time series for each particle
in the frequency window ωc < ω < ωnoise, where ωc is a variable infrared cutoff frequency. Then
we compute the PDF of the filtered velocity for different values of ωc. Such PDFs are shown in
Fig. 11 comparing the simulations in which Fourier and B-spline interpolation are used for the same
species of particle. Surprisingly, only in the latter case do we observe power-law tails for the fast
oscillation distributions. Such PDFs are similar to the ones observed experimentally [24,25], but in
the present case they are just a consequence of numerical artifacts.

FIG. 10. Velocity spectra (a) and the acceleration spectra (b) for particles of size ap = 10ξ and mass M =
0.13, evolved using B-spline interpolation (blue lines) and spectral Fourier interpolation (green lines). The
spectra are averaged over particles and over the times 1.3TL < t < 1.5TL .
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FIG. 11. Probability density function of the velocity filtered in the frequency window ωc < ω < ωnoise

for different values of ωc. Data refer to particles of size ap = 10ξ and mass M = 0.13. The dotted line is a
Gaussian distribution, and the dash-dotted line is a power-law scaling 0.002(vi − 〈vi〉)−3. The data are averaged
over particles and over the times 1.3TL < t < 1.5TL . Different PDFs are shifted for visualization. (a) Particle
force interpolated with the B-spline method. (b) Particle force interpolated with the Fourier method.
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Chapter 6

Conclusions and perspectives

In this manuscript, I have presented some of my contributions to the field of superfluids. I have chosen to
discuss three topics that I find particularly relevant for the current state of experiments with superfluid
helium and BECs. Some of those works have an interesting connection with classical flows.

I discussed Kelvin waves in Chapter 3. I found helpful, in particular for students and researchers
wishing to learn more about them, to start the chapter by reproducing the key steps of the original work
of Lord Kelvin, but using a modern notation. Later in that chapter, I tried to roughly explain how the
wave turbulence theory can be applied to explain the transfer of energy toward the smallest scales of the
system. Kelvin waves are typically associated with superfluids (not by Lord Kelvin of course), and much
less studied in classical fluids. Certainly, they are less important in classical turbulent flows, as there
is no notion of inter-vortex distance. On the other hand, it is not difficult to experimentally produce
vortex filaments, where the propagation of Kelvin might be relevant. The predictions concerning Kelvin
waves are actually based on classical hydrodynamics, so they should apply in classical fluids provided
that dissipation is small enough and that we look at scales much larger than the vortex core. We are now
investigating such issues numerically with J.I. Polanco. It would be, of course, a great achievement to be
able to study Kelvin waves deeply in superfluids. The observation of Kelvin waves in helium [Fon+14]
was an important achievement, but quantitative measurements were rather scarce. In addition, the use
of particles opens many questions, as discussed in the included publication [GKN20] in Chapter 5. I will
come back to this point later. Finally, concerning BECs, there is a long path to be able to study Kelvin
waves experimentally. Still, the experimental advances made in the last years, in particular by the Trento
group, are quite encouraging. Finding a clean and controlled manner of exciting Kelvin waves is the main
difficulty to overcome. Numerical simulations and a good understanding of the physics of Kelvin waves
can really help to design new experiments.

The second topic addressed in this manuscript is quantum vortex reconnections, that is presented in
Chapter 4. I tried in this chapter to keep a connection with classical fluid. I am convinced that superfluids,
at least from a theoretical point of view, can be used to understand many things of classical fluids in the
limit of infinite Reynolds numbers. Reconnections are smooth processes in the Gross-Pitaevskii equation,
as they are regularised by dispersion, and so they are in Navier-Stokes thanks to viscosity. In figure 4.6,
I compared visualisations of the reconnection of a Hopf linked ring, for superfluids, Navier-Stokes and
hyper-viscous Navier-Stokes. The goal of this qualitative figure was to show that superfluids and classical
fluids are very similar, both dissipate a “piece” of vortex length by the mechanisms allowed by the system.
It is thus natural to study in classical fluids, the limit of large rings and vanishing viscosity, and see how
the dissipative anomaly manifests in this physical problem. A bit in the same spirit, figure 4.5 displays
some hints of an intrinsic irreversible process of vortex reconnections. As mentioned in the text, the same
behaviour was recently observed in Navier-Stokes simulations [YH20b]. Again, does this temporal asym-
metry persists for infinite Reynolds numbers? Is this behaviour—trajectories approaching a singular point
by an attractive manifold, that once they pass the singular event (reconnection), separate in a stochastic
manner—somehow akin to spontaneous stochasticity? This behaviour reminds the approach by T. Drivas
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and A. Mailybaev [DM18] of spontaneous stochasticity in non-Lipschitz ordinary differential equations.
Understanding how the process of vortex reconnections depends on the regularisation mechanism of the
system, might provide some insights on the limit of infinite Reynolds numbers. Although such studies
are numerically demanding, I believe that is today possible to address many of these questions with a
renewed regard.

