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Dynamics of active particles in superfluids and their interaction with quantum vortices

Abstract Superfluids are inviscid flows in which vorticity is supported on filaments with quantized
circulation. Such objects, known as quantumvortices, exhibit a hydrodynamical behavior. Experimentally,
the dynamics of superfluids has been studied by using particles, which nowadays have become the
main tool for visualizing quantum vortices. In this Thesis, we study numerically and analytically the
dynamics of active and finite-size particles in superfluids. The superfluid is modeled with the Gross–
Pitaevskii equation, while the particles are implemented as moving repulsive potentials coupled with
the macroscopic wave function describing the superfluid. Firstly, the model is used to investigate the
interaction between particles and quantum vortices at very low temperatures. This part aims to give a
theoretical background to the current experiments in which macroscopic particles are used to sample
superfluid vortices and quantum turbulence. Specifically, we address the following problems: the capture
of a particle by a quantum vortex, the reconnections of vortex filaments and the propagation of Kelvin
waves in presence trapped particles and the dynamics of particles in decaying quantum turbulence. In
the last part of the manuscript, finite temperature effects are studied in the Fourier-truncated Gross–
Pitaevskii model. The goal is to characterize the dynamics of impurities immersed in a thermal bath
and how their presence modifies the statistical properties of the fluid. In particular, the random motion
of the impurities and the temperature dependence of the friction coefficient are studied. Finally, the
clustering of impurities and its effect on the phase transitions of the condensate are investigated.

Keywords Superfluids, Quantum turbulence, Particles, Numerical simulations

Dynamique des particules active dans les superfluides et leur interaction avec les vortex quantiques

Résumé Les superfluides sont des fluides non visqueux dans lesquels la vorticité se concentre sur des
filaments ayant une circulation quantifiée. Ces objets, appelés vortex quantiques, possèdent un compor-
tement hydrodynamique. Expérimentalement, la dynamique des superfluides est souvent étudiée en
utilisant des particules. Les particules sont aujourd’hui devenues l’outil principal pour visualiser les
vortex quantiques. Dans cette thèse, nous étudions numériquement et analytiquement la dynamique
des particules actives et de taille finie dans les superfluides. Le superfluide est modélisé avec l’équation
Gross–Pitaevskii, tandis que les particules sont implémentées comme des potentiels répulsifs mobiles
couplés avec la fonction d’onde macroscopique décrivant le superfluide. Le modèle est utilisé pour
étudier l’interaction entre les particules et les tourbillons quantiques à très basse température. Cette
première partie vise à donner un contexte théorique aux expériences actuelles dans lesquelles des
particules macroscopiques sont utilisées pour échantillonner les vortex superfluides et la turbulence
quantique. Plus précisément, nous abordons les problèmes suivants : la capture d’une particule par
un vortex quantique, les reconnexions des filaments de vortex et la propagation des ondes Kelvin en
présence de particules piégées, ainsi que la dynamique des particules dans la turbulence quantique en
déclin. Dans la dernière partie du manuscrit, les effets de température finis sont étudiés dans le modèle
Gross–Pitaevskii avec une troncature spectrale. L’objectif est de caractériser la dynamique des impuretés
immergées dans un bain thermal et comment leur présence modifie les propriétés statistiques du fluide.
En particulier, le mouvement aléatoire des impuretés et la dépendance en température du coefficient de
frottement sont étudiés. Enfin, le clustering des impuretés et son effet sur les transitions de phase du
condensat sont examinés.

Mots-clés Superfluides, Turbulence quantique, Particules, Simulations numeriques
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Dinamica di particelle attive nei superfluidi e la loro interazione con i vortici quantistici

Sommario I superfluidi sono fluidi non viscosi nei quali la vorticità è concentrata su strutture uni-
dimensionali aventi circolazione quantizzata. Tali oggetti, chiamati vortici quantistici, mostrano un
comportamento idrodinamico su larga scala. Sperimentalmente, la dinamica dei superfluidi viene spesso
studiata utilizzando delle particelle come sonde, che attualmente esse sono diventate lo strumento
principale per visualizzare i vortici quantistici. In questa Tesi, la dinamica di particelle attive e a taglia
finita nei superfluidi viene studiata analiticamente e numericamente. Il superfluido è modellizzato con
l’equazione di Gross–Pitaevskii, mentre le particelle sono implementate come potenziali repulsivi mobili,
accoppiati con la funzione d’onda macroscopica che descrive il superfluido. Innanzi tutto, tale modello
è utilizzato per studiare l’interazione tra le particelle e i vortici quantistici a bassissima temperatura.
L’obiettivo di questa prima parte è quello di fornire un contesto teorico agli esperimenti in cui particelle
macroscopiche vengono utilizzate per sondare i superfluidi e studiare la turbolenza quantistica. Più
precisamente, i seguenti problemi vengono affrontati: la cattura di una particella da parte di un vortice
quantistico, le riconnessioni tra filamenti vorticosi e la propagazione di onde di Kelvin in presenza
di particelle intrappolate, la dinamica di particelle in regime di turbolenza quantistica. Nell’ultima
parte del manoscritto, vengono studiati effetti di temperatura finita nel modello di Gross–Pitaevskii
con troncamento spettrale. L’obiettivo è quello di caratterizzare la dinamica di impurità immerse in
un bagno termico e come la loro presenza modifichi le proprietà statistiche del fluido quantistico. In
particolare, vengono studiati il moto stocastico delle impurità e la dipendenza dalla temperature del
coefficiente di frizione. Infine, vengono esaminati il processo di raggruppamento delle impurità e come
questo influisca sulle transizioni di fase del condensato.

Parole chiave Superfluidi, Turbulenza quantistica, Particelle, Simulazioni numeriche
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Introduction

According to its historical definition, a superfluid (or quantum fluid) is a liquid that
flows with zero viscosity. In more general terms, a superfluid can be defined as a
many-body system in which quantum coherence appears on a macroscopic scale [140,
176]. Since quantum effects become dominant if thermal fluctuations are low enough, it
is not so surprising that the discovery of superfluidy is actually an unexpected outcome
of the research in low temperature physics. Almost one century ago, scientists were
trying to get closer to the absolute zero [153] and superfluidity was detected by chance
in liquid helium 4He, below a critical temperature of about 2.17 𝐾 [1, 106]. Nowadays,
superfluid helium (or the phase II of liquid helium) is still one of the most studied
quantum fluids, although superfluidity has been achieved and is currently investigated
in many other systems, from Bose–Einstein condensates of ultracold atoms [174] to
quantum fluids of light in non-linear media [38].

A superfluid possesses an intrinsic long-range order, and thus it can be described
by a macroscopic complex field which plays the role of order parameter. Perhaps the
most fascinating quantum constraint in a superfluid is the restriction of the vorticity to
topological defects of such order parameter. These peculiar unidimensional objects
are known as quantum vortices. They exhibit a hydrodynamical behaviour at large
scales, but they carry the signature of their quantum nature in the discreteness of the
circulation around them [55]. A quantum fluid may be a very complex system, in
which many scales are involved. In the case of superfluid helium, the core of quantum
vortices has a diameter of about ∼ 1Å, while the size of modern experiments can
be up to ten orders of magnitude larger [195]. In particular, turbulence can exist in
superfluids, despite the lack of viscosity, and it is actually one of the main reasons
that currently attract the interest of researchers on quantum fluids [170, 236]. Super-
fluid turbulence manifests itself in a tangle of quantum vortex filaments, that interact
non-linearly redistributing the energy among the different scales. The dynamics of
superfluid vortices, which is characterized by peculiar phenomena, is thus crucial for
quantum turbulence. One of such phenomena is for instance the reconnection between
vortex filaments, a fast event through which two vortex strands are exchanged and the
topology of the flow is rearranged [70, 229]. Another feature is the presence of Kelvin
waves [192, 220], helicoidal displacements of the vortex filaments that propagate along
them and whose mutual non-linear interactions may transfer energy towards smaller
and smaller scales, until it is eventually radiated in the form of sound [129, 141, 236].
Moreover, as already realized by Landau in his first phenomenological description of
superfluid helium [139, 140], a superfluid always coexists at finite temperature with a
normal (viscous) fluid component, in the so-called two-fluid framework. In the most
general case, normal fluid, the superfluid and the quantum vortices therein interact
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Introduction

and affect each other’s dynamics in an intricate and non-trivial manner.
The experimental investigation of the properties of superfluids and quantum vortices

relies mostly on indirect measurements. In particular for superfluid helium, particles
are one of the main tools that has been used to sample the flow [91, 208]. Already the
early studies in the 1960s used ions and electron bubbles in the framework of rotating
superfluid helium [37, 186]. An impressive experimental breakthrough took place in
2006, when quantum vortices were directly visualized thanks to solidified hydrogen
particles, combined with the technique of particle tracking velocimetry [30]. Since
then, this kind of probes has become a standard technique for studying superfluid
vortex dynamics and quantum turbulence in liquid helium. In particular, signatures of
reconnections [29, 169] and vortex wave propagation [64] have been observed, as well
as statistical measurements of particle velocity and acceleration in turbulent regimes
[137, 197]. Such particles have inertia and a size which is more than four orders of
magnitude larger than the vortex core. Thus, they certainly affect the flow and may
interact with the vortex filaments in a non obvious way. In such context, understanding
what drives the actual motion of particles in a superfluid and providing some insights
about how they modify the flow are necessary theoretical tasks. This is precisely the
main original motivation that inspired the works collected in the present manuscripy.
This Thesis is indeed devoted to a systematic study on the dynamics of active and
finite-size particles in a superfluid, with a particular focus on their interaction with
quantum vortices.

Given the complexity of a superfluid system and the large scale separation involved, a
full prime principle theory for superfluid helium or a generic quantumfluid is currently
missing. Nowadays, different phenomenological approaches are used, both analytically
and numerically, which are valid at different scales. There is not an univocal manner
to include the dynamics of particles in these model, and also in this regard different
approaches have been proposed [208]. If the typical scales of the flow are much larger
than the average separation between the vortex lines, the superfluid vorticity can be
treated as a coarse-grained field, so that both the superfluid and the normal fluid
are described by two coupled fluid equations. In such approach, known as the Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model [96, 98], there is no notion of quantized
circulation and it is of course valid as long as the vortex lines are and not randomly
oriented, but rather spatially organized. The dynamics of point particles (i.e. much
smaller than the smallest scale resolved by the model) has been recently implemented
in the HVBK model [178, 179]. Although suitable for studying the large scale motions
of a two-fluid turbulent system, the physics at the scale of the vortex filaments is not
accessible by these equations and the particle-vortex interaction is thus absent.

An extremely popular model that is valid at intermediate scales is the vortex filament
method. Such model, pioneered by the work of Schwarz [205], describes the dynam-
ics of each isolated vortex filament and the long range interaction between vortices,
although the core is not resolved. Moreover, the quantization of circulation is simply
assumed, and not derived by prime principles. In particular, the vortex lines evolve
following Biot-Savart integrals stemming from basic hydrodynamical assumptions,
but a numerical cutoff must be introduced to regularize the model at the scale of

2



the vortex core. Moreover, the reconnections between the filaments need also to be
implemented as ad hoc mechanisms. In the beginning of this century, a large amount of
articles exploited the vortex filament method coupled with moving spherical boundary
conditions in order to study the interaction between finite-size particles and vortex
filaments [15, 113–115, 117, 119].

Finally, a microscopic approach valid at the scale of the vortex core is the Gross–
Pitaevskii (GP) model, i.e. a non-linear Schrödinger equation that describes directly
the dynamics of the superfluid order parameter and in which the topological nature of
quantized vortices is naturally contained [174, 176]. The GP equation was originally
devised as a mean field model to describe a weakly interacting Bose–Einstein condens-
ate (BEC). It is based on the fundamental idea that at very low temperature a single
macroscopic wavefunction can describe a bosonic system in which all the quantum
particles belong to the fundamental state. The connection between such system and a
compressible, barotropic, irrotational and inviscid superfluid can be shown straightfor-
wardly [164]. Moreover, given that it naturally reproduces the dynamics of quantized
vortex filament, the GP model can be considered as an optimal framework to describe a
generic quantum fluid at very low temperature. In this sense, it is expected to provide
a good qualitative description also for a strongly interacting superfluid, as helium
II. The dynamics of particles and impurities can be studied in the GP framework, as
already suggested in the seminal work by Gross himself [89]. One possibility is to
model each impurity as a field (with infinite degrees of freedom), evolving according
to a partial differential equation and coupled with the condensate wavefunction [25,
33, 191, 231]. However, such approach is numerically costly and difficult to handle
with if one wants to consider many impurities. A simpler, minimal method consists in
modeling the particles with classical degrees of freedom and encoding the coupling
with the superfluid in a fixed-shape potential [88, 212, 214, 242, 245].

This last model is specifically the one that I used to achieve the results reported in
this manuscript and it has to be intended as complementary to the other methods
utilized in the past with a similar purpose [208]. One of the main advantages of this
model is the self-consistency: being based on the GP equation, the full superfluid
vortex dynamics and the vortex-particles interaction are naturally reproduced, without
the need of any numerical cutoff or ad hoc mechanism. Moreover, since the particle is
described by its classical degrees of freedom (position and momentum of its center
mass) the numerical implementation of many particles is relatively cheap and efficient.
From the perspective of the superfluid field, a particle is just a dynamical external
potential, and thus it has automatically a finite size and an active effect on the flow.
We remark that the effective size of the particles that is computationally reasonable
to consider in state-of-the-art GP numerical simulations is less than 100 vortex cores,
which is still orders of magnitude smaller than the size of solidified hydrogen particles
used in superfluid helium experiments. However, as it will be clear throughout the
manuscript, there are insights suggesting that some of our main results are likely to
remain valid also at the scale of liquid helium experiments.

Note that the GP model is developed for very low temperature quantum fluids,
where the thermal excitations play a negligible role and the normal fluid component
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is absent. However, the typical range of temperatures at which the experiments with
solidified hydrogen particles in liquid helium are conducted is between 1.5 𝐾 and 2 𝐾
[28, 137, 169]. In this range, the fraction of normal fluid compononent in the system is
actually not negligible and finite temperature effects can be important. For this reason,
a more accurate study of the vortex-particle interaction should take into account the
presence of thermal fluctuations. In the last part of this manuscript, I introduce a
truncation procedure that allows to adapt the GP equation to study the dynamics
of a bosonic field at finite temperature [51, 52, 128, 131]. In particular, I report two
articles in which the dynamics of impurities is implemented for the first time also in
the truncated GP system. The specific issue of the vortex-particle interaction at finite
temperature is not studied in this Thesis, but it would be a natural follow-up of the
results reported here.

During this Thesis, I addressed different specific problems, with several configura-
tions of particles and superfluid field. The principal methods that I exploited to attack
different aspects of each problem are the realization of extensive numerical simulations
and the development of analytical treatments. The use of parallel computing techniques
and well-established pseudo-spectral schemes to solve partial differential equations
allowed me to efficiently obtain accurate and trustable results. I also implemented
some of the algorithms of the code “FROST” (Full solveR Of Superfluid Turbulence)
used by the quantum fluids team of the Observatory of Nice to solve the GP equation,
specifically the particles dynamics and the stochastic model to generate GP thermal
states. For some of the problems studied, the numerical achievements have been a
guidance to develop analytical calculations, containing important insights about the
underlying physics. I also gave emphasis to the direct visualization of the dynamics of
the systems studied, which is often a powerful tool for grasping an intuitive picture of
the observed phenomena.

The present manuscript is structured in six chapters. In the first two, I introduce
the fundamental concepts of superfluids and particle dynamics, and the main results
found in the literature are reviewed. The main body of the Thesis is then devoted to the
presentation of original results, with further discussions and references to the current
research context. From chapter 3 to chapter 5, I study the interaction between particles
and superfluid vortices at very low temperature (neglecting the finite temperature
effects), presenting the achieved results in an increasing order of complexity. In chapter
6, I address the dynamics of impurities in the truncated GP equation, which models a
quantum fluid at finite temperature.

An introduction to quantum fluids and superfluidity is provided in chapter 1. I
focus mainly on the notion of Bose–Einstein condensation [32, 58], which is a funda-
mental physical mechanism intimately related to superfluidity. I discuss the formation
of a condensate in a gas of free bosons, showing explicitly how the lowest quantum
energy level of the system becomes macroscopically populated below a critical tem-
perature. Then, I consider the case of a weakly interacting system and discuss the
Gross–Pitaevskii model [176]. My main concern in this chapter is to point out how the
presence of non-linear interactions in a dilute bosonic system is naturally linked to
a superfluid behaviour [164]. In particular, I introduce the vortex solution of the GP
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equation, which is an actual topological defect of the wavefunction with a quantized
circulation. Such preliminary discussion is intended to provide satisfactorymotivations
for the use of the GP model as an optimal framework for the study of a superfluid at
very low temperature, although the absence of non-local interactions prevents it to
capture all the physics of superfluid helium [23, 187]. In the last part of the chapter
the dynamics of quantum vortices is also introduced, in the hydrodynamic framework
of the standard vortex filament model [205]. The phenomena of vortex reconnections
[70, 229] and propagation of Kelvin waves [97, 192] are also discussed, since they are
central in the subsequent parts of the manuscript.

Chapter 2 is dedicated to reviewing the current knowledge about the dynamics of
particles in fluids and superfluids. In order to give substance to the motivation of the
present Thesis, I briefly list the various experimental techniques implying the use of
particles to sample superfluid helium. Then, I retrace the derivation of the equation of
motion for a particle in classical hydrodynamics [8, 150]. I focus in particular to the
inviscid and irrotational case, which is akin to a low temperature superfluid, and then
I discuss the viscous effects for completeness. Eventually, I show the theoretical and
numerical models which have been proposed so far to study the dynamics of particles
in superfluids. I stress how the presence of quantized vortices, as well as the coexistence
of an inviscid superfluid and a normal (viscous) component at finite temperature, are
the key differences with respect to a classical fluid. I discuss in particular the one-way
coupling, where the particles are just passive points [181] and the vortex filament
method with moving spherical boundary conditions [119, 203, 209]. In the last sections
I introduce the coupling between the GP wavefunction and the particles, setting the
ground for the presentation of the original results of this Thesis.

I start to show my novel results in chapter 3, by studying the long range interaction
between a single particle and a single straight vortex filament, reported in the included
publication P1 [75]. In particular, the focus is on the process of particle capture by the
vortex. The article contains a derivation of an effective theory, obtained integrating
explicitly the GP Hamiltonian coupled with particles. This reduced model explains
the observation of the full GP simulations and it is compatible with the dynamics
observed in other models describing the samemechanism [15, 24]. This is an important
benchmark that proofs the validity of the full GP model coupled with particles, besides
confirming that the effects of compressibility are negligible. Moreover, adding weak
deformations of the vortex line as degrees of freedomof the effective theory, it is possible
to predict a new mechanism for the generation of monochromatic vortex waves along
the filament. An interesting property of the effective theory is a scale invariance when
both the particle size and the initial vortex-particle distance are multiplied by the same
factor 𝜆, while the time is dilated by 𝜆2. This invariance is respected by the full GP
numerical simulations and suggests that the dynamics of particle trapping in real
superfluid experiments should be analogous.

Another case in which the long range particle-vortex interaction plays a crucial role
is the reconnection between quantum vortices, when particles are already trapped
by the filaments. A work addressing this issue is the publication P2 [77], reported at
the end of chapter 3. There, it is shown that reconnections may be triggered by the
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presence of particles lying along the filaments and the momentum exchange between
reconnecting vortices and particles is characterized. The scaling invariance of the
particle trapping [75] can be observed also here, although it is affected by the interaction
between the particle and the vortex at which it is attached. This result underlines the
similarity between the reconnection and the trapping process, related to the fact that
the dimensional parameter controlling the dynamics is just the (quantized) circulation.
Eventually, it is observed that the reconnection process is unchanged by the presence
of light particles decorating the filaments. This numerical observation supports the
superfluid helium experiments in which reconnections have been sampled by solidified
hydrogen particles less dense than the fluid [169].

Chapter 4 is dedicated to the interaction between trapped particles and the vortex
waves propagating along a straight vortex filament. The article in which this study
is reported is P3 [79]. Also in this case, the main motivation is related to superfluid
helium experiments in which Kelvin waves are claimed to have been detected [64].
The first result is that GP simulations can reproduce a precession motion of the particle
related to the Magnus force acting on a sphere with a circulating flow about it [19,
109]. Secondly, the motion of trapped particles reflects a rich dynamics, resulting in
many branches of the dispersion relation sampled by them. Such surprising result can
be explained by means of a mathematical analogy with the standard Kronig–Penney
model for the propagation of electrons in a one-dimensional crystal [127]. This effective
theory can predict that light particles affect less the vortex motion, compatibly to what
observed also for reconnections [77]. Moreover, it shows that the presence of particles
has a negligible effect for large Kelvin waves with slow frequencies. At the end of
the chapter I dive deeper into the analogy with the crystal, showing explicitly the
differences and the similarities with the original Kronig–Penney model.

In chapter 5 I consider the most complex vortex-particle configuration, namely a
tangle of vortex filament in decaying turbulence with a number of particles immersed
in the system. It is also the last chapter in which the zero temperature GP model is
employed. After two introductive sections on classical and quantum turbulence, I
report the article P4 [76], in which the motion of particles in the tangle analyzed.
In such setting all the phenomena studied in the previous chapters are present and
contribute to the evolution of the system. Also in this case, figuring out how the
turbulent superflow and the particles affect each other falls within the research aim
of validating the use of particles as probes, besides helping in understanding better
quantum turbulence itself. A reassuring result of [76] is that the presence of active
and finite-size particles does not modify the building up and decay of the turbulent
regime. It is shown that the majority of particles remains trapped inside vortices, with
just occasional episodes of detachment and recapture. This result supports the idea
that particles may be capable to sample the evolution of the tangle. Accordingly, the
predictions of classical Lagrangian turbulence [222, 248] are recovered at scales larger
than the inter-vortex distance. At small scales, the presence of a Magnus precession
frequency is detected (consistently with the previous article [79]) together with a
non-classical particle velocity power spectrum.

Eventually, chapter 6 is dedicated to a supplementary study that I carried out during
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this Thesis, in which finite temperature effects are taken into account. In particular,
the Galerkin truncation procedure is applied to the Gross–Pitaevskii model [52, 131],
together with the coupling with particles. The purpose is to investigate the dynamics
of impurities in a finite temperature quantum fluid, having in mind an atomic BEC
as physical setting. Indeed, immiscible and finite size impurities can be produced for
instance in the strong-repulsive regime of the multi-component BEC [107, 156, 191].
After describing briefly the truncation (or projection) technique to generate thermal
states in GP, I present two last articles. In the first one, P5 [78], the random motion of
a spherical impurity is characterized, and in particular the temperature dependence
of the friction coefficient is measured. This allows to show that for the typical sizes
of impurities implementable numerically, the GP fluid behaves more as a dilute gas
of thermal waves rather than as a continuous liquid. Then, in the publication P6 [80]
a (2D) system with many impurities immersed in it is analyzed. It is shown that a
phase in which all the impurities are clustered takes place because of the interplay
between the impurity-impurity repulsion and the fluid mediated attraction [212].
When such clustering occurs, an increment of the critical temperatures associated with
the condensation and the Berezinskii–Kosterlitz–Thouless phase transitions is detected.

At the end of the manuscript, I give some further concluding considerations to all
the work done during the Thesis, while in the Appendix A I provide details on the
numerical techniques exploited to perform the simulations.
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1 Superfluidity and Bose–Einstein condensation

This is an introductory chapter on quantum fluids, in which we give the funda-
mental notions at the basis of the results presented throughout this Thesis. We
introduce the concept of Bose–Einstein condensation and provide the basic hints
on how it is deeply linked to superfluidity. First, after shortly reviewing the main
phenomenology of superfluid helium, we discuss the phenomenon of Bose–Einstein
condensation in the simplest case of a non-interacting boson gas. Then, we derive
and characterize the Gross–Pitaevskii model for a weakly interacting bosonic system,
that is the framework in which the full work of this Thesis has been carried out. After
explaining why the Gross–Pitaevskii model can be considered as the prototype of a
superfluid at very low temperature, we discuss the key points of the known physics
of quantum vortices, which are one of the most spectacular features of superfluids,
as well as the fundamental building blocks of quantum turbulence. In particular,
we show how quantum vortices naturally arise in the Gross–Pitaevskii theory
and we present the vortex filament method, that is the main phenomenological
model to describe their dynamics. Finally, we introduce reconnections and Kelvin
wave propagation, two important features of vortex dynamics whose interplay with
particles is one of the topics analyzed afterwards.

Superfluidity and Bose–Einstein condensation are two conceptually different physical
notions, but they arewithout doubt intimately interconnected (although in a non trivial
and still not completely clear way) [176]. Historically, superfluidity refers to the feature
that defines a fluid with zero viscosity, namely which can flow without dissipation
of energy. This means that in principle an object moving through a superfluid is not
slowed down by any drag. However, a superfluid (or quantum fluid) is not just an
ideal fluid. Many spectacular phenomena accompany the occurence of superfluidity in
a system, from the propagation of second sound of heat waves to unexpected dynamics
of the flow, like the fountain effect [1]. One of the most striking features of superfluids
is the emergence of exotic structures known as quantum vortices, unidimensional
topological defects with a discrete circulation around them. The first system in which
superfluidity was observed is the phase II of liquid helium 4He, below the critical
temperature 𝑇𝜆 ≃ 2.17 𝐾. Such discovery was reported independently by Kapitza
[106] and Allen [1] in 1938. Nowadays, superfluidity has been observed in a wide
variety of systems other than liquid helium, like ultracold atomic gases [174] or light in
non-linear optical crystals [38], and even hypothized to appear in the core of neutron
stars [144].

During the same year in which superfluid helium was experimentally realized, the
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1 Superfluidity and Bose–Einstein condensation

first attempts to give a theoretical explanation to the superfluid phenomenology [145,
221] used an idea formulated by Bose and Einstein one decade earlier, related to the
fundamental proprieties of quantum mechanical statistics at very low temperature [32,
58]. It was indeed the notion of Bose–Einstein condensation, i.e. the existence of a state
of bosonic matter in which, below a certain critical temperature, a macroscopic fraction
of particles occupy the same fundamental quantum state.

Bosons and fermions are two cathegories inwhich quantumparticles can be classified.
Fermions have semi-integer spin and are constrained to occupy different states due to
the Pauli exclusion principle, while bosons are particles with integer spin that are not
prevented from coexisting in the same quantum state. Technically, this difference arises
from the symmetrization of the bosonic wavefunctions with respect to the exchange of
particles and the antisymmetrization of the fermionic ones. Being a consequence of
the statistics built on such constraint, Bose–Einstein condensation is a purely quantum
mechanical phenomenon, that nevertheless appears on a macroscopic scale.

It should be noticed, however, that BECs can be observed not only in pure bosonic
systems, like atomic gases or liquid helium 4He, but also in the fermionic ones. In the
latter case, the fermionic condensation is the result of a more complicated rearrange-
ment of fermions into bosonic states. Typical examples are the emergence of bounded
states like Cooper pairs in superconductors [12] or in liquid 3He [167].

Einstein’s theory of BEC was formulated for an ideal gas, while superfluid helium is
a strongly interacting liquid, which makes it a much more complex system. Actually,
in the phenomenological theory of superfluidity created by Landau in 1941 [139, 140],
which is known as two-fluid hydrodynamics and is still largely used nowadays, Bose–
Einstein condensation does not play any direct role. Howsoever, below the temperature
at which thermal fluctuations become critically weak and the superfluid phenomen-
ology takes place, the emergence of a Bose-Einstein condensation is an unavoidable
occurrence. In particular, superfluid systems are characterized by the emergence of a
macroscopic order parameter, resulting in the manifestation of quantum effects on a
macroscopic scale. This connection between BECs and superfluidity can be grasped in
a somewhat simple way in the framework of the Gross–Pitaevskii model for weakly
interacting bosonic systems.

In this chapter, after shortly reviewing themain phenomenology of superfluid helium
(section 1.1) and the mechanism of Bose–Einstein condensation in the non-interacting
case (section 1.2), we show the derivation of the GPmodel and discuss its fundamental
properties (section 1.3). We present it as a general prototype of a low temperature
superfluid inwhich all the hydrodynamical features coming from quantum-mechanical
constraints are naturally included, justifying its use as the fundamental framework in
which the original results of this Thesis have been achieved. Finally, in section 1.4 we
discuss more in detail the dynamics of quantum vortices.

10



1.1 Superfluid helium 2.2 Classical and quantum fluids 25 

P(MPa) Helium  P(MPa) Neon 

Fig. 2.2 The phase diagram of 4He and neon compared. Left: helium remains liquid even down 
to absolute zero in temperature for pressures below about 2.5 MPa. There are two different liquid 
'phases: the normal liquid, He I, and the superfluid phase, He II. The liquid—gas critical point is 
shown as a solid circle. For contrast, the phase diagram of neon (right side) has a phase diagram 
which is typical of most other substances. The liquid and gas phases exist at high temperature and 
at low temperatures only the solid phase occurs. Neon has a triple point, (T3, P3), while helium 
does not. 

of XdB above shows that quantum effects are important in both of the liquid 
phases. 

The phase diagram for the other isotope of helium, 3He, is similar to the one 
for 4 He in Fig. 2.2. The main difference being that the superfluid phase does 
not occur until about 2 mK. As we shall see below, this difference is because 
3 He is a fermion while 4He is a boson. 

But why is it that liquid helium does not crystallize, even at absolute zero? 
The point is that quantum fluids have zero point motion and hence they have 
nonzero kinetic energy, however low the temperature. In a solid phase each atom 
is localized at some particular site in the crystal. It must have some uncertainty in 
position, Ax, which is less than the crystal lattice spacing, a. By the uncertainty 
principle, it has some uncertainty in momentum, Ap, and hence some finite 
kinetic energy. To make a rough estimate we can assume that each atom in 
the crystal vibrates around its equilibrium position as an independent quantum 
harmonic oscillator (this is the Einstein oscillator phonon model). The zero 
point energy is 

E0 = ;ha)°,  (2.12) 
per atom, where co0 is the vibrational frequency of the atom displaced from its 
equilibrium crystal lattice site. Using the Lennard—Jones pair potential model 
and assuming an fcc crystal lattice we can make the estimate 

w0 = (2.13) 

where 
1 d2 V (r)  36E0  k  (2.14) 
2 dr2  ro2  

is the spring constant of the interatomic pair potential (Fig. 2.1) at the equi-
librium distance, ro. Using the Lennard—Jones parameters for helium, given 
above, leads to a zero point energy of about E0 7 meV. This would be equiv-
alent to a thermal motion corresponding to about 70 K, and is far too great to 
allow the liquid phase to condense into a solid. The solid phase only occurs 
when external pressure is applied, as can be seen in Fig. 2.2. On the other hand, 

T 3  

2  3  4 T(K) 

Fig. 2.3 Specific heat of 4He. At the critical 
temperature K. there is a singularity shaped 
like the Greek symbol A. This  A transition 
belongs to the three-dimensional XY model 
universality class. 

4Microgravity experiments for measuring 
critical exponents, such as the parameter a, 
are proposed for flights of the space shuttle. 
These would allow high precision measure-
ments and ensure that any effects of gravity 
are negligible. The problem occurs because 
there is a tiny change in pressure due to gravity 
between the top and bottom of a liquid helium 
sample. In turn this means that Te  is slightly 
different between the top and bottom, which 
leads to a tiny smearing of the singularity in 
specific heat. 

Fig. 2.4 Ordering in the XY model. Each 
point in space has a unit vector  il.  Above K. 
these are random on long length scales, while 
below Tc. they develop long ranged order with 
a common (arbitrary) direction. The direction, 
19 of the vector ri = (cos 0, sin 8) corresponds 
to the phase of the macroscopic wave function 

= 

26 Sup eifluid helium-4 

making the same estimate for the parameters for neon gives a smaller zero point 
energy of about E0 4 meV, which is comparable to the thermal motion at the 
melting point of 24 K. 

2.3 The macroscopic wave function 
As shown in Fig. 2.2, liquid 4He has two distinct liquid phases, He I and II. 
He I is a normal liquid phase, characterized by fairly standard liquid state 
properties. But He II is a superfluid, characterized by fluid flow with zero 
viscosity, infinite thermal conductivity, and other unusual properties. 

At the boundary between the He  land II phases one observes the characteristic 
singularity in specific heat, as shown in Fig. 2.3. The shape resembles the 
Greek letter lambda, X, and because of this the transition is often referred to 
as the lambda point. Clearly, from Fig. 2.3, there are a number of differences 
compared with the specific heat of a BEC as shown in Fig. 1.7. First, at low 
temperatures the specific heat is of the form, 

Cv — T3  (2.15) 
in He II, and not T3/2  as is it in the BEC case of Fig. 1.7. 

More dramatically, the nature of the specific heat at 7', is quite different in 
4He compared with BEC. In the BEC there is a simple change of slope, or cusp, 
in Cv at the critical point, as shown in Fig. 1.7. But in 4He there is a much 
sharper feature. The specific heat near 7', is very close to being logarithmic, 
Cv — ln  I T  —T I, but is actually a very weak power law behavior. It has a 
characteristic form 

IC(T) +A +  — Tcl —a  (T>  Tc ) 
C v = 

 

 (2.16) C(T) +A — IT — T cra  (T < Te), 
where C(T) is a smooth (non-singular) function of T near T.  The parameter a is 
the critical exponent, which is measured to have a value close to —0.009.4  In fact 
this power law behavior, and even the actual measured values of the constants 
a, A+ , and A_, are in essentially perfect agreement with theoretical predictions 
for a universality class of thermodynamic phase transitions, called the three-
dimensional XY-model class. The theory of such phase transitions is based on 
the hypothesis of scaling, and the critical exponents are calculated using the 
methods of renormalization group analysis. This topic goes well beyond the 
scope of this book (see, for example, the books on thermodynamics listed at 
the end of Chapter 1). But the main point is that many different physical systems 
end up having identical sets of critical exponents, such as a in Eq. 2.16. The so 
called XY model is characterized by systems that have a form of order which 
can be described by a two-dimensional unit vector, 

n(r) = (n, n) = (cos 0, sin 0),  (2.17) 
for an angle 0 at every point in space, r. The helium X-transition separates two 
thermodynamic phases, the normal liquid (He I) in which this XY vector n(r) 
is spatially random, and one (He II) in which there is an ordering of n(r), like 
the ordering in a magnet. This idea is illustrated in Fig. 2.4. 

What is the physical interpretation of this unit vector, n(r), or the angle 0? 
We can motivate the existence of a phase angle 0 by postulating the existence of 

Figure 1.1. (left) Phase diagram pressure vs temperature of helium. (right) Specific heat of liquid
helium as a function of temperature. Figures taken from [225], to which we refer for further
details.

1.1 Superfluid helium

The discovery of the superfluid properties of liquid helium is an unexpected result of
the research trend developed between the end of the XIX century and beginning of
the XX century, which had the broad goal of understanding the behaviour of nature at
very low temperature [153]. In a race to reach the absolute zero, many elements which
are gaseous at room temperature were systematically liquefied. Helium was the last
that resisted, until Onnes was able to generate a sample of liquid 4He in 1908 reaching
the temperature of 4 𝐾. Nowadays, helium is still the only known substance which is
liquid at the temperature of a few Kelvin and this makes it the most optimal coolant
currently available. For instance, it is used to cool down magnets, making possible the
engeneering applications of superconductivity, or to refrigerate infrared detectors for
astrophysical purposes. Always in Onnes experiments, a critical temperature 𝑇c was
then identified at about 2 𝐾, corresponding to a peak in the specific heat of liquid helium,
and for this reason named 𝑇c = 𝑇𝜆, or “lambda point”. It became clear that below
such temperature, which is actually a critical line in the pressure-temperature phase
diagram, a trasformation in the liquid takes place. The new phase was called phase II
of liquid helium 4He, to distinguish it from the standard liquid helium (phase I). One
of the peculiarities of liquid helium II is the ability to flow without viscous dissipation
and it was discovered in 1938 by Kapitza [106] and Allen [1], who coined the name
superfluidity to describe that. The phase diagram of helium is displayed in Fig.1.1 left,
while the lambda point in the specific heat is shown in Fig.1.1 right. The power law
behavior of the specific heat, including the value of the power (∼ 0.012 [143]) and
the pre-factors for 𝑇 → 𝑇+

𝜆 and 𝑇 → 𝑇−
𝜆 are in good agreement with the theoretical

predictions for the three-dimensional XY model universality class (described by the 2-
components “𝜆 − 𝜙4” theory), obtained with the renormalization group analysis [100].
This indication suggests indeed the existence of an order parameter that acquires a
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1 Superfluidity and Bose–Einstein condensation

non-zero value at the transition to a superfluid state. Such parameter could be thought
locally as the macroscopic wavefunction of a Bose–Einstein condensate (see the next
sections of this chapter), although it must be stressed that such analogy cannot be
exact, given the much stronger interparticle interaction in liquid helium with respect
to a dilute bosonic gas.

Subsequent experiments investigated the response of the phase II of liquid helium
when subjected to external rotation, which inspired the theories about the quantization
of circulation and the existence of quantum vortices by Onsager [166] and Feynman
[63], confirmed by the first observation of circulation quanta by Vinen in 1961 [238].
The dynamics of these quantum vortices, largely described throughout this manuscript,
is at the basis of the complex phenomenon of quantum turbulence [170, 236]. On the
one hand, since quantum vortices break the superfluidity, quantum turbulence is
a limitation for the capability of liquid helium to achieve ideal heat transfer in the
engeneering applications. On the other hand it is an intriguing complex framework
where the universal properties of turbulence can be tested and new non-linear physics
can emerge. These are the general motivations for which nowadays superfluid helium
is still studied.