The initial motivation to study the dynamics of particles in superfluid was their use in current exper-
iments. Some of the works performed during the Ph.D of U. Giuriato are presented in Chapter 5. I have
to recognise that I was relatively sceptical that using particles, with a size of some micrometres, to study
the dynamics of vortices in superfluid helium, could provide trustful information on the vortex dynamics,
in particular at low temperatures. I was nevertheless enthusiastic about understanding how experimental
measurements will be affected, how to interpret them, and especially, I was looking forward to finding
some new physics. The works I included in that chapter address such issues, from the simple trapping of
a particle to Lagrangian turbulence, demonstrating how particles could be used safely, even to determine
the dispersion relation of Kelvin waves. I find particularly remarkable, the mathematical analogy between
Kelvin waves interacting with particles and electrons propagating in a crystal, developed in the included
work [GKN20] and explained in Section 5.3. This work has several interesting continuations. The model
(5.12), describing the interaction between a particle and Kelvin waves, results very appealing for students.
Its simplicity allows undergraduate students to address open scientific questions, as little prior mathe-
matical and physical knowledge (just a first course on quantum mechanics and some basic notions of fluid
dynamics) is required to deal with the equation. Indeed, an undergraduate student in Chile (supervised
by G. Düring, PUC) is currently studying how trapped particles exchange momentum with Kelvin waves.
In [GKN20], we restricted the study to an array of equidistant trapped particles. The appearance of
Brillouin zones with band and gaps in the Kelvin wave dispersion relation was quite surprising to us. The
following obvious question is to understand what happens in the presence of some disorder (e.g. particles
masses, initial distances, etc.). It is natural to expect Anderson localisation, thought the answer is not
trivial as the disorder is not quenched and it is correlated with the incoming waves. Such questions might
be certainly almost impossible to address with current experimental technics in superfluids, but they
are certainly of great theoretical interest. Besides, as mentioned in [GKN20], the main physics leading
to the appearance of band gaps is based on hydrodynamic equations that should apply for very large
classical vortices, provided that some external mechanism stabilises them. In that manner, a classical
vortex filament loaded with particles could be used as a classical analogue of a quantum system.

This HDR manuscript did not cover many important topics. For instance, I omitted to discuss
some recent results obtained in collaboration with J.I Polanco in the framework of the HVBK model
(see Section 2.4). We found that a very large counterflow can induce an abrupt transition from three-
to two-dimensional turbulence [PK20a], including the emergence of an inverse energy cascade in three-
dimensional flows. Such finding could be used, for instance, to study (quasi) two-dimensional turbulence
in three-dimensional experiments, instead of using superfluid helium films, that are too complex from the
experimental point of view.

Another important open issue related to the large scale description of superfluids is the problem
of boundary conditions. The HVBK equations, might (or might not) be a good large scale model for
finite temperature superfluids far away from boundaries (as often in theoretical physics), but close to
boundaries, its validity is less clear. Such a question is of crucial importance for industrial applications
using superfluid helium for cooling sensitive devices. The normal fluid has to satisfy the no-slip boundary
conditions, as any viscous fluid. For the superfluid component, there is not a simple answer. In the
idealised case of a perfectly smooth surface, as the superfluid is non-viscous, the boundary conditions
should be then free-slip. However, at the scale of quantum vortices, the surface is rough, and vortex
nucleations should take place dissipating some of the superfluid energy [FPR92]. At the scales at which
HVBK is valid, it is thus not clear, which are the proper boundary conditions. Non-trivial modelling
and the use of numerical simulations of different equations, valid at different scales, might provide some
insights to this question. Undoubtedly, any theoretical result should be confronted with experimental
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data. Such understanding will also allow for studying the generation of superfluid turbulence by grids or
oscillating objects that are today very often used in superfluid helium experiments.

In the general description of the Gross-Pitaevskii model in Section 2.1, I discussed the different types
of waves present in BECs (Bogoliubov waves). It is obvious that such waves can interact non-linearly,
and wave turbulent states can emerge. If the amplitude of the waves is small, the theory of weak wave
turbulence, briefly explained in Section 3.3.3, can be there applied. To be fair, a proper discussion on weak
wave turbulence in BECs deserves at least a full chapter, as depending on the strength of the condensate,
the interaction can be three or for waves, with direct and inverse cascades. Here, I just refer to the books
[ZLF12; Naz11] for a theoretical description and to the works [NO06; PNO09] for numerical studies. We
should remark that this kind of (density) wave turbulence is very different from the one mainly discussed
in this manuscript. First of all, it is assumes that there are no vortices in the system (otherwise the
theory breaks down) and the cascades (and the physics) at scales smaller than the coherence length are
very important. There has been enormous progress from the experimental side. Experimentalists are now
able to confine BECs in squared traps, which is very suitable to compare with theory. By “shaking” such
traps, wave turbulence cascades have been observed [Nav+16]. As part of the SIMONS Collaboration
Wave Turbulence, we are currently studying different aspects of the weak wave turbulence cascade in
BECs, from both theoretical and numerical sides.

I have not discussed at all the issue of intermittency. The first experiments with superfluids did
not find any differences between classical and superfluid turbulence [MT98]. Such behaviour was also
observed in more recent experiments, almost twenty years later [Rus+17]. On the other hand, numerical
simulations of HVBK-based shell models found that depending on temperature, intermittency can be
either enhanced [Bou+13b] or reduced [SP16]. Some years later, DNS of the HVBK model [Bif+18]
provided some support to the findings of [Bou+13b] and recent experiments seems to be in agreement
with it [Bao+18]. In the case of low-temperature superfluids (GP), I showed that intermittency is strongly
enhanced [Krs16]. While there is a global consensus that second-order structure functions should obey the
Kolmogorov prediction (up to eventual intermittency corrections), it is not fully clear why it should be
the case for high order moments. In classical fluid, there is not a first principle theory able to explain the
multifractality of intermittency [Fri95]. It is believed that vortex filaments are one of the most dissipative
structures of classical turbulence, and their contribution is very important for high order statistics. Such
an idea is behind the construction of the She-Leveque model for intermittency [SL94], that is known to fit
well the scaling exponents. In this model, to fix some recursion relations, a scaling associated with vortex
filaments is used for moments of order tending to infinity. In that spirit, as vortex filaments are the essence
of quantum turbulence, it is thus natural to think that high-order statistics of superfluid turbulent fields
might differ from the classical ones. Whether or not, this difference becomes visible at orders that are
possible to investigate numerically or experimentally, it is a different question. I believed that the Gross-
Pitaevskii model, although limited to low-temperature superfluids, is the correct framework to address
such issues, as quantum vortex filaments are naturally included. One issue that could be somehow easier
to address in low-temperature superfluids than in classical flows is the statistics of circulation. There
has been a renewed interest in classical fluids concerning how the circulation scales with the size of the
loops in the inertial range of turbulence. In [ISY19], it was found that the circulation statistics are
intermittent, although they exhibit a simpler (bi-fractal) behaviour than the velocity increments. We
have studied that problem in low-temperature superfluids with N.P Müller and J.I. Polanco [MPK20].
We have observed that superfluids present the same property, including the intermittent statistics of
circulation in the classical range. As we have largely discussed, the circulation around quantum vortices
is discrete. Although for loops with size laying in the inertial range the total number of vortices crossing
the loops can be very large, that number is still discrete and it is the sum of the circulation of many
individual vortices. This fact suggests that some tools of statistical physics, such as Markov chains or
the large deviation theory might help to comprehend the problem. If such an approach is successful, one
could hope that this understanding could be extrapolated to classical fluids, as in the inertial range both
systems share the same statistics.
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CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

As a summary, I have presented in this manuscript many aspects of the dynamics of superfluids that
I find very passionating. Superfluid turbulence is a very rich system, with many open questions waiting
to be answered. I also believe that superfluid turbulence, can teach us many things about classical fluids
and it can be considered as the skeleton of fully developed turbulence.
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Appendix A

Numerical tools for superfluids

A.1 Vortex Tracking algorithm

Some questions concerning the dynamics of quantum vortices need to have access to direct information
of the vortex lines, such as their position, curvature, torsion, etc. The Gross-Pitaevskii equation does not
provide such information, and it has to be extracted numerically from the wave function.