Some of the most important facilities in which quantum turbulence in superfluid
helium is studied today are the Guo Cryogenics Lab in Florida [94], the Cryogenic
Division of theUniversity of Tsukuba in Japan [47] and theCzechCryogenic Turbulence
Facility in Czech Republic [48]. Moreover we mention the Low Temperature Physics
department of Lancaster University [146] in UK, where superfluid 3He is produced
and studied, and the CEA Grenoble Helium Infrastructures in France [86], where the
large Von Karman experiment SHREK is settled [195].

1.1.1 Landau two-fluid model

The first phenomenological theory of superfluid helium at temperatures below the
critical point (but still finite), is the so-called two-fluid model and it is due to Landau
[139, 140]. In this model, superfluid helium is thought as composed by an immiscible
mixture of two components, a normal (viscous) fluid and an inviscid superfluid that
does not carry any heat. Each of the two components of the fluid is characterized by its
own velocity (𝒗n and 𝒗s) and density (𝜌s and 𝜌n), so that the total density of the fluid
is given by 𝜌 = 𝜌s + 𝜌n. The densities of the two components depend non-linearly on
the temperature, such that close to the absolute zero only the superfluid survives. The
temperature dependence of the superfluid and normal components of liquid 4He II are
displayed in Fig.1.2 left. The existence of two different contribution to the fluid density
was demonstated experimentally by Andronikashvili in 1946 [66]. He measured the
precession frequency of a stack of closely spaced disks immersed inside superfluid
helium, which classically is expected to depend on the fluid density via an effective
inertia induced by viscous drag. However, he was able to show that only a fraction of
the liquid helium did contribute to the inertia, and the other did not. Note that close to
the transition temperature, the superfluid component vanishes as 𝑛s ∼ (𝑇c − 𝑇)0.67,
which is again compatible with the universality class of the three-dimensional XY
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1.1 Superfluid helium

Fig. 2.6 Temperature dependence of the 
superfluid and normal components of liquid 
He II, as measured, for example, from in the 
torsional oscillation disk stack experiment. 

2.4 Supeifluid properties of He II 29 

all the fluid between the disks should be dragged along and contribute to the 
rotational moment of inertia. By immersing such a stack of disks in He II, 
Andronikashvilli was able to show that a fraction of the liquid helium did 
contribute to the inertia, but a fraction did not. 

This experiment provided motivation for the two-fluid model of liquid 
helium. If the total particle density of the fluid is n, then we can divide this 
into two components 

n =  nn.  (2.26) 
The superfluid component, n5 , flows with zero viscosity. This component does 
not contribute to the interia of the rotating disks, since it is not dragged along 
by the disk motion. On the other hand, the normal component, tin , acts like a 
conventional viscous fluid. It contributes to the moment of inertia of the disk 
stack. The superfluid density is defined as the mass density of the superfluid 
part of the fluid 

Ps  = mn,.  (2.27) 
The temperature dependence of the two-fluid components, n, and nn  is 

sketched in Fig. 2.6. At very low temperatures, near T =  0, it is found empiri-
cally that almost all of the fluid is in the condensate, so n, n and nn  — 0. In 
this temperature region experiments show that, 

n5 (T) n — AT 4  ,  (2.28) 

where A is a constant. Therefore at absolute zero temperature all of the particles 
will take part in the superflow, and this number gradually decreases as the 
temperature is increased. 

On the other hand, close to the critical temperature T, nearly all of the fluid 
is normal, so n, 0 and ni, n. It is found experimentally that near T, the 
superfluid component, n,, vanishes like a power law 

n,  
0  T > Te . 1 /3(T, — T) v  T < T,, 

The exponent 1) is another critical exponent, like the a in specific heat, and has 
a value of about 0.67. Again this measured value is in perfect agreement with 
theoretical predictions based on the three-dimensional XY model. 

The superfluid experiments show that the two fluid components can move 
relative to each other without any friction. In the capillary flow experiment, the 
normal component feels friction from the walls and remains at rest, while the 
superfluid component flows freely down the capillary. In the rotating stack of 
disks experiment, the normal component is dragged along with the disks, while 
the superfluid component remains at rest. It is therefore possible to define 
separate velocities for the two fluid components, leading to a novel kind of 
hydrodynamics. In this two-fluid hydrodynamics there are two types of current 
flow, j, and jn, correspond to the superfluid and normal fluid particle current 
densities. The total current density j obeys, 

= + 
j, = fors , 

norn ,  (2.30) 

and y, and yn  are the velocities of the two fluid components. 

(2.29) 

0.5  1.5  2  2.5 pm,(A- 1 ) 
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Fig. 2.16 Energy of a quasiparticle in super-
fluid helium. Landau's argument shows that 
there is no dissipation due to quasiparticle 
excitations for superfluids moving with veloc-
ities less than, minimum slope, cmin . In prac-
tice the critical velocity of the superfluid flow 
is considerably less than this limit, since other 
excitations, notably vortices, can be generated 
and these lead to dissipation and viscosity. 

True superfluid behavior only occurs if it is impossible to satisfy Eq. 2.84, 
and therefore no scattering can occur. From this argument Landau postulated 
that the energy spectrum of particle excitations, E (p), must be very different in 
a superfluid compared with normal fluid. He proposed that in He II the single 
particle excitation energy, E (p), must have the shape shown in Fig. 2.16. This 
unusual shape has since been confirmed by many experiments, most directly by 
neutron scattering. In fact the points on the graph were obtained in experimental 
measurements, using neutron scattering. 

In Fig. 2.16 there are three main regions of the graph. At small momenta, p, 
the energy is approximately linear in 'pi , 

E (p) = clp l.  (2.85) 

Such linear behavior is typical of phonons in solids, and so this part of the 
excitation spectrum is called the phonon-part of the spectrum. At very large 
momentum the spectrum approaches a conventional normal liquid 

p2 
(P) = 2m*  

(2.86) 

This is because very high momentum particles will become ballistic and move 
more or less independently of the other fluid particles. The fact that the particles 
interact strongly leads to the effective mass m* in place of the bare mass of a 
4He atom. But probably the most surprising part of the spectrum in Fig. 2.16 is 
the minimum. This part is called the roton part of the spectrum, 

2p, 

The physical interpretations of the very different motions in the phonon 
and roton regions are summarized in Fig. 2.17. At low momentum a single 
helium atom couples strongly to the many-particle condensate. As it moves, 
the condensate moves rigidly with it, leading to a motion almost like a solid-
body, and hence a phonon-like energy spectrum. On the other hand, at very 
high momentum the atom can move relatively independently of the rest of the 
fluid particles. In contrast, at the intermediate momenta of the roton minimum 
the moving particle couples strongly to its neighbors. As the atom moves the 
neighbors must move out of the way. The neighbors must move to the side and 
end up behind the moving particle, so they actually move in a circular backflow. 
The net effect is a forward motion of one particle, accompanied by a ring of 
particles rotating backwards. Feynman has likened the motion to the motion of 

E(p) = A ± (P — P0)2  (2.87) 

Figure 1.2. (left) Temperature dependence of the normal fluid fraction 𝑛n = 𝜌n/𝑚He and the
superfluid fraction 𝑛s = 𝜌s/𝑚He in liquid helium II (𝑚He is the mass of a 4He atom). (right)
Excitation spectrum in liquid helium II. Figures taken from [225], to which we refer for further
details.

model.
The equations of motion of the two-fluid model in the Landau formulation are the

following:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌s𝒗s + 𝜌n𝒗n) = 0 (1.1)

𝜕 (𝑠𝜌)
𝜕𝑡 + ∇ ⋅ (𝜌𝑠𝒗n) = 0 (1.2)

𝜕𝒗n
𝜕𝑡 + (𝒗n ⋅ ∇) 𝒗n = −1

𝜌∇𝑝 − 𝜌s
𝜌n

𝑠∇𝑇 + 𝜂
𝜌n

∇2𝒗n (1.3)

𝜕𝒗s
𝜕𝑡 + (𝒗s ⋅ ∇) 𝒗s = −1

𝜌∇𝑝 + 𝑠∇𝑇, (1.4)

where 𝑠 is the entropy, 𝑝 is the pressure and 𝜂 is the normal fluid dynamic viscosity.
Equations (1.1) and (1.2) are respectively the conservation of mass and entropy, from
which it is explicit that the entropy is transported by the normal fluid. Equations (1.3)
and (1.4) are respectively the transport equation of the normal component and of the
superfluid component. In absence of a temperature gradient these last are nothing but
a Navier–Stokes equation and an Euler (inviscid) equation. Note that the two-fluid
model is in principle valid for small velocities and does not account for the presence of
quantum vortices [16].

A peculiar consequence which can be easily inferred from the two-fluid model is
the existence of a non-dispersive wave equation for temperature perturbationss. The
propagation of temperature waves is known as second sound and it is still at the basis
of a technique to measure the flow properties in superfluid helium experiments [16,
56]. Another kind of flow, specific of superfluid systems and predicted by the two-fluid
model, is the thermal counterflow. Consider a superfluid container with a heat source
placed at one closed end. The normal component of the fluid carries the heat away
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1 Superfluidity and Bose–Einstein condensation

from the source with an average speed 𝒗n = 𝑞/𝜌𝑠𝑇, where 𝑞 is the heat flux and 𝑇
the temperature of the heater. A counterflow arises because , in order to conserve the
mass, the superfluid component 𝒗s has to flow in the opposite verse with respect to the
normal one, namely towards the source [140]. Turbulence in counterflows can arise
because of a mutual friction force between the two fluids (not included in the original
version of the two-fluid model), resulting in a complex tangle of quantized vortices,
sustained by the counterflow itself [234].

In the Landau picture, superfluidity is the consequence of a gap in the spectrumof the
collective excitations of the fluid, with no actual notion of Bose–Einstein condensation.
In particular, the normal fluid is constituted by an ensamble of thermal excitations (or
quasiparticles) with energy 𝜖𝒑 and momentum 𝒑. If the normal fluid fraction is so low
that viscous effects are negligible, an object moving through the fluid would experience
no drag, unless its velocity is larger than a critical value. The argument that predicts
the existence of such critical velocity, known as Landau criterion, is the following.
Consider a superfluid flowing in a pipe with velocity 𝒗s. The superfluidity is broken
if an excitation is created as a consequence of the interaction between the fluid and
the walls of the pipe: such quasiparticle would be responsible for dissipation, carrying
away energy from the fluid. Since 𝜖𝒑 > 0 and 𝒑 are the energy and the momentum
of the excitation in the superfluid reference frame, one can simply apply a Galileian
transformation to compute the energy of the quasiparticle in the pipe reference frame:

𝜖′
𝒑 = 𝜖𝒑 + 𝒑 ⋅ 𝒗s. (1.5)

The creation of an excitation happens if it is an energetically favourable process, namely
if the quantity (1.5) is negative. This implies a kinematic constraint to the superfluid
velocity. In particular, above the critical value

𝑣c ∼ min𝒑 (𝜖𝒑/|𝒑|), (1.6)

the generation of an excitation is possible and the superfluidity is broken, but if the fluid
moves with a velocity smaller than (1.6), it does not dissipate energy and in principle
can flow forever. From this simple argument it is evident how the functional form of
the fluid excitations dispersion relation 𝜖𝒑 plays a crucial role for the emergence of a
superfluid behaviour. In particular, if one considers a system composed of free particles
(with 𝜖𝒑 ∝ 𝑝2) the critical velocity is zero, meaning that a superfluid state is impossible
(although Bose–Einstein condensation can happen, as described in section 1.2). In this
sense, the presence of some non-linearity (i.e. interaction among the atoms) is necessary
to develop a superfluid state [176]. In the case of liquid helium II the excitations are
phonons at lowmomentum (with a linear dispersion relation) and free particles at high
momentum. Between the two behaviours, the excitations spectrum shows a minimum
and the quasiparticles in this range are known as rotons. The dispersion relation of
helium II excitations, which can be measured using neutron scattering [3], is shown in
Fig.1.2 right. One of the main differences between a weakly interacting Bose–Einstein
condensate and liquid helium is indeed that in the former case the roton minimum is
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1.2 Bose–Einstein condensation in an ideal boson gas

absent, and thus the Landau critical velocity is just the speed of sound1. Finally, we
stress that although the mechanism enlighted by Landau is ultimately correct, the
actual critical velocity for breaking the superfluidity is different from the one associated
to this roton minimum. Indeed, the superfluidity breaking is often accompanied by the
emission of quantized vortices, which are collective topological structures not encoded
in the helium quasiparticle spectrum. Instead, they are naturally reproduced by a
standard mean field approach for modeling a dilute Bose–Einstein condensate. One of
the goals of this chapter is indeed to show that such mean field approach is actually
sufficient to catch the fundamental features of a superfluid like liquid helium II and in
particular the hydrodynamical behaviour of quantum vortices.

1.2 Bose–Einstein condensation in an ideal boson gas

Starting from this section we focus on the discussion of the phenomenon of Bose–
Einstein condensation and the properties of the Gross–Pitaevskii model. In order to
understand themechanism of Bose–Einstein condensationwe can consider the simplest
case of a homogeneous three-dimensional bosonic gas of particle density 𝑛. There is
a simple argument which is rather useful to visualize the intuition behind BEC. We
assume the statistical mechanical definiton of thermal energy as average kinetic energy

1
2𝑚 ⟨𝑣2⟩ = 3

2kB𝑇, (1.7)

where 𝑚 is the boson mass, 𝑣 its velocity, 𝑇 is the temperature and kB is the Boltzmann
constant. Combining Eq. (1.7) with the usual definition of the de–Broglie wavelength
𝜆dB = ℎ/𝑝 = ℎ/𝑚𝑣 (i.e. the wavelenght associated with a quantum particle of mo-
mentum 𝑝), we get

𝜆dB(𝑇) = ℎ
√3𝑚kB𝑇

, (1.8)

which represents the average de Broglie wavelength of the gas at a temperature 𝑇 and
it is related to the distance at which the system shows quantum correlation. When
the temperature is low enough, then 𝜆dB(𝑇) becomes of the same order of the average
interatomic distance ℓ = 𝑛−1/3, and the quantum collective behaviour of the condensed
system becomes evident on a large scale. Indeed, a rough estimate of the critical
temperature of the BEC transition can be obtained imposing 𝜆dB(𝑇c) = ℓ, which
implies

𝑇c = 4𝜋ℏ2

3𝑚kB
𝑛

2
3 . (1.9)

The estimation (1.9) predicts the same dependence on all the physical quantities 𝑛, 𝑚,
kB, ℏ of the full statistical mechanics treatment (1.28) discussed in detail in the next
section, although the numerical prefactor is not accurate. This simple argument is

1Note however that the roton minimum can be reproduced in some condensate models with a non-local
interaction [23].
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1 Superfluidity and Bose–Einstein condensation

also a qualitative justification for describing the condensate by using a macroscopic
wavefunction containing all the collective informations of the system. In section 1.3 we
will formalize this concept introducing the Gross–Pitaevskii model, which is the main
theoretical framework in which the results of this Thesis have been achieved.

1.2.1 Statistichal mechanics of a 3D gas of free bosons

Following a more precise statistical mechanical approach, we consider the gas made
of 𝑁 free bosons with integer spin 𝑠, without external confining potential or mutual
interaction [176]. It is an idealized picture, not really experimentally achievable, but
it is useful to point out the main concepts. We consider the gas in a cubic box of side
length 𝐿 and with periodic boundary conditions. The single-particle energy is the
energy of a free particle

𝐸𝑘 =
𝑝2

𝑘
2𝑚 = ℏ2𝑘2

2𝑚 , (1.10)

where 𝒑𝑘 = ℏ𝒌 is the eigenvalue of the momentum in Fourier space and 𝑝𝑘 = ℏ𝑘 = ℏ|𝒌|
its modulus. In the grand-canonical ensemble of statistical mechanics the system is
described by the grand-canonical partition function

𝒬(𝑇, 𝑧) =
∞
∑
𝑁=0

𝑧𝑁𝒵𝑁(𝑇) with 𝑧 = 𝑒
𝜇

kB𝑇 , (1.11)

where we have defined the fugacity 𝑧 as the exponential of the chemical potential 𝜇,
namely the energy needed to add a boson to the system. The fugacity weights the
canonical partition functions 𝒵𝑁 for each fixed number of particles 𝑁:

𝒵𝑁(𝑇) = ⎡⎢
⎣

∑
{𝑛𝑘}

𝑒
− ∑𝑘

𝑛𝑘𝐸𝑘
kB𝑇 ⎤⎥

⎦

2𝑠+1

, (1.12)

where 2𝑠 + 1 is the degeneration related to the spin 𝑠, and the sum ∑{𝑛𝑘} runs over all
the possible sets of the occupation numbers 𝑛𝑘 associated to each energy level 𝐸𝑘 (i.e.
all configurations), with the constraint of fixed number of particles

∑
𝑘

𝑛𝑘 = 𝑁. (1.13)

The Boltzmann weight depends on the total energy of the system ∑𝑘 𝑛𝑘𝐸𝑘, for each
configuration. Sincewe are summing also over 𝑁 in (1.11), we can neglect the constraint
(1.13) and just sum, for each 𝑘, over a mute index 𝑛 running from 0 to ∞:

𝒬(𝑇, 𝑧) =
⎧{
⎨{⎩

∏
𝑘

∞
∑
𝑛=0

⎛⎜
⎝

𝑧𝑒
−

𝐸𝑘
kB𝑇 ⎞⎟

⎠

𝑛⎫}
⎬}⎭

2𝑠+1

. (1.14)
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1.2 Bose–Einstein condensation in an ideal boson gas

It is easier to work with the logarithm of 𝒬, so that the series inside (1.14) is just a
geometrical series:

log𝒬(𝑇, 𝑧) = (2𝑠 + 1) ∑
𝑘
log ⎡⎢⎢

⎣

1

1 − 𝑧𝑒
−

𝐸𝑘
kB𝑇

⎤⎥⎥
⎦

. (1.15)

The last expression is all we need to derive the thermodynamical properties of the
system. Inside the periodic box, momenta are discretized as

𝒌 = 2𝜋
𝐿 𝒋 with 𝒋 = (𝑗1, 𝑗2, 𝑗3) ∈ ℤ3, (1.16)

so that in 3D the sum over momentum configurations is a sum over integer numbers

∑
𝑘

≡ ∑
𝒋

=
∞
∑

𝑗1=−∞

∞
∑

𝑗2=−∞

∞
∑

𝑗3=−∞

(1.17)

and the grand-canonical potential reads

log𝒬(𝑇, 𝑧) = −(2𝑠 + 1) ∑
𝒋
log ⎡⎢

⎣
1 − 𝑧𝑒

− 1
2𝑚kB𝑇 ∑3

𝑖=1( 2𝜋ℏ𝑗𝑖
𝐿 )

2

⎤⎥
⎦

. (1.18)