We developed a robust and accurate algorithm to track vortex lines of a periodic wave function ψ,
with no prior knowledge of vortex configuration. This algorithm was an important generalisation of the
one used in [Krs12] to study Kelvin waves. The full details of the algorithm and the case studies to check
its validity can be found in [Vil+16]. We recall here briefly the basic ideas. A quantised vortex line is
defined by the nodal lines of the wave function. In three dimensions, this corresponds to a curve defined
by

Re[ψ(x, y, z)] = Im[ψ(x, y, z)] = 0 (A.1)

The algorithm is based on a Newton-Raphson method to find zeros of ψ on a plane and on the knowledge
of the pseudo-vorticity field J = 2~∇Re[ψ]×∇Im[ψ], that is always tangent to the lines, to follow vortex
lines.

Starting from a point x0, where the density |ψ|2 is below a given small threshold (therefore very close
to a vortex), we define the orthogonal plane to the vortex line using J(x0). The plane is then spanned by
the two directors û1 and û2 as illustrated in Fig.A.1.

û1

û2
⇥x0

J
<latexit sha1_base64="bM70QebGEVeh1IB3ueoEVzsY/mM=">AAACBXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoRTxFMA9IQpidzCZDZneWmV4hLDl79qrf4E28+h1+gn/hbLIHTSxoKKq66e7yYykMuu6Xs7K6tr6xWdgqbu/s7u2XDg6bRiWa8QZTUum2Tw2XIuINFCh5O9achr7kLX98k/mtR66NUNEDTmLeC+kwEoFgFK3USrt+QO6m/VLZrbgzkGXi5aQMOer90nd3oFgS8giZpMZ0PDfGXko1Cib5tNhNDI8pG9Mh71ga0ZCbXjo7d0pOrTIggdK2IiQz9fdESkNjJqFvO0OKI7PoZeK/XqagUtIsHIDBVS8VUZwgj9h8f5BIgopkkZCB0JyhnFhCmRb2BcJGVFOGNriizcZbTGKZNKsV77xSvb8o167zlApwDCdwBh5cQg1uoQ4NYDCGZ3iBV+fJeXPenY9564qTzxzBHzifP5pNmSY=</latexit>

Figure A.1: Sketch of the plane on which the Newton-Raphson method is implemented.

The point x0 is the first approximation to the vortex position in that plane. A better approximation
for the true point xv, where the vortex line crosses the plane is then given by x1 = x0 + δx. Here the
increment δx is obtained using the Newton-Raphson formula:

0 =

(
Re[ψ(x0 + δx)]
Im[ψ(x0 + δx)]

)
≈
(
Re[ψ(x0)]
Im[ψ(x0)]

)
+Dψ(x0) · δx (A.2)
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where Dψ(x0) is the Jacobian matrix expressed as

Dψ =

(
∇Re[ψ] · û1 ∇Re[ψ] · û2

∇Im[ψ] · û1 ∇Im[ψ] · û2

)
. (A.3)

The increment is therefore found to be δx = −Dψ(x0)−1 · (Re[ψ(x0)], Im[ψ(x0)])T . The Jacobian
matrix Dψ is a non-singular 2 × 2 matrix, so its inverse can be computed with its explicit formula. We
underline that the method requires the evaluation of the the wave function and the Jacobian (A.2) at
intermesh points. Making use of the spectral representation of ψ, we can compute spatial derivatives of
the field ψ on those points with the accuracy of spectral methods. As the number of interpolations is
small, the evaluation of the fields on those points can be done by direct evaluation of the Fourier sum.
Alternatively, if high accuracy is not necessary, some other interpolation schemes can be used to speed
up the algorithm. This process can be iterated until the exact vortex location xv is determined upon a
selected convergence precision.

To track the next vortex point, we use as new initial guess x0 = xv + ζJ, which is obtained evolving
along the pseudo-vorticity by a small step ζ, typically of the order of, or smaller than a healing length.
The process is repeated until the entire line is tracked and closed. Once the line is completely tracked,
the process is repeated with another line until the whole domain has been fully explored.