The average number of bosons 𝑁 can be easily computed in this ensemble, just deriving
the expression (1.18) with respect to log 𝑧

𝑁(𝑇, 𝑧) =
𝜕 log𝒬
𝜕 log 𝑧 = ∑

𝒋
𝑛𝐵(𝒌; 𝑇, 𝑧), (1.19)

where 𝑛𝐵(𝒌; 𝑇, 𝑧) is the boson density in momentum space

𝑛𝐵(𝒌; 𝑇, 𝑧) = (2𝑠 + 1)

𝑧−1𝑒
𝐸𝑘
kB𝑇 − 1

= (2𝑠 + 1)

𝑒
𝐸𝑘−𝜇
kB𝑇 − 1

. (1.20)

We express Eq. (1.19) separating the total number of bosons in the fundamental
quantum state (associated to the lowest energy level 𝐸0 = 0) from the bosons in
the other states, constituting the thermal component 𝑁𝑇 of the gas:

𝑁 = 𝑁0 + 𝑁𝑇. (1.21)

Indeed, if we now perform the thermodynamic limit 𝐿 → ∞, we can convert sums
inside (1.19) into integrals and compute them, but only if the boson density (1.20) is
a continuous function. In a moment we will see that this is not the case, because the
occupation number of the ground state 𝑁0 = 𝑛𝐵(𝒌 = 0; 𝑇, 𝑧) diverges below a critical
temperature 𝑇c. Such behaviour is precisely the BEC transition we are looking for. We
can see this fact explicitely (fixing the spin 𝑠 = 0 for the sake of simplicity): in the
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1 Superfluidity and Bose–Einstein condensation

thermodynamic limit, the occupation number of the zero-mode is still

lim
𝐿→∞

𝑁0(𝑇, 𝑧) = 1

𝑧−1𝑒
𝐸0
kB𝑇 − 1

= 1

𝑒
𝐸0−𝜇
kB𝑇 − 1

, (1.22)

while 𝑁𝑇 becomes

lim
𝐿→∞

𝑁𝑇(𝑇, 𝑧) = ( 𝐿
2𝜋)

3
∫ 𝑛𝐵(𝒌; 𝑇, 𝑧)d𝒌 = ( 𝐿

𝜆𝑇
)

3
Li 3

2
(𝑧), (1.23)

where we have introduced the thermal wavelength

𝜆𝑇 = √ 2𝜋ℏ2

𝑚kB𝑇 = √ 6
𝜋𝜆dB(𝑇), (1.24)

andwhereLi𝑞(𝑧) is the polylogarithm function,monothonic and convergent forRe[𝑧] <
1, defined in general by the integral representation

Li𝑞(𝑧) = 1
𝛤(𝑞) ∫ 𝑥𝑞−1

𝑧−1𝑒𝑥 − 1
d𝑥. (1.25)

For large temperature, 𝐸0 and all the other levels are populated by an infinitesimal
number of particles (with respect to the total number of particles), so that we have
𝑁 ∼ 𝑁𝑇. Imposing an infinitesimal boson density for all 𝒌 we obtain

lim
𝑇→∞

𝑛𝐵(𝒌; 𝑇, 𝑧) = 1
𝑧−1 − 1

≪ 1 iff 𝑧 → 0. (1.26)

In this limit, the polylogarithm is asymptotic to a linear function lim𝑧→0 Li𝑞(𝑧) = 𝑧, so
we can easily invert the expression for the thermal component (1.23) and derive the
dipendence of 𝜇 on the temperature

𝜇 = −3
2kB𝑇 log ⎡⎢

⎣
𝑚kB𝑇

2𝜋ℏ2𝑛
2
3

⎤⎥
⎦
, (1.27)

which turns out to be monothonic. Decreasing the temperature, there is a critical
point 𝑇c in which the chemical potential vanishes. Note that 𝜇 cannot become positive,
otherwise we would have unphysical levels 𝐸𝑘 < 𝜇 with a negative occupation number.
Therefore, the critical point corresponds to the saturation 𝜇 → 𝐸0 = 0, namely 𝑧 →
1. Looking at the dependence of 𝑁0 and 𝑁𝑇 with respect to the chemical potential
𝜇 = kB𝑇 log 𝑧 (see Fig.1.3) we can see that when the saturation happens, the thermal
component remains finite, because lim𝑧→1 Li 3

2
(𝑧) = 𝜁(3/2) ∼ 2.612, where 𝜁(⋅) is

the Riemann Zeta function. In particular, it gets a critical value 𝑁𝑇 = 𝑁c(𝑇,𝜇 = 𝐸0).
Conversely, the occupation number of the ground state 𝑁0 diverges. It means that
the number of particles in the state with 𝒌 = 0 is macroscopic, which defines the
condensation phenomenon for an ideal Bose gas. Note that the function Li 3

2
(𝑧) is
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Figure 1.3. Bose–Einstein condensation for an ideal boson gas. (left) Occupation number of
the thermally excited states (solid blue line) and occupation number of the ground state 𝑁0
(dashed orange line) as a function of the chemical potential. The intersection of the dotted
gray lines indicates the critical point, with the saturated chemical potential 𝜇 = 𝐸0 and the
corresponding finite critical occupation number 𝑁c. (right) Condensate fraction as a function
of the temperature. We refer to [176] for an exhaustive treatment of the problem.

nothing but the phase-space density 𝒟 = (𝑁𝑇/𝐿3) 𝜆3
𝑇, which represents the number of

particles that occupy a cube of side equal to the thermalwavelength 𝜆𝑇. The signature of
Bose–Einstein condensation is indeed its saturation (at the critical point) to the constant
value ∼ 2.612. The critical temperature can be obtained imposing 𝑁 = 𝑁c(𝑇,𝜇 = 𝐸0)
with the saturated chemical potential:

𝑇c = 2𝜋ℏ2

k𝐵𝑚
⎛⎜⎜
⎝

𝑛
𝜁 (3

2)
⎞⎟⎟
⎠

2
3

, (1.28)

where 𝑛 = 𝑁/𝐿3, the gas density, an intensive parameter which remains finite in the
thermodynamic limit. Decreasing the temperature below 𝑇c the fugacity is always
1, but the condition 𝑁 = 𝑁𝑇 is not valid anymore, because an increasing number of
particles starts to fill the ground state, populating the condensate. Inverting the Eq.
(1.21) below 𝑇c we obtain a simple temperature dependence for the condensed fraction

𝑁0
𝑁 = 1 − ( 𝑇

𝑇c
)

3
2
, (1.29)

from which we see that when 𝑇 = 0 all the particles are in a condensate state. The
formula (1.28) can be inverted and tell what is critical density 𝑛c for which BEC occurs
at any fixed temperature2.

2For instance, in neutron stars Bose–Einstein condensation is expected to happen at very high temperature
(𝑇c ∼ 107 𝐾) compared to atomic BECs or superfluid helium because the density of such system is
extremly high [144].
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We can characterize further the BEC phase transition cosidering the total energy of
the system in the thermodynamic limit:

lim
𝐿→∞

𝐸(𝑇, 𝑧) = 𝑁0𝐸0 + ( 𝐿
2𝜋)

3
∫ 𝐸𝑘𝑛𝐵(𝒌; 𝑇, 𝑧)d𝒌. (1.30)

For 𝑇 → ∞ (Li 3
2
(𝑧) ∼ 𝑧), quantum effects are negligible and in fact Eq. (1.30) gives the

usual equipartition law for an ideal classical gas

lim
𝐿→∞

𝐸 = 3
2kB𝑇 𝐿3

𝜆3
𝑇
Li 5

2
(𝑧) ⟶

𝑇≫𝑇c

3
2𝑁kB𝑇, (1.31)

so that the the thermal capacity at fixed volume and number of particles tends to a
constant

𝐶𝑉 = (𝜕𝐸
𝜕𝑇)

𝐿,𝑁
= 15

4
𝐿3

𝜆3
𝑇
kBLi 5

2
(𝑧) − 9

2
Li 3

2
(𝑧)

Li 1
2
(𝑧) ⟶

𝑇≫𝑇c

3
2𝑁kB = cost. (1.32)

Instead, below the critical temperature 𝑇 < 𝑇c (Li𝑞(𝑧 = 1) = 𝜁(𝑞)) energy decreases
more rapidly when the temperature is decreased:

lim
𝐿→∞

𝐸 = 3
2kB𝑇 𝐿3

𝜆3
𝑇

𝜁 (5
2) (1.33)

and therefore the thermal capacity is not constant

𝐶𝑉 = (𝜕𝐸
𝜕𝑇)

𝐿,𝑁
= 15

4
𝐿3

𝜆3
𝑇
kB𝜁 (5

2) . (1.34)

From these limits it is evident that the thermal capacity of the system is a continuous
function of the temperature, but its derivative must be discontinuous at the point
𝑇 = 𝑇c.

In figure 1.4 we have reported a visualization of the peak forming in the momentum
distribution across the transition temperature. It refers to one of the first experimental
realization of BEC transition in an ultracold atomic gas, which dates back to 1996
[59]. For completeness, we must notice that in the context of cold atoms experiments,
the actual systems in which a BEC state is achievable are not free gases but rather
confined ones. In the case of trapped gases, the argument followed in this section is
still valid, but with some technical differences due to the fact that the eigenstates of
the Hamiltonian are affected by the shape of the trap [50]. For instance, a harmonic
trap can be realized using lasers or magnetic fields, producing the quantum harmonic
oscillator single-particle energy levels

𝐸𝑛𝑥𝑛𝑦𝑛𝑧
= (1

2 + 𝑛𝑥) ℏ𝜔𝑥 + (1
2 + 𝑛𝑦) ℏ𝜔𝑦 + (1

2 + 𝑛𝑧) ℏ𝜔𝑧, 𝑛𝑥,𝑛𝑦,𝑛𝑧 ∈ ℕ (1.35)
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1.2 Bose–Einstein condensation in an ideal boson gas

QT in trapped atomic BECs6

Figure 2: Transition to a BEC state as the temperature is lowered. The upper row of images show momenta distributions taken in the
JILA experiments (source: NIST/JILA/CU-Boulder). The lower row displays schematically the distribution of particles in the trap and
the condensation to the lowest particle state.

2.2. Superfluidity and vortices

In 1908, that is long before the first experimental realizations of Bose-Einstein condensation in atomic vapours,
liquid helium was produced at Leiden by the Dutch physicist Heike Kamerlingh Onnes. Between 1927 and 1932 a
group of physicists also at Leiden (W. H. Keesom, M. Wolfke, A. Keesom J.N. van der Ende and K. Clusius) [24]
noticed that liquid helium has two distinct phases, named He I and He II, separated by the apparent singularity that
the specific heat shows as a function of the temperature - the famous “lambda point”. This singularity appears at
a temperature around 2.2K at low pressure. The two liquid phases seemed very di↵erent. Liquid He I behaved like
an ordinary fluid, whereas liquid He II (the low temperature phase) had unusual mechanical and thermal properties.
The key step forward was the discovery of superfluidity by Kapitza [25], Allen and Misener [26], which stimulated
much work on macroscopic quantum systems. In their experiments, they showed that liquid He II can flow through
very thin tubes or slits without viscous dissipation. In other words, helium, the first quantum fluid explored, has no
viscosity in the superfluid phase, in direct analogy to the lack of resistance displayed by a superconductor. Owing to
its superfluid nature, He II apparently defies gravity by siphoning itself out of a container.

In 1938 Fritz London proposed that the unusual properties of He II are actually a manifestation of Bose-Einstein
condensation [27]. He, thus, realized that a collective wave function could describe the condensed atoms if there was
a macroscopic occupation of the zero momentum state. London’s idea was set aside for a while, as the interest was
taken by a new phenomenological theory (the two-fluid model) proposed by Tisza [28]. According to the two-fluid
model, He II consists of two fluid components, the normal fluid and the superfluid, each with its own density and
velocity field. The normal fluid moves like an ordinary fluid with all of the conventional thermodynamic properties
such as entropy, temperature and viscosity, while the superfluid has no entropy, is inviscid and flows without friction.
Landau formalized the model, and produced a complete set of thermodynamic relations for the two-fluid system. The
two-fluid model of Landau and Tisza turned out to be enormously successful in describing the properties of He II
and its strange observed e↵ects (the siphon e↵ect, the fountain e↵ect, the mechano-caloric and thermo-mechanical
e↵ects). The two-fluid model also led to the prediction of the existence of second sound, a mode of oscillations in
which superfluid and normal fluid move in antiphase creating a temperature wave rather than the usual pressure wave
of ordinary (first) sound.

One major problem with the two-fluid model, however, is that it assumes zero superfluid vorticity (!!! = r⇥v). In
fact, a zero-viscosity fluid should be dissipation-free and therefore have a conservative velocity field, r� = v, implying
absence of vorticity, !!! = r ⇥ r� = 0. Experiments with helium in a rotating vessel, however, showed the typical
parabolic surface of a rotating liquid, which would imply vorticity proportional to the angular velocity of rotation, like
ordinary fluids. This observed parabolic profile was independent of temperature, in disagreement with the expectation
that it should be proportional to the relative density of normal fluid which is strongly temperature dependent (as only
the normal fluid can have a curl, hence rotate).

Figure 1.4. Transition to the state of Bose–Einstein condensate as the temperature is decreased.
The upper row shows visualization of the momentum distributions, taken in the JILA experi-
ments [59]. The lower row displays schematically the distribution of particles in the trap and
the condensation to the lowest particle state. Image taken from [223].
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1 Superfluidity and Bose–Einstein condensation

so that the exponent of the temperature dependence of the condensate fraction eventu-
ally changes

𝑁0
𝑁 = 1 − ( 𝑇

𝑇c
)

3
, (1.36)

and other next order corrections for finite size systems can also arise [50].

1.2.2 Condensation in 2D as a finite size effect

We finally give a short remark on condensation in the two-dimensional case, which in
principle is formally prevented bacause of the Mermin–Wagner–Hohenberg theorem
[99, 154], although it can be recovered as a finite size effect3. We consider the phase-
space density of a non-interacting Bose gas in 2D:

𝒟 = 𝑁𝑇
𝐿2 𝜆2

𝑇 = ∫
∞

0
1

𝑧−1𝑒𝑥 − 1
d𝑥 = − ln (1 − 𝑧) . (1.37)

As opposed to the 3D case, we see from Eq. (1.37) that at any non-zero temperature
the value of the chemical potential 𝜇 = kB𝑇 ln (1 − 𝑒−𝒟) is always strictly negative.
This means that arbitrarily small thermal fluctuations are sufficient to prevent the
divergence of the occupation number of the fundamental level, i.e. condensation does
not occur. The reason of such behaviour is actually a deeper and more general result
due to Mermin, Wagner [154] and Hohenberg [99]. Their theorem states that in a
system with short-range interactions the emergence of a true long range order (which
is the result of a spontaneous breaking of a continuous symmetry) is prevented in
dimensions 𝐷 ≤ 2. As we will see in the next section, for a weakly interacting bosonic
system the order parameter is the macroscopic complex wavefunction of the bosons
in the fundamental state and the broken symmetry associated to condensation is
the 𝑈(1) invariance (multiplication of the wavefunction by a global phase factor). In
2𝐷, the long range order is destroyed by the long wavelength thermal fluctuations,
whose correlator has a logarithmically divergent infrared contribution [172]. Now, the
Mermin–Wagner–Hohenberg theorem is valid in the thermodynamic limit, where the
system size 𝐿 is infinite. However, if 𝐿 is finite, condensation can still occur as a finite
size effect. Indeed, one can consider the first order correlation function of an ideal Bose
gas, which shows an exponential decay at large scales [95]:

𝑔1(𝑟) ∝ ∫ 𝑛B(𝒌)𝑒𝑖𝒌⋅𝒓 d𝒌 ⟶
𝑟≫𝜆𝑇

𝑒−𝑟/ℓ, (1.38)

with the correlation length ℓ ∼ 𝜆𝑇𝑒𝒟/2/√4𝜋. Thus, since ℓ increases when the temper-
ature decreases, at a certain temperature it becomes of the same order of the system
size: ℓ ∼ 𝐿. At this point the system has an effective long-range correlation and a
non-zero condensate 𝑛0 ∝ ∫𝐿

0 𝑔1(𝑟)d𝑟 > 0 appears accordingly. Of course, such phase
3In this Thesis we deal mainly with 3D systems, except in the publication [80] reported in section 6.3,
where the condensation in a 2Dweakly interacting bosonic fluid at finite temperature in is investigated
numerically in presence of impurities.
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1.3 The Gross–Pitaevskii model

transition is not a second-order phase-transition stemming from a symmetry breaking
mechanism and thus does not contradict the Mermin–Wagner–Hohenberg theorem.

1.3 The Gross–Pitaevskii model

So far, we have described the condensation mechanism in the simplest case of non-
interacting bosons. But the key point for the emergence of superfluidity is actually
the presence of non-linear interactions in the system. In this section we will address a
system similar to the one described above, but assuming no constraints on homogeneity
and including weak non-linear interactions. We will approach the problem with a
different strategy, starting from the Hamiltonian dynamics, and performing a mean
field approximation in the second quantization framework [31, 50, 176, 193]. Then we
will characterize the properties of the model, showing the symmetries and the related
conserved quantities. Finally, we will explain the connection with hydrodynamics and
the existence of vortex solutions with quantized circulation.

1.3.1 Mean field approximation

We start by considering an inhomogeneous gas of 𝑁 bosonswithmass 𝑚, interacting via
a 2-body interaction 𝑉int(𝒙𝑖, 𝒙𝑗) in a 𝐷-dimensional space. If the system is further con-
fined by an external potential 𝑉ext(𝒙, 𝑡), which in principle may depend on both space
and time, its dynamics is governed by the following 𝑁-body Schrödinger equation:

𝑖ℏ 𝜕
𝜕𝑡𝛷(𝒙1,… , 𝒙𝑁; 𝑡) = 𝐻𝑁𝛷(𝒙1,… , 𝒙𝑁; 𝑡) (1.39)

where 𝛷(𝒙1,… , 𝒙𝑛; 𝑡) is the symmetric wavefunction of 𝑁 bosons:

𝛷(𝒙1,… , 𝒙𝑖,… , 𝒙𝑗,… , 𝒙𝑁; 𝑡) = 𝛷(𝒙1,… , 𝒙𝑗,… , 𝒙𝑖,… , 𝒙𝑁; 𝑡) ∀𝑖, 𝑗 ∈ [1,𝑁], (1.40)

and 𝐻𝑁 is the 𝑁-body Hamiltonian

𝐻𝑁 =
𝑁

∑
𝑖=1

[− ℏ2

2𝑚∇2
𝑖 + 𝑉ext(𝒙𝑖, 𝑡)] +

𝑁
∑
𝑖<𝑗

𝑉int(𝒙𝑖, 𝒙𝑗). (1.41)

In general, such equation is impossible to solve for large 𝑁 and therefore it is necessary
to impose some approximations. Adopting the second quantization formalism, we
substitute the wavefunction 𝛷(𝒙1,… , 𝒙𝑛; 𝑡), which depends on 𝑁𝐷 spatial coordinates,
by the boson field operator 𝛹̂(𝒙, 𝑡) (in the Heisenberg representation) which instead
depends only on 𝐷 spatial coordinates. The field operator 𝛹̂(𝒙, 𝑡) and its Hermitian
conjugate 𝛹̂†(𝒙, 𝑡) respectively annihilate and create a particle at the position 𝒙4:

𝛹̂†(𝒙𝑖, 𝑡) ∣{𝒙}𝑁𝐵
⟩ = ∣{𝒙}𝑁𝐵

, 𝒙𝑖⟩ , 𝛹̂(𝒙𝑖, 𝑡) ∣{𝒙}𝑁𝐵
, 𝒙𝑖⟩ = ∣{𝒙}𝑁𝐵

⟩ , (1.42)

4Of course 𝛹̂(𝒙, 𝑡)|0⟩ = 0 if |0⟩ is the vacuum state with no particles.
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1 Superfluidity and Bose–Einstein condensation

where ∣{𝒙}𝑀⟩ is the quantum state populated by 𝑁𝐵 bosons labeled by their position.
The standard bosonic commutation relations at fixed time hold:

[𝛹̂(𝒙, 𝑡), 𝛹̂†(𝒙′, 𝑡)] = 𝛿(𝒙 − 𝒙′)
[𝛹̂(𝒙, 𝑡), 𝛹̂(𝒙′, 𝑡)] = 0 (1.43)

[𝛹̂†(𝒙, 𝑡), 𝛹̂†(𝒙′, 𝑡)] = 0
(1.44)

and the Hamiltonian operator is therefore given by

𝐻̂ = ∫ 𝛹̂†(𝒙, 𝑡) [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙, 𝑡)] 𝛹̂(𝒙, 𝑡)d𝒙 + (1.45)

+ 1
2 ∫ 𝛹̂†(𝒙, 𝑡)𝛹̂†(𝒙′, 𝑡)𝑉int(𝒙 − 𝒙′)𝛹̂(𝒙, 𝑡)𝛹̂(𝒙′, 𝑡)d𝒙d𝒙′,

where we also assumed translational symmetric interaction, so that 𝑉int depends only
on (𝒙 − 𝒙′). The corresponding evolution equation for the field 𝛹̂(𝒙, 𝑡) is then the
Heisenberg equation

𝑖ℏ 𝜕
𝜕𝑡𝛹̂(𝒙, 𝑡) = [𝛹̂ , 𝐻̂] = (1.46)

= [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙, 𝑡) + ∫ 𝛹̂†(𝒙′, 𝑡)𝑉int(𝒙 − 𝒙′)d𝒙′𝛹̂(𝒙′, 𝑡)] 𝛹̂(𝒙, 𝑡).

In general, the field operator can be decomposed as

𝛹̂(𝒙, 𝑡) = ∑
𝛼

𝛹𝛼(𝒙, 𝑡) ̂𝑎𝛼, (1.47)

where 𝛹𝛼(𝒙, 𝑡) are the single-particle wavefunctions associated with each bosonic
operator ̂𝑎𝛼. The action of the operator ̂𝑎𝛼 is to annihilate a particle in the 𝛼-state.
Indeed, ̂𝑎𝛼 and its Hermitian conjugate ̂𝑎†

𝛼 (the creation operator) are defined in the
Hilbert-Fock space through the relations:

̂𝑎†
𝛼 ∣𝑁0,… ,𝑁𝛼,…⟩ = √𝑁𝛼 + 1 ∣𝑁0,… ,𝑁𝛼 + 1,…⟩ , (1.48)
̂𝑎𝛼 ∣𝑁0,… ,𝑁𝛼,…⟩ = √𝑁𝛼 ∣𝑁0,… ,𝑁𝛼 − 1,…⟩ , (1.49)

where 𝑁𝛼 is the number of particle in the 𝛼-state, i.e. the eigenvalue of the number
operator 𝑁̂𝛼 = ̂𝑎†

𝛼 ̂𝑎𝛼. The commutation relations must be:

[ ̂𝑎𝛼, ̂𝑎†
𝛽] = 𝛿𝛼,𝛽, [ ̂𝑎𝛼, ̂𝑎𝛽] = 0, [ ̂𝑎†

𝛼, ̂𝑎†
𝛽] = 0. (1.50)

At low temperatures, when the Bose-Einstein condensation occurs, a large number
of bosons occupies the fundamental state ∣𝑁0⟩, so that 𝑁0 ≫ 1. As a consequence, the
action of the creation operator ̂𝑎†

0 and the annihilation operator ̂𝑎0 is the same and is
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1.3 The Gross–Pitaevskii model

negligible, so they can be treated as c-numbers:

̂𝑎0 ≃ ̂𝑎†
0 ≃ √𝑁0 (1.51)

In other words, since 𝑁0 ≫ 1, adding a particle to the condensate does not change
the physical properties of the system, and the states ∣𝑁0 + 1⟩ ∝ ̂𝑎†

0 ∣𝑁0⟩ and ∣𝑁0 − 1⟩ ∝
̂𝑎0 ∣𝑁0⟩ are physically equivalent. If we consider a homogeneous system, namely a

bosonic gas of 𝑁 free particles in a volume 𝑉 = 𝐿3 (exactly the same system studied
in the first section), condensation implies that the wavefunction of the single-particle
state with zero-momentum is 𝛹0 = √1/𝑉. Therefore, the field operator can be written
explicitly as

𝛹̂(𝒙, 𝑡) = 𝛹0 ̂𝑎0 + ∑
𝛼≠0

𝛹𝛼(𝒙, 𝑡) ̂𝑎𝛼 = √𝑁0
𝑉 + 𝛿𝛹̂(𝒙, 𝑡) (1.52)

where 𝛿𝛹̂(𝒙, 𝑡) are small quantum fluctuations over the condensate background. Fol-
lowing a perturbative quantum field theory approach one can show that 𝛿𝛹̂(𝒙, 𝑡) is
associated, at the first order, to creation and annihilation of excitations known as
Bogoliubov pseudoparticles [31].

A more general situation occurs when the configuration 𝛹0(𝒙, 𝑡) is non-uniform and
time-dependent. Then we can write

𝛹̂(𝒙, 𝑡) = √𝑁0𝛹0(𝒙, 𝑡) + 𝛿𝛹̂(𝒙, 𝑡), (1.53)

because of the approximation (1.51), so that the expectation value ⟨𝛹̂(𝒙, 𝑡)⟩ is different
from zero. Indeed, we can define ⟨𝛹̂(𝒙, 𝑡)⟩ = 𝛹0(𝒙, 𝑡) ≡ 𝜓(𝒙, 𝑡) and ⟨𝛹̂†(𝒙, 𝑡)⟩ =
𝛹∗

0(𝒙, 𝑡) ≡ 𝜓∗(𝒙, 𝑡), where 𝜓(𝒙, 𝑡) is the complex non-zero order parameter of the BEC
transition. If we consider the average ⟨𝛹̂(𝒙, 𝑡)⟩ over stationary states evolving with the

phase factor 𝑒−𝑖 𝐸(𝑁0)𝑡
ℏ , we get the following time evolution for the order parameter:

𝜓(𝒙, 𝑡) = 𝑒−𝑖 𝐸(𝑁0)−𝐸(𝑁0−1)
ℏ 𝑡𝜓(𝒙) ∼ 𝑒−𝑖 𝜇

ℏ 𝑡𝜓(𝒙) (1.54)

since 𝜇 = 𝜕𝐸/𝜕𝑁0 ∼ 𝐸(𝑁0)−𝐸(𝑁0−1). The fact that the chemical potential replaces the
role played by energy in the phase oscillation of quantum steady states is a remarkable
evidence of its importance in the physics of Bose-Einstein condensates [176].

The complex function 𝜓(𝒙, 𝑡) is usually referred to as the macroscopic wavefunction
of the condensate and, if the distance over which its variations are significant is much
smaller than the average distance between particles, we can treat it neglecting the
quantum fluctuations 𝛿𝛹̂(𝒙, 𝑡), namely developing a completely classical mean field
theory. Indeed, the main semplification with respect to the many-body theory (1.39)
from which we started is that now we have a single function describing the collective
properties of the condensed system. Note that the norm of such wavefunction repres-
ents the number density of condensed bosons 𝑛 = |𝜓|2. The classical dynamics of the
order parameter can be directly inferred from the full quantum equation (1.46) under
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1 Superfluidity and Bose–Einstein condensation

the mean field approximation (1.52), and neglecting the small quantum fluctuations:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = (1.55)

= [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙, 𝑡) + ∫ 𝜓∗(𝒙′, 𝑡)𝑉int(𝒙 − 𝒙′)𝜓(𝒙′, 𝑡)d𝒙′] 𝜓(𝒙, 𝑡).

If the system is dilute enough, only binary collisions at low energy are relevant and
the details of the 2-body interaction are negligible. In this regime, an effective delta-
potential which depends on the 𝑠-wave scattering length 𝑎𝑠 of bosons can be used:

𝑉int(𝒙 − 𝒙′) = 𝑔𝛿𝑑(𝒙 − 𝒙′), 𝑔 = 4𝜋ℏ2𝑎𝑠
𝑚 . (1.56)

This actually means that we are implicitely assuming that the scattering volume |𝑎𝑠|3
is much smaller than the specific volume 𝑉/𝑁 of the system. Thus equation (1.56)
reduces to:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙, 𝑡) + 𝑔|𝜓(𝒙, 𝑡)|2] 𝜓(𝒙, 𝑡), (1.57)

which is a non-linear Schrödinger equation (NLSE) known as Gross–Pitaevskii equa-
tion. It is definitely the main tool for studying the evolution of a dilute inhomogeneous
BEC from a macroscopic point of view.

In principle the sign of the interaction term can be either positive or negative, de-
pending on whether the interaction between particles is repulsive (𝑎𝑠 > 0) or attractive
(𝑎𝑠 < 0). As it will be clear in section 1.3.3, only the first case is physically allowed
for Bose–Einstein condensates. It should be noticed that Eq. (1.57) appears also in
other completely different physical situations. For instance in non-linear optics (and
also generally in applied mathematics), Eq.(1.57) with repulsive interaction is usually
referred to as defocusing NLSE because the non-linear repulsion leads to the spreading
of the wavefunction when it is concentrated. The opposite effect arises for attractive
interaction, where a modulational instability can develop [219]. In this case Eq. (1.57)
is also called focusing NLSE.

In the following section we characterize the properties of the GP model, analyzing
the symmetries and conserved quantities of the NLSE.

1.3.2 Symmetries and conserved quantities

The Gross–Pitaevskii model is a classical field theory equipped with a Hamiltonian
structure, as well as with symmetries and conserved quantities that can be elegantly
related by means of the Noether theorem [72, 164, 219].

In this section we will adopt the notation 𝛹 ⟶𝛹𝑎 = (𝛹1,𝛹2) = (𝜓,𝜓∗) to indicate
the two complex conjugate fields, which are nothing but canonical conjugate variables,
𝜕 ⟶ 𝜕𝜇 = (𝜕𝑡,∇) to indicate differentiation in both space and time and 𝜒 ⟶ 𝜒𝜇 =
(𝑡, 𝒙) as a coordinate over the (𝐷 + 1) Euclidean spacetime. The Hamiltonian which
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1.3 The Gross–Pitaevskii model

describes the system is:

𝐻 = ∫ ℋ[𝛹(𝜒),∇𝛹(𝜒)]d𝒙 = ∫ ( ℏ2

2𝑚|∇𝜓|2 + 𝑔
2|𝜓|4 + 𝑉ext|𝜓|2) d𝒙, (1.58)

while the Lagrangian can be obtained by an usual Legendre transformation:

𝐿 = ∫ ℒ[𝛹(𝜒), 𝜕𝛹(𝜒)]d𝒙 = ∫ 𝑖ℏ
2 (𝜕𝜓

𝜕𝑡 𝜓∗ − 𝜕𝜓∗

𝜕𝑡 𝜓) d𝒙 − 𝐻. (1.59)

Integration over time then gives the Gross–Pitaevskii action:

𝑆 [𝛹(𝜒), 𝜕𝛹(𝜒)] = ∫ 𝐿[𝛹(𝜒), 𝜕𝛹(𝜒)]d𝑡 = (1.60)

= ∫
𝒟

{𝑖ℏ
2 (𝜕𝜓

𝜕𝑡 𝜓∗ − 𝜕𝜓∗

𝜕𝑡 𝜓) − ( ℏ2

2𝑚|∇𝜓|2 + 𝑔
2|𝜓|4 + 𝑉ext)} d𝜒,

where we have explicitated the spacetime domain of the system 𝒟. Thus, the GP
equation can be rewritten simply as an Euler–Lagrange equation5:

𝛿𝑆
𝛿𝜓∗ = 𝜕ℒ

𝜕𝜓∗ − 𝜕𝜇
𝜕ℒ

𝜕𝜕𝜇𝜓∗ = 0 ⟶ 𝑖ℏ
𝜕𝜓
𝜕𝑡 = 𝛿𝐻

𝛿𝜓∗ . (1.61)

The functional differentiation of 𝑆 with respect to 𝜓 instead of 𝜓∗ just leads to the
complex-conjugate of Eq. (1.57).

Now, let 𝒢 be a generical Lie group with 𝑁𝒢 continuous parameters 𝜖𝑘. For small
values of the 𝜖𝑘’s it transforms coordinates and fields in the following way

̃𝜒𝜇 = 𝜒𝜇 + 𝛿𝜒𝜇 (1.62)
𝛹̃𝑎( ̃𝜒) = 𝛹𝑎(𝜒) + ̄𝛿𝛹𝑎( ̃𝜒), (1.63)

where ̄𝛿 stands for total variation, not only with respect to fields but also with respect
to coordinates

̄𝛿𝛹𝑎( ̃𝜒) = 𝛿𝛹𝑎(𝜒) + (𝜕𝜇𝛹𝑎) 𝛿𝜒𝜇. (1.64)

The variation of the coordinates 𝛿𝜒𝜇 and the variation of the fields 𝛿𝛹𝑎 are then defined
as

𝛿𝜒𝜇 ≡
𝑁𝒢

∑
𝑘=1

𝜖𝑘 (𝛿𝑘𝜒𝜇) 𝛿𝛹𝑎 ≡
𝑁𝒢

∑
𝑘=1

𝜖𝑘 (𝛿𝑘𝛹𝑎) . (1.65)

All the 𝛿𝑘𝜒𝜇 and 𝛿𝑘𝛹𝑎 are finite and represent the group generators. Also the domain

𝒟 changes into 𝒟̃, and at the first order in 𝜖 the Jacobian is
𝜕 ̃𝜒𝜇
𝜕𝜒𝜈

= 𝛿𝜈
𝜇 + 𝜕𝜇𝛿𝜒𝜈. If the

transformations (1.62) and (1.63) leave the GP action unchanged, the group 𝒢 is a

5from now on, summation is implied by repeated indices.
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1 Superfluidity and Bose–Einstein condensation

continuous symmetry of the system. The action 𝑆 is conserved too, thus we must have6:

̄𝛿𝑆 = ∫
𝒟

̄𝛿ℒd𝜒 + ∫
𝒟

ℒ𝛿 (d𝜒) = ∫
𝒟

{ ̄𝛿ℒ + (𝜕𝜇𝛿𝜒𝜇) ℒ}d𝜒 = 0 ∀𝒟. (1.66)

Since the total variation of the Lagrangian density can be calculated as

̄𝛿ℒ = 𝜕ℒ
𝜕𝛹𝑎

𝛿𝛹𝑎 + 𝜕ℒ
𝜕𝜕𝜇𝛹𝑎

𝛿 (𝜕𝜇𝛹𝑎) + (𝜕𝜇ℒ) 𝛿𝜒𝜇 = (1.67)

= ( 𝜕ℒ
𝜕𝛹𝑎

− 𝜕𝜇
𝜕ℒ

𝜕𝜕𝜇𝛹𝑎
) 𝛿𝛹𝑎 + 𝜕𝜇 ( 𝜕ℒ

𝜕𝜕𝜇𝛹𝑎
𝛿𝛹𝑎) + (𝜕𝜇ℒ) 𝛿𝜒𝜇,

Eq. (1.66) becomes

̄𝛿𝑆 = ∫
𝒟

{( 𝜕ℒ
𝜕𝛹𝑎

− 𝜕𝜇
𝜕ℒ

𝜕𝜕𝜇𝛹𝑎
) 𝛿𝛹𝑎 + 𝜕𝜇 ( 𝜕ℒ

𝜕𝜕𝜇𝛹𝑎
𝛿𝛹𝑎 + ℒ𝛿𝜒𝜇)}d𝜒 = 0. (1.68)

This must hold for all the domains 𝒟, thus the integrand itself vanishes. The first term
is proportional to the Euler–Lagrange equation, therefore it is zero by definition if 𝜓
solves the GP equation. Then, the condition that an invariance group must satisfy is:

𝜕𝜇 ( 𝜕ℒ
𝜕𝜕𝜇𝛹𝑎

𝛿𝛹𝑎 + ℒ𝛿𝜒𝜇) = 0. (1.69)

As it is valid for each of the group parameters, Eq. (1.69) eventually leads to the
conservation of 𝑁𝒢 Noether currents:

𝜕𝜇𝑗𝜇𝑘 = 0, 𝑗𝜇𝑘 = ( 𝜕ℒ
𝜕𝜕𝜇𝛹𝑎

𝛿𝑘𝛹𝑎 + ℒ𝛿𝑘𝜒𝜇) , (1.70)

while the associated Noether charges are the following quantities 𝑄𝑘, which turn out
to be constant in time:

𝑑𝑄𝑘
𝑑𝑡 = 0, 𝑄𝑘(𝑡) = ∫ 𝑗0𝑘(𝒙, 𝑡)d𝒙 = ∫ ( 𝜕ℒ

𝜕𝜕𝑡𝛹𝑎
𝛿𝑘𝛹𝑎 + ℒ𝛿𝑘𝑡) d𝒙. (1.71)

This general result allows us to find out conserved quantities associated to the sym-
metries of the GP equation.