The numerical cost of tracking can be very high for dense tangles, especially at large resolutions if one
needs the full spectral accuracy provided by Fourier interpolation. Each Fourier interpolation requires the
evaluation of Nx×Ny×Nz complex exponentials, so that for a vortex filament roughly having a length of
Nvξ, the numerical cost is of order Nv ×Nx ×Ny ×Nz. Thanks to parallel computing, many processors
share this numerical cost, so it remains still affordable even for very long vortices. Such accuracy is
needed, for instance, to study Kelvin waves and vortex reconnections. Note that if instead of Fourier
interpolation, one uses a local scheme, the cost is substantially reduced.

The previous algorithm is very general and does not assume any prior knowledge of the vortex ge-
ometry. In the case of an almost straight vortex, considering the cartesian parametrisation of the vortex
s(z) = (X(z), Y (z), z), the tracking can be reduced to a Nz two-dimensional tracking problems. This
simplification allows for a fast tracking of the filaments, even using Fourier interpolation. I introduced
this idea in [Krs12], and we have implemented it in FROST (see Section A.3). It is fast enough to be
used to determine the spatio-temporal spectra of Kelvin waves [GK19].

A.2 De-aliasing of the Gross-Pitaevskii equation and conservation of
invariants

Very often in physics, we are concerned with phenomena taking place at scales much smaller than the
system size. In such cases, the physics might be independent of the boundary conditions we impose on
the partial differential equation (PDE) describing the system. Such is the case of homogenous turbulence,
where inertial scales are independent of the large scale forcing or boundary conditions. In those cases, it is
very convenient to assume periodic boundary conditions, so that we can make use of Fourier transforms.
The advantage of expressing fields in Fourier space is that differential operators become diagonal. However,
on the other hand, non-linear terms become convolutions, that are very expensive to compute. To avoid
this computational cost, one uses pseudo-spectral codes, where linear terms are computed in Fourier space
while the non-linear ones are evaluated in physical space. Using Fast Fourier Transforms (FFT), passing
from physical to Fourier space only costs ∼ ND logN operations, where N is the number of grid points
in one direction and D is the dimension of the system. Note that by definition, a Fourier transform costs
N2D operations. Steven Orszag pioneered the study of pseudo-spectral codes, in particular in the field of
classical turbulence [Ors69]. We refer to the book [GO09] for further details on pseudo-spectral codes.

Pseudo-spectral codes have the advantage that they approximate solutions of a PDE with spectral
accuracy. That means that errors due discretisation are exponentially small and decrease at least as e−c/N
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(actually one should formally say they are smaller than any power of 1/N). The reason is that analytic
functions decrease very fast in Fourier space, so if N is large enough to ensure spectral convergence, a
pseudo-spectral code is more accurate that any finite difference scheme.

There is one important extra property of pseudo-spectral codes. For many systems, the discrete
equations (of the pseudo-spectral approach), also conserve the corresponding (discrete) invariants of the
original PDE. To ensure this, one needs to perform a proper de-aliasing of the fields, that corresponds to
kill certain Fourier modes. We explain in the following the origin of aliasing and how to deal with it to
conserve the invariants.

For the sake of simplicity, we consider one dimensional 2π-periodic functions. It follows that the wave
vectors are integers. To fix the notation, we write a function f in Fourier space as

f(x) =
∑

k

f̂ke
ikx, and f̂k =

1

2π

∫
f(x)e−ikxdx. (A.4)

We recall the Parseval theorem, which demonstration is a simple exercise in this case. The theorem states
that

1

2π

∫
f(x)g(x)dx =

∑

k

f̂kĝ−k. (A.5)

In general, to demonstrate some conservation laws of a PDE, one needs to perform integrations by parts.
Even in the case where Fourier transforms are truncated (because of discretisation), integration by parts
always hold because of Parseval theorem:

∫
f ′(x)g(x)dx = 2π

∑

k

(
ikf̂k

)
ĝ−k = −2π

∑

k

f̂k (−ikĝ−k) = −
∫
f(x)g′(x)dx. (A.6)

However, one also needs to be able to apply the Leibniz rule

(fg)′ = f ′g + fg′. (A.7)

This rule, it of course holds if we consider the full expansion in the Fourier transform, but it might break
down if it is truncated. In order to illustrate this, let’s compute the Fourier transform of (f ′g+fg′)−(fg)′.
A straightforward calculation gives

f ′g + fg′ − (fg)′̂k =
∑

p,q

if̂pĝq(p+ q − k)

∫
ei(p+q−k)xdx

2π
. (A.8)

As
∫
ei(p+q−k)x dx

2π = δp+q,k, the right hand side is zero and the Leibniz rule is demonstrated for all wave
vectors k.