1.3.2.1 Global gauge invariance and wave action conservation

Since the only non-linear term of the Gross–Pitaevskii model is ∝ |𝜓|2 = 𝜓𝜓∗ an evident
internal symmetry of the system is the unitary group 𝑈(1). Indeed, if we tranform the

6We have used that 𝛿 (𝑑𝜒) = 𝑑 ̃𝜒 − d𝜒, and the differential tranforms as d ̃𝜒 = det [ 𝜕𝜒̃𝜇
𝜕𝜒𝜈

]d𝜒 =
exp [Tr(ln(𝜕𝜈𝜒𝜇))]d𝜒 ≃ (1 + 𝜕𝜇𝛿𝜒𝜇)d𝜒 [18].
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wavefunction as
̃𝜓( ̃𝒙, ̃𝑡) = 𝑒− 𝑖

ℏ 𝜑𝜓(𝒙, 𝑡), (1.72)

namely a global phase shift independent of spacetime coordinates, then theGP equation
is invariant. Since the infinitesimal transformation is

̃𝜓(𝒙, 𝑡) = 𝜓(𝒙, 𝑡) − 𝜑 𝑖
ℏ𝜓(𝒙, 𝑡) (1.73)

with space and time unchanged (𝛿𝑥 = 𝛿𝑡 = 0), the charge associated to this symmetry
is

𝑄 = 𝑖ℏ
2 ∫ (− 𝑖

ℏ𝜓∗𝜓 − 𝑖
ℏ𝜓𝜓∗) d𝒙, (1.74)

which is nothing but the conserved normalization of the wavefunction:

𝑁0 = ∫ |𝜓|2 d𝒙 = ∫ 𝑛d𝒙 = cost. (1.75)

It represents the total number of condensed bosons, and it is usually referred to as
wave action. From now on, we will omit the subscript “0” and we will indicate it just
with 𝑁. As it will be clear in section 1.3.4, the wave action is related to the total mass
of the condensate 𝑀 = 𝑚𝑁 in the hydrodynamic interpretation of the GP model. The
spatial component of the Noether current associated to the 𝑈(1) symmetry is the gauge
current

𝒋 = − 𝑖ℏ
2𝑚 (𝜓∗∇𝜓 − 𝜓∇𝜓∗) , (1.76)

which leads to the continuity equation

𝜕𝑛
𝜕𝑡 + ∇ ⋅ 𝒋 = 0. (1.77)

1.3.2.2 Time translation invariance and Hamiltonian conservation

If the external potential 𝑉ext is constant in time, there is no explicit time dependence in
the action (1.60) and an infinitesimal time shift

̃𝑡 = 𝑡 + 𝛿𝑡 (1.78)

with ̃𝒙 = 𝒙 and ̃𝜓( ̃𝒙, ̃𝑡) = 𝜓(𝒙, 𝑡) is an external symmetry of the system. In this case the
total variation of the field vanishes, and therefore:

̄𝛿𝛹𝑎(𝒙, ̃𝑡) = 𝛿𝛹𝑎(𝒙, 𝑡) + 𝜕𝑡𝛹𝑎(𝒙, 𝑡)𝛿𝑡 = 0 ⟶ 𝛿𝛹𝑎 = −𝜕𝛹𝑎
𝜕𝑡 𝛿𝑡. (1.79)
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The direct application of Eq. (1.71) leads to the conservation of the Hamiltonian:

𝐻 = ∫ {𝑖ℏ
2 (𝜕𝜓

𝜕𝑡 𝜓∗ − 𝜕𝜓∗

𝜕𝑡 𝜓) − ℒ} d𝒙 = ∫ ℋ(𝒙, 𝑡)d𝒙 = (1.80)

= ∫ ( ℏ2

2𝑚|∇𝜓|2 + 𝑔
2|𝜓|4 + 𝑉ext(𝒙)|𝜓|2) d𝒙 = cost,

and the spatial Noether current associated to it, sometimes simply called energy flux
density, is

𝒒𝐻 = − ℏ2

2𝑚 (𝜕𝜓
𝜕𝑡 ∇𝜓∗ + 𝜕𝜓∗

𝜕𝑡 ∇𝜓) , (1.81)

so that the continuity equation for the Hamiltonian density is7

𝜕ℋ
𝜕𝑡 + ∇ ⋅ 𝒒𝐻 = 0. (1.82)

1.3.2.3 Space translation invariance and momentum conservation

Another external symmetry of the system is the translation of the space coordinates

̃𝒙 = 𝒙 + 𝛿𝒙, (1.83)

with ̃𝑡 = 𝑡 and ̃𝜓( ̃𝒙, ̃𝑡) = 𝜓(𝒙, 𝑡). Of course, this transformation leaves the action (1.60)
unchanged only if the external potential 𝑉ext is homogeneous in space. As in the case
of time translation invariance, the total variation of the fields vanishes:

̄𝛿𝛹𝑎( ̃𝒙, 𝑡) = 𝛿𝛹𝑎(𝒙, 𝑡) + ∇𝛹𝑎(𝒙, 𝑡) ⋅ 𝛿𝒙 = 0 ⟶ 𝛿𝛹𝑎 = −∇𝛹𝑎 ⋅ 𝛿𝒙 (1.84)

The associated conserved charge is the total linear momentum of the GP equation:

𝑷 = 𝑖ℏ
2 ∫ (𝜓∇𝜓∗ − 𝜓∗∇𝜓) d𝒙. (1.85)

Now, if we define the center of mass of the system as

𝑿𝑀 = 1
𝑁 ∫ 𝑚|𝜓|2𝒙d𝒙 (1.86)

and recall the continuity equation (1.77), we get

𝑁d𝑿𝑀
d𝑡 = − ∫ 𝑖ℏ

2 [∇ ⋅ (𝜓∇𝜓∗ − 𝜓∗∇𝜓)] 𝒙d𝒙 =

= − ∫(∇ ⋅ 𝑷)𝒙d𝒙 = 𝑷 (1.87)

7In Eqs. (1.80) and (1.81) we are implicitly applying a global minus sign in order to get a positive defined
Hamiltonian.
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1.3 The Gross–Pitaevskii model

where last equality follows from integration by part, under the assumption that all
the fields and their derivatives are periodic or vanish at the boundary of the spatial
domain. Thus, Eq. (1.87) tells us that the center of mass of the condensate moves with
constant velocity. It is also interesting that the gauge current associated to the mass
conservation (1.76) is directly linked to the total momentum (1.85):

𝑷 = 𝑚 ∫ 𝒋d𝒙, (1.88)

even though these quantities are associated to different symmetries. From Eq. (1.88)
we also see explicitly that the momentum density is simply proportional to the gauge
current

𝒑(𝒙) = 𝑚𝒋(𝒙). (1.89)

Finally, the spatial components of the Noether currents of the space translation invari-
ance (1.83) constitute the stress tensor 𝛱𝑗𝑘 which represents the flux density of the 𝑗-th
component of momentum in direction 𝑘:

𝛱𝑗𝑘 = ℏ2

2𝑚 ( 𝜕𝜓
𝜕𝑥𝑗

𝜕𝜓∗

𝜕𝑥𝑘
+ 𝜕𝜓∗

𝜕𝑥𝑗

𝜕𝜓
𝜕𝑥𝑘

) + ℒ𝛿𝑗𝑘 = (1.90)

= ℏ2

2𝑚 ( 𝜕𝜓
𝜕𝑥𝑗

𝜕𝜓∗

𝜕𝑥𝑘
+ 𝜕𝜓∗

𝜕𝑥𝑗

𝜕𝜓
𝜕𝑥𝑘

) + (3
2𝑔|𝜓|4 − ℏ2

2𝑚 (|∇𝜓|2 + ∇2|𝜓|2) + 𝑉ext(𝑡)|𝜓|2) 𝛿𝑗𝑘,

where 𝛿𝑗𝑘 is the 𝐷−dimensional Kronecker delta. The momentum conservation equa-
tion eventually reads:

𝜕𝑡𝑃𝑘 + 𝜕𝑗𝛱𝑗𝑘 = 0. (1.91)

If the external potential depends on some spatial coordinate 𝑥𝑘, only the components
𝑃𝑖≠𝑘 of the linear momentum are conserved. Note that the only possibility for having
both the Hamiltonian and the linear momentum conserved is homogeneous and
constant external potential.

1.3.2.4 Galileian invariance and center of mass conservation

The last important symmetry of the GP model that we analyze here is the invariance
with respect to a Galileian transformation, defined as

̃𝒙 = 𝒙 − 𝒗𝑡
̃𝑡 = 𝑡 (1.92)

̃𝜓( ̃𝒙, ̃𝑡) = 𝜓( ̃𝒙, ̃𝑡)𝑒−𝑖 𝑚
ℏ (𝒗⋅ ̃𝒙+ 1

2 𝒗2 ̃𝑡)

where 𝒗 is a constant velocity which plays the role of group parameter. We set 𝑉ext = 0
for the sake of simplicity. For small values of 𝒗 the field transforms at the leading order
as ̃𝜓( ̃𝒙, ̃𝑡) = 𝜓(𝒙, 𝑡) − 𝑖𝑚

ℏ 𝒗 ⋅ 𝒙. Therefore, applying the formula (1.71), we see the the
conserved Noether charge associated to the Galileian invariance is the center of mass
(1.86) and the conservation of the Noether current (1.70) implies the relation between
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1 Superfluidity and Bose–Einstein condensation

center of mass and linear momentum Eq. (1.87).

1.3.3 Condensate ground state and Bogoliubov excitations

The ground state of the GP system is the stationary field configuration 𝜓0 that minim-
izes the free energy 𝐹[𝜓,𝜓∗] = 𝐻[𝜓,𝜓∗] − 𝜇𝑁[𝜓,𝜓∗], i.e.:

𝛿𝐹
𝛿𝜓∗ = 𝛿𝐹

𝛿𝜓 = 0. (1.93)

For the sake of simplicity, we first consider the external potential 𝑉ext switched off.
The free energy is defined as a linear combination of two of the invariants found in
the previous section, the Hamiltonian 𝐻 (1.80) and the wave action 𝑁 (1.75). In this
way the chemical potential 𝜇 assumes the role of a Lagrange multiplier, taking into
account the fact that the number of bosons in the condensate state is generally not
fixed. In particular, it quantifies the energy needed to add a particle to the condensate.
In general, the minimization condition (1.93) implies the stationary Gross–Pitaevskii
equation:

𝜇𝜓 = − ℏ2

2𝑚∇2𝜓 + 𝑔|𝜓|2𝜓, (1.94)

but clearly the global minimum is reached when the kinetic term is zero, namely when
the solution is homogeneous. The ground state 𝜓0 is therefore a minimum of the
Higgs-like potential

∫ {𝑔
2|𝜓|4 − 𝜇|𝜓|2} d𝒙. (1.95)

It means that there is a continuum of degenerate ground states, all with the same
modulus |𝜓0|, but with different phases. This is a natural consequence of the 𝑈(1)
gauge invariance of the system.When the system falls into a ground state configuration
the phase is fixed and takes a constant value. In this sense, it is ususally said that the
choice of the minimum state spontaneously breaks the symmetry. Indeed, each specific
ground state is not invariant under the 𝑈(1) gauge transformation, as a phase shift will
trasform it into a different ground state. Thus, except such fixed but arbitrary phase,
the ground state is a flat condensate described by the homogeneous wavefunction

𝜓0(𝑡) = |𝜓0|𝑒−𝑖 𝜇
ℏ 𝑡 (1.96)

and the chemical potential which determines its temporal evolution depends on the
(homogeneous) density and on the self interaction:

𝜇 = 𝑔|𝜓0|2 = 𝑔𝑛0. (1.97)

Note that in presence of an external constant potential 𝑉ext(𝒙), the actual ground state
has a non-zero kinetic term and in general cannot be found analitically. However, if
𝑉ext(𝒙) varies slowly in space, one can still neglect the kinetic term and obtain the
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solution in the Thomas–Fermi approximation

|𝜓TF(𝒙, 𝑡)|2 = 1
𝑔 (𝜇 − 𝑉ext(𝒙)) 𝜃H [1 − 𝑉ext(𝒙)

𝜇 ] , (1.98)

where 𝜃H is the Heaviside Theta function. The actual ground state in this case (and in
general) can be found numerically by using the gradient descent method. In practice,
the GP equation with imaginary time evolution, also known as real Ginzburg Landau
equation, is evolved until the stationary state is reached. The same method can be used
to find other solutions of the steady GP equation (1.94) which correspond to local
minima of the free energy. An example of these solutions is the stationary vortex state,
described in section 1.3.5.

Coming back to the homogeneous case with 𝑉ext = 0, we see that the energy associ-
ated to the flat condensate ground state is

𝐸0 = 𝑔
2 ∫ |𝜓0|4 d𝒙 = 𝑔𝑁𝑛0

2 (1.99)

Therefore, unlike in a non-interacting condensate, the pressure does not vanish

𝑝 = −𝜕𝐸0
𝜕𝑉 =

𝑔𝑛2
0

2 , (1.100)

so that the compressibility is finite, too:

𝜕𝑛0
𝜕𝑝 = 1

𝑔𝑛0
. (1.101)

Since stable thermodynamic systems must have a positive compressibility, from last
equation we learn that only positive couplings 𝑔 are allowed. Namely, as announced in
section 1.3.1, only bosons with repulsive interactions can form a condensate8 . From
compressibility we can also compute the speed of sound 𝑐 inside the system, using the
hydrodynamic relation

𝜕𝑛0
𝜕𝑝 = 1

𝑚𝑐2 → 𝑐 = √𝑔𝑛0
𝑚 . (1.102)

Another important physical quantitywhich characterize the condensate is the healing
length 𝜉, that estimates the correlation of the system.We can determine it as the distance
at which the density passes from zero to the homogeneous value 𝑛0. Since the flat
condensate has no kinetic energy, its total energy is entirely contained in the interaction
term. Thus, in the region where the density is depleted, the same happens to the
interaction term, and it must be compensed by the kinetic term:

− ℏ2

2𝑚∇2 ∼ ℏ2

2𝑚𝜉2 = 𝑔|𝜓|2. (1.103)

8Actually, if the scattering length is negative, the presence of an external trapping allows Bose-Einstein
condensation in a metastable configuration [176].
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The healing length is determined inverting this relation:

𝜉 = ℏ
√2𝑚𝑛0𝑔

= 1
√8𝜋𝜌0𝑎𝑠

. (1.104)

Speed of sound 𝑐 and healing length 𝜉 are the main parameters that characterize the
GP system, together with the condensate density 𝑛0. They also control the propagation
of the elementary linear excitations of the condensate, known as Bogoliubov modes
[31, 135, 176]. The dispersion relation of the Bogoliubov modes can be found directly
in the classical mean field theory. Indeed, we can consider a solution consisting of
a small perturbation of the flat condensate (always keeping 𝑉ext = 0 for simplicity)
(1.96):

𝜓(𝒙, 𝑡) = (|𝜓0| + 𝛿𝜓(𝒙, 𝑡)) 𝑒−𝑖 𝜇
ℏ 𝑡
, with |𝛿𝜓| ≪ |𝜓0|, (1.105)

plug it into the GP equation (1.57), and obtain the linearized equation

𝜇𝛿𝜓 + 𝑖ℏ𝜕𝛿𝜓
𝜕𝑡 = − ℏ2

2𝑚∇2𝛿𝜓 + 𝑔|𝜓0|2𝛿𝜓2 + 2𝑔|𝜓0|2𝛿𝜓, (1.106)

where we kept only the terms linear in 𝛿𝜓. In particular, we consider as perturbation
𝛿𝜓 a planar wave of wavenumber 𝒌 and frequency 𝜔:

𝛿𝜓(𝒙, 𝑡) = ∑
𝒌

𝑢𝒌𝑒𝑖(𝒌⋅𝒙−𝜔𝑡) + 𝑣∗
𝒌𝑒−𝑖(𝒌⋅𝒙+𝜔𝑡). (1.107)

Comparing the terms which multiply the same exponential in (1.106), we obtain the
condition on the chemical potential (1.97) and the linear system

⎛⎜
⎝

ℏ𝑘2

2𝑚 + 𝜇 𝜇
−𝜇 −ℏ𝑘2

2𝑚 − 𝜇
⎞⎟
⎠

( 𝑢𝒌
𝑣∗

𝒌
) = 𝜔 ( 𝑢𝒌

𝑣∗
𝒌

) . (1.108)

The linear operator in the left hand side of Eq. (1.108) can be diagonalized to find the
eigenfrequencies of the system. The result is the Bogoliubov spectrum

𝜔±
B (𝒌) = ±√ℏ𝑘2

2𝑚 (ℏ𝑘2

2𝑚 + 2𝜇), (1.109)

that can be rewritten in terms of speed of sound 𝑐 and healing length 𝜉 as

𝜔±
B (𝒌) = ±𝑐𝑘√1 + 𝜉2𝑘2

2 . (1.110)

It is clear from Eq. (1.110) that at large scales the Bogoliubov excitations are not dispers-
ive and propagate with speed 𝑐. This is the reasonwhywe generally refer to Bogoliubov
excitations as sound waves. The healing length 𝜉 is the scale at which dispersive ef-
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fects become important and at smaller scales 𝑘𝜉 ≫ 1 the excitations propagate as free
particles with a quadratic dispersion relation. We can finally note that for each solution
(𝑢𝒌, 𝑣∗

𝒌) that propagates with frequency 𝜔B(𝒌) there exists another solution (𝑣𝒌,𝑢∗
𝒌)

that propagate with frequency −𝜔B(𝒌). In the diagonalized Bogoliubov basis this does
not happen and indeed the two solutions represent the same physical oscillation, being
associated one to 𝛿𝜓 and the other to 𝛿𝜓∗ [176]. Finally note that for the excitation
spectrum (1.110), the critical velocity for the breaking of superfluidity (1.6) should be
the speed of sound, according to the Landau criterion. However, a drag force acting
on a finite size object moving in the GP system appears already at smaller velocities
and it is related to the emission of quantum vortices [67, 101, 245], not included in the
Landau picture.

1.3.4 Hydrodynamic picture

In this section we show the hydrodynamic interpretation of the GP model, clarifying
why it is a suitable theory for the description of a superfluid. Actually, the connection
with hydrodynamics is rather straightforward. It lies in the Madelung transformation
applied to the the macroscopic wavefunction:

𝜓(𝒙, 𝑡) = √𝜌(𝒙, 𝑡)
𝑚 𝑒𝑖 𝑚

ℏ 𝜙(𝒙,𝑡) = √𝜌(𝒙, 𝑡)
𝑚 𝑒𝑖 √2

2𝑐𝜉 𝜙(𝒙,𝑡)
, (1.111)

where the complex degree of freedom 𝜓 is splitted into 2 real degrees of freedom,
the mass density 𝜌 = 𝑚𝑛 and the phase 𝜙. The field 𝜌 will play the role of superfluid
density, while the superfluid velocity field 𝒗s can be derived writing the momentum
density (1.89) as

𝒑 = 𝑚𝒋 = −𝑖ℏ
2 (𝜓∗∇𝜓 − 𝜓∇𝜓∗) = ℏ Im [𝜓∗∇𝜓] = 𝜌𝒗s, (1.112)

from which we see that 𝒗s is related to the gradient of the phase

𝒗s = ∇𝜙. (1.113)

The first important property that we can infer is that the flow described by Gross–
Pitaevskii theory is potential and therefore intrinsically irrotational:

∇ × 𝒗s = ∇ × ∇𝜙 = 0. (1.114)

The next step consists in applying the definitions (1.111) and (1.113) to the GP equation
(1.57). Separating real and imaginary part we get the following set of hydrodynamic
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1 Superfluidity and Bose–Einstein condensation

equations (neglecting the external potential 𝑉ext):

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝒗s) = 0, (1.115)

𝜕𝜙
𝜕𝑡 + 1

2 (∇𝜙)2 = −𝑐2 𝜌
𝜌0

+ 𝑐2𝜉2 ⎛⎜
⎝

∇2√𝜌
√𝜌

⎞⎟
⎠
, (1.116)

where 𝜌0 = 𝑚𝑛0 and we used the definitions of the speed of sound 𝑐 (1.102) and
the healing length 𝜉 (1.104). The first equation is just the continuity equation (1.77)
associated with the conservation of the Noether charge of the global gauge symmetry.
In the hydrodynamic picture it expresses the conservation of the fluidmass. The second
equation is a Bernoulli equation which in turn is related to the conservation of energy.
Since dissipation terms are absent, the fluid described by the GP model is effectively
inviscid. We can recognize two contributions to the pressure field in the right hand
side of Eq. (1.116) 𝑝 = 𝑝cl + 𝑝q:

𝑝cl
𝜌 = 𝑔𝜌

𝑚 = 𝑐2 𝜌
𝜌0

,
𝑝q
𝜌 = − ℏ2

2𝑚2
⎛⎜
⎝

∇2√𝜌
√𝜌

⎞⎟
⎠

= −𝑐2𝜉2 ⎛⎜
⎝

∇2√𝜌
√𝜌

⎞⎟
⎠

. (1.117)

The term 𝑝cl is the classical pressure of a barotropic fluid, while 𝑝q is the so called
quantum pressure. This contribution arises when inhomogeneities are present in the
system and embodies the difference between an inviscid irrotational ideal fluid and
an actual superfluid. As we will explain in the next section, it is responsible for the
regularization of the flow close to the core of quantum vortices and drives their small
scale dynamics, allowing phenomena like vortex reconnections [162, 229]. Indeed, as
we will show in the next section, the GP model contains naturally the full non-linear
dynamics of superfluid vortices. This is maybe the most important reason why it can
be considered as an optimal model for a low temperature superfluid.

It is useful to express also the energy in the context of the hydrodynamic picture
[164]. In this framework, it is more suitable to redefine the Hamiltonian (1.58) as
𝐻 → 𝐻 − 𝜇𝑁 + 𝜇2

2𝑔 𝑉, namely:

𝐻 = ∫ ⎛⎜
⎝

ℏ2

2𝑚|∇𝜓|2 + 𝑔
2 (|𝜓|2 − 𝜇

𝑔 )
2

+ 𝑉ext|𝜓|2⎞⎟
⎠

d𝒙. (1.118)

In this way we remove the contribution of the flat condensate ground state, where the
largest amount of energy is contained. From the dynamical point of view, the equation
of motion associated to the Hamiltonian (1.118) is the following equation:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙, 𝑡) + 𝑔|𝜓(𝒙, 𝑡)|2 − 𝜇] 𝜓(𝒙, 𝑡), (1.119)

which has the same solution of Eq. (1.57) multiplied by 𝑒𝑖 𝜇
ℏ 𝑡, that compensates the
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1.3 The Gross–Pitaevskii model

global phase oscillation of the condensate. The two solutions have the same physical
content, in particular they provide the same density and velocity fields. Expressing the
Hamiltonian density 𝐻/𝑉 in terms of the hydrodynamic variables 𝜌 and 𝒗s, we can
split it into three contributions 𝐻/𝑉 = 𝑒kin + 𝑒int + 𝑒qnt [140, 164]:

𝑒kin = 𝐸kin
𝑉 = 1

𝑉 ∫ 1
2 (√𝜌𝒗s)

2
d𝒙, (1.120)

𝑒int = 𝐸int
𝑉 = 1

𝑉 ∫ 𝑐2

2𝜌0
(𝜌 − 𝜇𝑚

𝑔 )
2
d𝒙, (1.121)

𝑒qnt =
𝐸qnt
𝑉 = 1

𝑉 ∫ 𝑐2𝜉2 (∇√𝜌)
2
d𝒙. (1.122)

The terms (1.120) and (1.121) are respectively the kinetic energy and the interaction
energy, while Eq. (1.122) is a term which is absent in classical fluid, and it is directly
related to quantum pressure. Since all the integrands inside (1.120,1.121,1.122) are
quadratic, the energies can be expressed in Fourier space using the Parseval theorem9.
If the system is isotropic we can integrate over angles and define the 1D energy spectra,
which depends only on the modulus of the wavenumber 𝑘 = |𝒌|:

𝑒1𝐷
kin(𝑘) = 1

(2𝜋)𝐷 ∫ 1
2 ∣∫ √𝜌𝒗s𝑒−𝑖𝒌⋅𝒙 d𝒙∣

2
𝑘𝐷−1d𝛺𝑘, (1.123)

𝑒1𝐷
int (𝑘) = 1

(2𝜋)𝐷 ∫ 𝑔
2𝑚2 ∣∫ (𝜌 − 𝜇𝑚

𝑔 ) 𝑒−𝑖𝒌⋅𝒙 d𝒙∣
2

𝑘𝐷−1 d𝛺𝑘, (1.124)

𝑒1𝐷
qnt(𝑘) = 1

(2𝜋)𝐷 ∫ 𝑐2𝜉2 ∣∫ ∇√𝜌𝑒−𝑖𝒌⋅𝒙 d𝒙∣
2

𝑘𝐷−1 d𝛺𝑘, (1.125)

so that 𝐸kin = ∫ 𝑒kin(𝑘)d𝑘, 𝐸int = ∫ 𝑒int(𝑘)d𝑘, 𝐸qnt = ∫ 𝑒qnt(𝑘)d𝑘, and where d𝛺𝑘 is
the surface measure of the sphere in the wavenumber space. The spectra describe the
distribution of the energy components over different lenghtscales. Of course, if an
external potential 𝑉ext(𝒙, 𝑡) is present, the sum of these three energies is not conserved.
If 𝑉ext does not depend on time, the Hamiltonian 𝐻 = 𝐸kin + 𝐸int + 𝐸qnt + 𝐸ext, with
the extra energy term

𝐸ext = ∫ 1
𝑚𝑉ext(𝒙)𝜌(𝒙)d𝒙 (1.126)

is conserved, otherwise it will vary with time. Finally, note that the kinetic energy
can be further separated into compressible and incompressible part, by splitting the
integrand as

√𝜌𝒗s = (√𝜌𝒗s)
I
+ (√𝜌𝒗s)

C
, (1.127)

where ∇⋅(√𝜌𝒗s)
I

= 0. In practice, the decomposition ismade in Fourier space, applying

the projector 𝑃I
𝑖𝑗 = 𝛿𝑖𝑗 −

𝑘𝑖𝑘𝑗

𝑘2 to the Fourier transform of √𝜌𝒗s. The compressible part of

9Defining the Fourier transform of a function 𝑓 (𝒙) as ̂𝑓 (𝒌) = (2𝜋)−𝐷 ∫ 𝑓 (𝒙)𝑒−𝑖𝒌⋅𝒙 d𝒙, the Parseval theorem
is stated as ∫ |𝑓 (𝒙)|2 d𝒙 = (2𝜋)𝐷 ∫ | ̂𝑓 (𝒌)|2 d𝒌.

37



1 Superfluidity and Bose–Einstein condensation

the kinetic energy is associated to the Bogoliubov excitations (sound waves) described
in the previous section, while the incompressible one is supported by vortices, as it
will be clear in the following.

1.3.5 Quantum vortex solution

As already mentioned more than once, vortices in quantum fluids may exist, despite
the irrotationality of the superfluid flow. Superfluid vortices (or quantum vortices) are
topological defects with quantized circulation. In 3D they appear like unidimesional
filaments where the density is depleted and the phase is not defined, while in 2𝐷
they are just points. The quantization of circulation is a natural consequence of the
quantum mechanical nature of the macroscopic wavefunction 𝜓 and it was already
postulated by Feynman in 1955 in the context of superfluid helium [63]. If we consider a
bidimensional region 𝒜 (a disc for instance), we could think to calculate the circulation
of the superfluid around the contour of 𝒜 applying the Stokes theorem:

𝛤 = ∮
𝜕𝒜

𝒗s ⋅ d𝜹 = ∫
𝒜

(∇ × 𝒗s) ⋅ d𝛴 = 0, (1.128)

where the last equality comes from irrotationality. It is evident that we can have non
zero circulation only if the domain 𝒜 is not simply connected, namely if there are
regions in which the velocity field 𝒗s diverges and the condensate phase 𝜙. In fact, if
this is the case, the second equality of Eq. (1.128) does not hold. The aforementioned
regions are lines along which the wavefunction vanishes (Re𝜓 = Im𝜓 = 0), and which
indeed identify vortices. Along the vortex lines the velocity field is virtually infinite and
the vorticity 𝝎 = ∇ × 𝒗s is proportional to a Dirac delta, so that 𝛤 ≠ 0. If the contour of
𝒜 encircles one or more singularities of the velocity field, 𝛤 can be directly computed
as

𝛤 = ∮
𝜕𝒜

∇𝜙 ⋅ dℓ = 𝜙(𝒙end) − 𝜙(𝒙start), (1.129)

where 𝒙end and 𝒙start are respectively the ending point and the starting point of the
loop 𝜕𝒜. Clearly, since these two points coincide 𝒙end ≡ 𝒙start, the phase difference can
be only a descrete multiple of the constant

𝜅 = 2𝜋ℏ
𝑚 = 2𝜋√2𝑐𝜉, (1.130)

otherwise the wavefunction 𝜓 would have non physical polidromy points in which
it can take multiple values. The parameter 𝜅 (1.130) is called quantum of circulation,
and the circulation of superfluid vortices can be simply written as

𝛤 = 𝑛𝜅, with 𝑛 ∈ ℕ, (1.131)
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1.3 The Gross–Pitaevskii model

where 𝑛 is called the charge of the vortex. The velocity 𝑣v of the superfluid flow rotating
around the vortex is therefore diverging as

𝑣v = 𝛤
2𝜋𝑟 = ℏ

𝑚
𝑛
𝑟 , (1.132)

where 𝑟 is the distance to the singular line (or point, in 2D) that defines the vortex core.
Although such singular behaviour of the velocity field, the superfluid field remains

by definition regular on the nodal lines, because the density 𝜌 = 𝑚|𝜓|2 vanishes along
the vortex filaments. The beauty of the GPmodel is that such regularization is achieved
automatically, making it a robust theory for superfluid dynamics. To see this, we note
that the GP model admits a steady solution that correspond to a straight quantum
vortex [74, 177]. This solution has cylindrical symmetry, therefore it can be written in
cylindrical coordinates (𝑟,𝜑, 𝑧) as

𝜓v(𝑟,𝜑, 𝑡) = √𝜌v(𝑟)
𝑚 𝑒−𝑖 𝜇

ℏ 𝑡𝑒𝑖𝑛𝜑, with 𝑛 ∈ ℕ, (1.133)

where 𝑧 is the axis of symmetry (taken along the axis of the filament), 𝜑 is the azimuthal
angle around the filament and 𝑟 is the radial distance. The (incompressible) velocity
field generated by this solution is indeed the one associated to the singularity (1.132):

vv(𝑟) = 𝛤
2𝜋𝑟 ̂𝝋, (1.134)

where ̂𝝋 is the unit vector oriented along the azimuthal direction. The phase and the
velocity streamlines of the quantum vortexwithwinding number 𝑛 = 1 (corresponding
to one quantum of circulation) are displayed in Fig.1.5 right.

We define the vortex profile as 𝑅(𝑟) = √𝜌v(𝑟)/𝜌0, where 𝜌0 is the homogeneous
density of the superfluid far from the vortex. Plugging the solution (1.133) into the
stationary GP equation (1.94), we get the following equation for 𝑅:

̃𝑟2d2𝑅
d ̃𝑟2 + ̃𝑟d𝑅

d ̃𝑟 + ( ̃𝑟2 − 𝑛2) 𝑅 − ̃𝑟2𝑅3 = 0, (1.135)

where the radial coordinate has been rescaled with the healing length ̃𝑟 = 𝑟/𝜉. From
this equation we can derive the two asymptotics for the vortex profile, close and far
from the core:

lim
̃𝑟→0

𝑅( ̃𝑟) ∼ 𝑐1 ̃𝑟𝑛, lim
̃𝑟→∞

𝑅( ̃𝑟) ∼ 1 − 𝑛2

̃𝑟2 , (1.136)

where the prefactor 𝑐1 = 0.5827811878 can be determined numerically [22]. We can see
that the density is actually depleted in the vortex core, where the velocity is diverging.
Note that the kinetic energy of the GP model (1.120) is then always finite, because the
velocity appears in the product √𝜌𝒗s, sometimes also called regularized velocity. For
the same reason, the incompressible projector in the decomposition (1.127) must be
applied to √𝜌𝒗s, and not to the bare velocity. We point out that the scale of the vortex
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Figure 1.5. The Gross–Pitaevskii quantum vortex. (left) 3D visualization of the quantum vortex
steady solution (1.133) of the GP model, obtained numerically. The vortex is represented as a
red isosurface at low density (𝜌 = 0.12𝜌0). The volume rendering of the density is displayed in
shaded blue and the streamlines of the velocity are in green. (top right) Phase of the straight
vortex solution (1.133) in the plane orthogonal to the filament. In green the streamlines of the
vortex velocity field (1.134), with linewidth proportional to its modulus. (bottom right) Vortex
density profile (blue solid line) in the plane parallel to the filament and vortex velocity profile
(1.132) (dotted green line).
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1.3 The Gross–Pitaevskii model

core is defined by the healing length, since the vortex density goes to zero for distances
shorter than 𝜉 and approaches the bulk value 𝜌0 at distances larger than 𝜉. This is not a
surprise, given that the healing length is the fundamental length scale in the GP model.
In atomic Bose–Einstein condensates the size of 𝜉 can be manipulated, and typically is
around ∼ 1 𝜇𝑚 = 10 000Å. Instead, in superfluid helium the vortex core has a much
smaller size ∼ 1Å.

The exact shape of the vortex profile 𝑅(𝑟) cannot be found analytically, even though
pretty accurate approximations can be found in the literature. One of these is the Padé
approximation derived by Pismen [175] and studied by Berloff [22], which for a vortex
with charge 𝑛 = 1 reads:

𝜌Pade1( ̃𝑟)
𝜌0

= 𝑅2
Pade1( ̃𝑟) =

̃𝑟2 (𝑎1 + 𝑎2 ̃𝑟2)
1 + 𝑏1 ̃𝑟2 + 𝑏2 ̃𝑟4 , (1.137)

where 𝑎1 = 11/32, 𝑏1 = (5 − 32𝑎1)/(48 − 192𝑎1), 𝑎2 = 𝑎1(𝑏1 − 1/4), and 𝑏2 = 𝑎2.
The constants are fixed by imposing the match of Eq. (1.137) with the two known
asymptotics of the vortex profile (1.136). Another more precise Padé approximation is
the following:

𝜌Pade2( ̃𝑟)
𝜌0

= 𝑅2
Pade2( ̃𝑟) =

̃𝑟2 (𝑎1 + 𝑎2 ̃𝑟2 + 𝑎3 ̃𝑟4)
1 + 𝑏1 ̃𝑟2 + 𝑏2 ̃𝑟4 + 𝑎3 ̃𝑟6 , (1.138)

with the coefficients 𝑎1 = 0.340038, 𝑎2 = 0.0360207, 𝑎3 = 0.000985125, 𝑏1 = 0.355931,
𝑏2 = 0.037502, which has been used for instance in our paper [75]. The actual vortex
profile can be found numerically starting from an approximated initial condition
like (1.137) and applying the gradient descent method to the GP model. Indeed, the
straight vortex solution is a steady state which correspond to a local minimum of the
Hamiltonian (1.118). An example of the vortex density profile obtained numerically in
this way is displayed in Fig.1.5 right, together with the corresponding velocity profile,
for a winding number 𝑛 = 1. In Fig.1.5 left, the full 3D visualization of the GP vortex is
also displayed. The filament is indicated as a red isosurface at low temperature, the
velocity streamlines are in green and the density depletion is rendered in blue. In Fig.1.6
we compare the vortex density profile obtained numerically with the asyptotics and the
Padé approximations. Note in particular the lost of monothony of the approximation
(1.137) close to the bulk density.

We point out that since the energy associated to the vortex solution (1.133) is roughly
proportional to 𝑛2, vortices with a charge 𝑛 > 1 are energetically disadvantaged. For
this reason, a single vortex of charge 𝑛 > 1 is not stable and would rather split into 𝑛
singly charged vortex filaments.

As a final remark, we stress once again that the fundamental parameters of the
GP model are the healing length 𝜉 (which coincides with the vortex core size), the
speed of sound 𝑐 and the bulk density 𝜌0. The GP equation expressed expliciting these
parameters reads

𝜕𝜓
𝜕𝑡 = −𝑖 𝑐

√2𝜉
(−𝜉2∇2𝜓 − 𝜓 + 1

𝜌0
|𝜓|2𝜓) . (1.139)
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Figure 1.6.Comparison between approximations of the vortex density profile. Blue solid line is
obtained numerically applying the gradient descent method to the GP model, dashed orange
line is the Padé approximation (1.137) and dotted green line is the Padé approximation (1.138).
The small distance and far field asymptotics (1.136) are displayed respectively as grey solid
line and grey dash-dotted line. On the left a zoom close to the bulk density.

Moreover, the GP equation can be fully adimensionalized if written in terms of the adi-
mensional spatial variable ̃𝒙 = 𝒙/𝜉 and the adimensional time ̃𝑡 = 𝑡/𝜏 (with 𝜏 = 𝜉/𝑐),
besides normalizing the wave function as ̃𝜓 = 𝜓√𝑚/𝜌𝑜. Thus, the results provided by
the GPmodel can be directly compared with experiments (for instance with superfluid
helium) if distances are expressed in units of 𝜉, times in units of 𝜏, densities in units of
𝜌0, and velocities in units of the speed of sound 𝑐. If not explicitly mentioned, in all the
results reported in this Thesis we express variables in the aforementioned units.

1.4 Dynamics of superfluid vortices

In the previous section we showed the existence of quantized vortices in the GP model,
which arise as a direct consequence of themonodromyof themacroscopicwavefunction.
The full non-linear dynamics of superfluid vortices, as well as the interaction between
different vortices, are self-consistently reproduced by the GP model. In this section we
briefly review the dynamics of superfluid vortex filaments, using the phenomenological
hydrodynamical approach known as vortex filament method [49, 55, 199, 204]. The
main dynamical features of quantumvortices, i.e. vortex reconnections andpropagation
of Kelvin waves are then discussed, and the corrections due to finite temperature are
mentioned. We already anticipate that the dynamics of quantum vortices plays a
fundamental role in superfluid turbulence, that we will discuss in chapter 5.