Let’s now consider that the functions are discrete, and N collocation points are used. The Fourier
transforms are now discrete and read

f(xj) = fj =

N/2∑

k=−N/2+1

f̂ke
i
(j−1)2π

N , and f̂k =
1

N

N−1∑

j=0

fje
−ik (j−1)2π

N dx. (A.9)

Note that wave vectors satisfy |k| <= N/2. For the discrete fields, equation A.8 becomes

f ′g + fg′ − (fg)′̂k =
∑

p,q

if̂pĝq(p+ q − k)
1

N

∑

j

ei(p+q−k)
(j−1)2π

N =
∑

p,q

if̂pĝq(p+ q − k)δ
(N)
p+q,k, (A.10)

where δ
(N)
i,j is the Kronecker delta modulo N . The right hand side does not always vanish. For instance,

if k = −N/3 + 2, p = q = N/3 + 1 we have that δ
(N)
p+q,k = 1 but (p+ q − k) = N 6= 0 and the Leibniz rule
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break downs. To solve this problem, one can impose a Galerkin truncation and keep only wavenumber
smaller than then cut-off kmax = N/3. We define the Galerkin projector in Fourier space as

PG[f̂k] = θ(kmax − k)f̂k (A.11)

with θ(·) the Heaviside theta function. The Galerkin projector was introduced in Section 2.1.4 to define
the Projected Gross-Pitaevskii equation.

We say that a function is de-aliased if PG[f ] = f . Note that, if f and g are de-aliased, we have that

f ′g + fg′ − PG[fg]′̂k = 0 (A.12)

because |p+ q − k| < N by construction.
The previous property can be used to solve PDEs and ensures the conservation of invariants by

adequately applying the Galerkin projector to the non-linear terms. However, it is important to remark
that N − 2kmax = N/3 are set to zero, so 1/3 of the resolution is lost. De-aliasing the fields at 2/3 of the
maximum wavenumber N/2 (i.e. at kmax = N/3) is known as the 2/3-rule. It is widely known and used
in the community of classical fluid dynamics, whereas rarely considered in the community of superfluids.

As an application, let’s consider the projected Gross-Pitaevskii equation in one dimension

i~
∂ψ

∂t
= PG

[
− ~2

2m
∂xxψ + gPG[|ψ|2]ψ

]
, (A.13)

As a PDE, the GP equation conserves the momentum P = i~
2

∫
(ψ∂xψ

∗ −ψ∗∂xψ)dx. Using the projected
GP equation (A.13), we obtain after direct algebra

dP

dt
=
g

2

∫ {
PG[|ψ|2] (ψ∂xψ

∗ + ψ∗∂xψ) + ψ∂x
(
PG[|ψ|2]ψ∗

)
+ ψ∗∂x

(
PG[|ψ|2]ψ

)}
dx. (A.14)

where the contribution coming from the kinetic terms vanishes by integration by parts (using (A.6)). We
also used the property

∫
PG
[
PG[|ψ|2]ψ

]
∂xψ

∗dx =

∫
PG[|ψ|2]ψPG [∂xψ

∗] dx =

∫
PG[|ψ|2]ψ∂xψ

∗dx,

because of the Parseval theorem and the fact that ψ is de-aliased (PG [ψ] = ψ). The Leibniz rule for
de-aliased fields implies

ψ∂xψ
∗ + ψ∗∂xψ = ∂xPG

[
|ψ|2

]
(A.15)

∂x
(
PG[|ψ|2]ψ

)
= ψ∂xPG[|ψ|2] + PG[|ψ|2]∂xψ. (A.16)

Using the previous two identities in (A.14) and collecting terms we obtain

dP

dt
= g

∫ {
PG[|ψ|2]∂x|ψ|2 + |ψ|2∂xPG[|ψ|2]

}
dx = 0, (A.17)

where we have used again an integration by parts to show that the r.h.s vanishes. If ψ is not de-aliased
or the Galerkin projector is not applied as in equation (A.13), identities (A.15-A.16) are not valid, and
dP
dt 6= 0 for the discrete system.

The GP equation has a quite remarkable structure. Even if de-aliasing is not applied at all, it can be
shown that the energy and the number of particles are still conserved. For finite temperature studies, the
use of a proper de-aliasing is crucial to conserve momentum. For (standard) GP, spurious effect, such as the
change of a ring or dipole size during the evolution, can appear if de-aliasing is not performed. However,
the error in the conservation of momentum decreases if the resolution is increased (when kmax →∞!).

We introduced the de-aliasing scheme (A.13) in [KB11b] to study thermal counterflow. Such a scheme
has the advantage of preserving the Hamiltonian structure of the system. Note that, it requires the
computations of an extra FFT back and forth to evaluate the non-linear term. A different approach is
to compute the non-linear term without the Galerkin projector and perform only the truncation to the
right hand side of the equation at kmax = N/4. With this approach, one half of the resolution is lost.
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A.3 FROST: Full solveR Of Superfluid Turbulence

Most of the scientific results presented in this manuscript have been obtained using to the code FROST,
that I have been developing over the last eight years. This code is written in modern Fortran language
and takes advantage of the state-of-the-art machines having several thousands of processors. My students
Umberto Giuriato and Nicolas P. Müller have enormously contributed to the development of the code.
Umberto has developed the particle dynamics in the GP model and the Stochastic-Real-Ginzburg-Landau
equation for studying thermal states. Nicolas has developed the generalised GP model, that includes
non-local interactions and high order terms. He was also involved in the implementation of a hybrid
OpenMP/MPI parallelisation scheme. Finally, Alberto Villois during a stay in Nice, implemented the
three-dimensional vortex tracking on the code.

The solver integrates in two and three dimensions different equations that share a similar structure with
the Gross-Pitaevskii equation. The solver, the temporal scheme and the dimension are set at compilation
time. The possible solvers are:

GP: Gross-Pitaevskii equation. It includes different types of external potentials, order and type of non-
linearity and a non-local interaction term. It also integrates GP in a rotating frame. If particles are
set on, it integrates the GP-P model with particles. Several standard initial conditions are already
implemented.

ADGP: Advected-Dissipative GP. It solves GP in a co-moving frame, and different types of dissipa-
tion are included. The advection velocity can be either constant or chosen among many already
implemented velocity fields.

RGL: Real-Ginzburg-Landau or GP in imaginary time. This solver is used to generate ground states.

ARGL: Advected-Real-Ginzburg-Landau. This solver is used to generate ground states in a Galilean-
transformed frame of reference. It is used for instance to generate turbulent states such as quantum
Taylor-Green or ABC flows.

SRGL: Stochastic-Real-Ginzburg-Landau. This solver generates thermal states. Temperature, chemical
potential are given as parameters.

SARGL: Stochastic-Advected-Real-Ginzburg-Landau. This solver generates thermal states, including a
counterflow velocity.

NEWTON: A Newton-Raphson method to find steady states of the GP equation in a co-moving frame.
It uses a biconjugate gradient stabilised method (BiCGSTAB) to solve the associated linear problem.
This solver is used for instance to find dipoles and vortex ring that are perfect steady solutions of
GP and to follow stable and unstable branches of solutions.

The solver computes several diagnostics on-the-fly, such as the hydrodynamic energies and spectra,
and the regularised helicity. It produces outputs to generate spatio-temporal spectra. If turned on, it also
performs on-the-fly full three-dimensional vortex tracking, two-dimensional tracking for almost straight
vortices and the evaluation of energy and mass fluxes on spheres.

Finally, the code is fully parallelised in slabs using the Message Passing Interface (MPI) library. Such
parallelisation is efficient, simple and sufficient for most applications. For very large resolutions, we have
partially implemented a hybrid scheme that uses, in addition, the OpenMP shared memory library. This
scheme allows to use more processors at fixed resolutions. It has been tested up to 16000 cores, showing
a good scaling.

Many parts of the code still need a considerable amount of work to be freely distributed, in particular
the documentation. It is nevertheless available upon request.
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