1.4.1 The vortex filament model

A vortex filament can be thought as a thin core of radius 𝑎0 passing through a fluid
with zero vorticity outside it [204], but with non-zero circulation around it. Quantum
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effects are relevant in the region of the core, but outside it the dynamics of the vortex
can be described by classical hydrodynamics. In general, the velocity 𝒗(𝒙) in a point 𝒙
generated by a vorticity field 𝝎(𝒚) can be computed by applying the Green function of
the curl [199]:

𝒗(𝒙) = 1
4𝜋 ∫

ℝ3

𝝎(𝒚) × (𝒙 − 𝒚)
∣𝒙 − 𝒚∣3

d𝒚. (1.140)

In the case of a vortex filament, the vorticity is concentrated in a tube with infinitesimal
cross-section 𝜎. Specifically, when 𝜎 → 0, the vorticity goes to infinity in such a way
that the circulation 𝛤 = 𝜔𝜎 is kept constant. Therefore, we can formally write the
vorticity as

𝝎(𝒚) = 𝛤 ∫
𝒞

𝛿(𝒚 − 𝒔)d𝒔, (1.141)

where the integral extends over the filament 𝒞. The velocity field (1.140) generated by
such vorticity distribution is thus given by the Biot–Savart law:

𝒗BS(𝒙) = 𝛤
4𝜋 ∫

𝒞
(𝒔 − 𝒙) × d𝒔

|𝒔 − 𝒙|3
. (1.142)

Note that the integral in (1.142) is independent of the parametrization of the filament.
The idea behind the vortex filament method is to apply this equation to describe the
dynamics of the vortex filament itself, namely taking 𝒙 = 𝒔. However, Eq. (1.142) is
asymptotically valid in the region where |𝒙 − 𝒔| ≫ 𝑎0 and the vortex can be effectively
considered as a one-dimensional curve. In fact, if we try to apply directly the Biot–
Savart integral for 𝒙 = 𝒔, we see immediately that it diverges. The way in which the
divergence is regularized depends on the structure of the vortex core, which is precisely
what we discussed in section 1.3.5 in the specific case of a GP quantum vortex. In order
to describe the self-induced motion of the vortex filament with the equation

̇𝒔 = 𝒗BS(𝒔), (1.143)

it is necessary to introduce a cutoff length 𝑙, where the small scale physics of the core is
hidden. In particular, the velocity of the filament is splitted into a local and a non-local
contribution ̇𝒔 = ̇𝒔loc + ̇𝒔nonloc. The non-local contribution is given by the Biot–Savart
integral computed along the filament 𝒞′ in which a portion 𝛿 of size 2𝑙 centered in the
point 𝒔 has been removed:

̇𝒔nonloc = 𝛤
4𝜋 ∫

𝒞′

(𝒔1 − 𝒔) × d𝒔1

∣𝒔1 − 𝒔∣3
. (1.144)

The local contribution is computed assuming that the portion 𝛿 of the filament close
to the point 𝒔 can be approximated with a segment of a ring having a radius equal
to the curvature radius 𝑅(𝒔) = |𝒔′|3/|𝒔′ × 𝒔″| of the filament at the point 𝒔10. Such

10If not explicitly specified, primes denote differentiation with respect to a generic parametrization of the
curve.
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Figure 1.7. Sketch of the regularization procedure of the vortex filament method. See main text
and [204] for further details.

approximation is valid if the cutoff is sufficiently small, i.e. 𝑙 ≪ 𝑅(𝒔). Its usefulness lies
in the fact that an expression for the constant speed of an inviscid vortex ring can be
evaluated independently using Euler equations [138]:

̇𝒔ring = 𝛤
4𝜋𝑅𝒃 [log( 8𝑅

𝑒𝛥𝑎0
) + 𝒪 (𝑎0

𝑅 )] , (1.145)

where 𝒃 = 𝒔′ × 𝒔″/|𝒔′ × 𝒔″| is the binormal unit vector (orthogonal to the plane of the
ring), 𝑎0 is the vortex core size and 𝛥 is a constant that depends on the structure of
the core (𝛥 = 1/4 if the vorticity in the core is uniform, or 𝛥 = 1/2 if it is confined to
the surface of the ring [97]). In the case of vortex filaments in superfluid helium, the
exact value of the core size parameter 𝑎0 has been measured experimentally. Taking
𝛥 = 1/2 in Eq. (1.145) it turns out to be about 1.3Å at 𝑇 = 0.3 𝐾 and it slightly increases
with temperature [81]. In the GP model, the speed of vortex rings is well reproduced
in numerical simulations with 𝑎0 ∼ 1.12 𝜉 and 𝛥 = 1/2 [130]. Therefore, the local
contribution to the filament velocity (1.143) is

̇𝒔loc = 𝛤
4𝜋𝑅(𝒔)𝒃 log( 2𝑙

𝑒𝛥𝑎0
), (1.146)

where we removed from the total ring velocity (1.145) the non-local contribution
coming from the portion of the ring outside the region 𝛿 close to the point 𝒔. Thus, the
regularized velocity of a vortex filament reads:

̇𝒔 = 𝛤
4𝜋𝑅(𝒔)𝒃 log( 2𝑙

𝑒𝛥𝑎0
) + 𝛤

4𝜋 ∫
𝒞′

(𝒔1 − 𝒔) × d𝒔1

∣𝒔1 − 𝒔∣3
. (1.147)

The regularization procedure of the vortex filament method is sketched in Fig.1.7.
We point out that the equation of motion of the vortex (1.143) can be deduced
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identifying the Magnus effect as the only force acting on the line [14]. Indeed, when an
object with circulation moves in a fluid, it is subjected to a transverse lift force which is
the consequence of the pressure imbalance due to the different velocities on its sides.
We will deepen the notion of Magnus effect in section 2.2.3 discussing the dynamics
of particles in a fluid, but applying this concept to the vortex line we can write the
following force per unit length:

𝒇Magnus = 𝜌𝛤𝒔′ × ( ̇𝒔 − 𝒗tot(𝒔)) . (1.148)

The term 𝒗tot is given by the sum of the self-induced velocity of the vortex on itself and
the bulk fluid velocity far from the vortex: 𝒗tot(𝒔) = 𝒗BS(𝒔) + 𝒗0. Then, we make use of
the fact that the inertia of the filament is negligible, so that the second Newton law
reads

𝒇Magnus = 0, (1.149)

and the resulting equation of motion of the filament is

̇𝒔 = 𝒗BS(𝒔) + 𝒗0, (1.150)

which coincides with Eq. (1.143) if 𝒗0 = 0.
When a number 𝑁v of vortices is present in the system, the velocity field generated

by a filament will also induce a motion of the other lines, in addition to the self-induced
velocity. This is not an issue, since the Biot–Savart integral (1.142) is not singular when
evaluated on points 𝒙 which not lie on the integration curve. Adding the contribution
due to the other vortices to the regularized velocity (1.147), the equation of motion of
the vortex filament 𝒔𝑖 reads:

̇𝒔𝑖 = 𝛤
4𝜋

⎡⎢⎢
⎣

𝒃𝑖
𝑅(𝒔𝑖)

log( 2𝑙
𝑒𝛥𝑎0

) + ∫
𝒞′

𝑖

(𝒔1 − 𝒔𝑖) × d𝒔1

∣𝒔1 − 𝒔𝑖∣
3 +

𝑁v

∑
𝑗≠𝑖

∫
𝒞𝑗

(𝒔𝑗 − 𝒔𝑖) × d𝒔𝑗

∣𝒔𝑗 − 𝒔𝑖∣
3

⎤⎥⎥
⎦

. (1.151)

We point out that this equation is formally valid if the scale separation 𝑎0 ≪ 𝑙 ≪ 𝑅(𝒔)
holds for every point 𝒔 on the line. Furthermore it is derived considering an unbounded
fluid and neglecting the friction due to the interaction with thermal excitations, which
will be briefly introduced in section 1.4.3. We finally stress again that the hydrodynam-
ics of the vortex filament described by Eq. (1.143) is reproduced by the GP model.
Although this fact can be intuitive, given that the vortex filament is a solution of the
GP equation and at large scales the GP fluid behaves as a perfect fluid, it has been
formally demonstrated only recently [35].

1.4.2 Local induction approximation

One of the simplest and most used approximations that can be applied to the equation
of motion of a vortex filament is the local induction approximation (LIA) [4, 49, 54,
199]. As the name suggests, this simplification consists in neglecting the non-local
contribution to the self-induced vortex speed, assuming that the motion of the filament
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is basically determined by the local curvature at each point 𝒔. More precisly, let us
consider the natural parametrization of the filament 𝒔(𝜉a), where the parameter 𝜉a
is the arclenght. One can take the Taylor expansion of the Biot–Savart integrand in
Eq. (1.142), for points 𝒙 = 𝒔1(𝜉𝑎 + 𝜖𝑎) on the vortex line close to the point 𝒔1(𝜉𝑎). The
resulting integral

̇𝒔 ∼ 𝛤
4𝜋 ∫

𝐿

𝑎0

𝜕𝒔
𝜕𝜉𝑎

× 𝜕2𝒔
𝜕𝜉2𝑎

1
|𝜖𝑎| d|𝜖𝑎| (1.152)

must be evaluated between the physical small scale cutoff 𝑎0 and some length 𝐿,
which denotes the scale above which the non-local contributions are negligible. The
integration leads to the velocity

̇𝒔 ∼ 𝛤
4𝜋𝛬 𝜕𝒔

𝜕𝜉𝑎
× 𝜕2𝒔

𝜕𝜉2𝑎
, (1.153)

where 𝛬 = log𝐿/𝑎0. The parameter 𝐿 is a large lenght scale which depends on the spe-
cific vortex configuration and should be chosen in order to give a good approximation
to the actual Biot–Savart dynamics [54]. Typically, a good choice is to take 𝐿 ∼ 𝑅, and
in general the LIA approximation remains accurate as long as this parameter is large.
In the case of small displacements of a straight filament oriented along the 𝑧-axis, the
LIA self-induced velocity can be written parametrizing the vortex in complex variables
as 𝑠(𝑧, 𝑡) = 𝑠𝑥(𝑧, 𝑡) + 𝑖𝑠𝑦(𝑧, 𝑡) and neglecting the variation of the vortex length, 𝜁(𝑧) ∼ 𝑧.
It becomes

̇𝑠(𝑧, 𝑡) ∼ 𝑖 𝛤
4𝜋𝛬 𝜕2

𝜕𝑧2 𝑠(𝑧, 𝑡), (1.154)

which is just a linear Schrödinger equation. We used the local induction approximation
in the form (1.154) to study analytically the interaction between particles and slightly
perturbed straight vortices. These calculations have been devoloped in the publication
[75] in the case of particles outside the vortex cores and in [79] for trapped particles,
both reported in this Thesis, respectively in sections 3.2 and 4.1.

1.4.3 Mutual friction

If the temperature in a quantum fluid is different from zero, a normal fluid component
with density 𝜌n and velocity 𝒗n is present in the system,while the superfluid component
has density 𝜌s and velocity 𝒗s. The interaction between the vortex lines and the thermal
excitations of the normal fluid generates a mutual friction, encoded in a drag force per
unit length acting on the filament [13, 14, 96, 204]:

𝒇mf = −𝛼(𝑇)𝜌s𝛤𝒔′ × [𝒔′ × (𝒗n − 𝒗s,tot)] − 𝛼′(𝑇)𝜌s𝛤𝒔′ × (𝒗n − 𝒗s,tot) , (1.155)

where 𝒗s,tot = 𝒗BS(𝒔) + 𝒗s,0, exactly as in (1.148). The dimensionless parameters 𝛼(𝑇)
and 𝛼′(𝑇) are related respectively to the fundamental longitudinal and transverse
scattering lengths of the interaction with the thermal excitations. They contain all the
temperature dependence and can be measured experimentally [96].
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Taking into account such effect together with the Magnus effect (1.148), the balance
of the forces acting on the filament is

𝒇Magnus + 𝒇mf = 0, (1.156)

given that the vortex inertia is negligible. The resulting equation of motion for a
superfluid vortex at finite temperature is

̇𝒔 = 𝒗s,0 + 𝒗BS(𝒔) + 𝒗mf, (1.157)

where the velocity component induced by the mutual friction is

𝒗mf = 𝛼(𝑇)𝒔′ × (𝒗n − 𝒗s,0 − 𝒗BS(𝒔)) − 𝛼′(𝑇)𝒔′ × [𝒔′ × (𝒗n − 𝒗s,0 − 𝒗BS(𝒔))] . (1.158)

Note that in writing (1.157) we are considering the normal fluid velocity 𝒗n as the
average drift velocity of the thermal excitation gas [204]. A more comprehensive
analysis can be performed, which takes into account a local normal fluid velocity
induced by the presence of the filament and which is far from the scope of the present
manuscript. It can be found in [103], whose main result is indeed a new formula for
the mutual fricition velocity:

𝒗mf = ℎ∗∗ (𝒗s,0 + 𝒗BS) + ℎ∗𝒔′ × (𝒗n − 𝒗s,0 − 𝒗BS) + ℎ∗∗𝒔′ × (𝒔′ × 𝒗n) , (1.159)

coupled via amutual friction forcingwith aNavier–Stokes equation for the normal fluid
velocity 𝒗n, and where the friction coefficients ℎ∗∗(𝑇) and ℎ∗(𝑇) are a combination of
𝛼(𝑇) and 𝛼′(𝑇). In the remainder of this chapter, as well as in the novel results exposed
later, we will ignore finite temperature effects on the vortex dynamics.

1.4.4 Vortex reconnections

One of the most interesting phenomena that occur in superfluids is the reconnection
of vortex filaments. In general, in fluid mechanics a vortex reconnection is an event in
which the topology of the vorticity field is rearranged [108]. Similarly, reconnections
also occur in plasma physics as a rearrangement of the magnetic field [34]. In classical
viscous fluids, where the vorticity is not confined in one-dimensional objects, the
reconnection of vortex tubes is a complex phenomenon, [102], while the case of vortex
filaments is a limiting and to some extent simpler situation. Two reconnecting vortex
filaments approach each other, touch in a point and separate, after exchanging their
strands. According to the Kelvin circulation theorem, reconnections in a barotropic
inviscid fluid (as a superfluid is) should be prevented, since the circulation around a
closed curve moving with the fluid is constant [133]. However, as it happens for the
healing of the singularity of the vortex velocity field, superfluid vortex reconnections
are possible because of the vanishing density at the core of the vortices [123]. Note
that in classical Navier–Stokes fluids, the Kelvin circulation theorem is broken by the
viscous dissipation, which is absent in superfluids.
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Vortex reconnections have been already predicted in the seminal works by Feynman
[63] and Schwarz [205], and nowadays it is known that they play a fundamental
dissipative role in superfluid turbulence. Specifically, they provide a channel through
which the kinetic energy is redistributed. In fact, after the reconnection, helicoidal
waves propagating along the filaments are produced (see section 1.4.5) and the incom-
pressible energy contained inside the vortex lines cascades towards the scale of the
core, where it is radiated into sound [170]. Recently, vortex reconnections have been
directly observed in atomic BECs, by using destructive absorption imaging [206] and
in superfluid helium experiments bymeans of the PTV technique with solidified hydro-
gen particles as probes [29, 169] (see section 2.1.3). From the numerical side, it should
be noted that even if the route to reconnection is reproduced by the vortex filament
model, the reconnection event (intended as the exchange of strands) must be added by
ad hoc mechanisms. This is not the case for the GP model, in which reconnections are
self-consistently reproduced because the regularization due to the vanishing density
is naturally included. For this reason, the GP equation is the optimal framework for
the study and characterization of quantum vortex reconnections. Indeed, in order to
validate and support the last experimental observations [29, 169], in the publication
[77] reported in section 3.3 of this Thesis we used precisely the Gross–Piteaveskii
model to study the reconnections of quantum vortices mediated by particles.

The simplest observable that characterizes a superfluid vortex reconnection is the
separation 𝛿(𝑡) between the two reconnecting points. In the limits where 𝛿 ≪ 𝜉 and
𝛿 ≫ 𝜉 (assuming that other vortices or boundaries are not present in the system), the
only relevant parameter is the circulation 𝛤, and from a simple dimensional analysis
argument it follows that the separation rate should scale as:

𝛿(𝑡) ∝ (𝛤𝑡)1/2 . (1.160)

Such scaling was derived analytically in the context of the Gross–Pitaevskii model
in [162], where it was also shown that locally the reconnecting vortices are always
antiparallel and closely to reconnection they are arranged in hyperbola branches. The
calculation reported in [162] neglects the non-linearity of the GP equation, since it
is subdominant close to the core where 𝜓 ∼ 0. This fact suggests the universality
of the scaling law (1.160), outlining its purely kinetic origin. Moreover, scaling laws
different from Eq. (1.160) can be justified only by the introduction of other lenght
scales. Nevertheless, many contradictory numerical results appeared in the literature
(see for instance [194] and [253]), which showed different scaling before and after the
reconnection. The controversy was ended by the systematic study reported in [229],
in which the 𝑡1/2 law was confirmed for a number of initial GP vortex configurations
(included filaments in a turbulent tangle) for separations up to ∼ 10𝜉. In the same
work, the non-universality of the prefactors in Eq. (1.160) before and after the recon-
nection was pointed out. However, it seems that vortices always separate faster than
they approach, and this dynamics has been related to the irreversible emission of a
sound pulse after the reconnection [230]. Visualizations of GP vortex reconnections
from [229] are reported in Fig.1.8. In a recent publication, it was shown that the 𝑡1/2
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VILLOIS, PROMENT, AND KRSTULOVIC
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Perpendicular Antiparallel Trefoil knot Tangle

FIG. 1. Three-dimensional plot showing the reconnection events explored numerically. The initial
configuration is displayed for (a1) the perpendicular vortex lines, (b1) the antiparallel lines, and (c1) the
trefoil knot. (a2)–(c2) show a corresponding zoom at the moment of reconnection. Also shown are (d1)
the turbulent tangle and (d2) a zoom in of where a reconnection takes place. Red and blue correspond to the
reconnecting vortex filaments; the light blue isosurfaces render the density field at low values.

III. APPROACH AND SEPARATION RATES

Apart from the characteristic length scale ξ inherently present in the GP model, when quantized
vortices are considered, the quantum of circulation " can be used to formulate an extra length scale.
Hence, by dimensional analysis, the distance between two reconnecting lines is expected to be

δ±(t) = A±ξ 1−2α± |"(t − tr )|α±
, (4)

where α± and A± are dimensionless parameters and the superscript ± stands for before (−) and after
(+) the reconnection event. The temporal evolution of the minimal distances between reconnecting
filaments for the different case studies is displayed in Figs. 2(a)–2(d). An explanatory movie of
the knot reconnection is also provided as Supplemental Material [34]. Remarkably, in all cases
the approach and separation rates follow the same dimensional t1/2 scaling. For each event we
estimate the reconnection time tr by doing a linear fit on δ±(t)2 and compute tr as the arithmetic
mean between t±r that satisfies δ±(t±r )2 = 0. The t1/2 scaling extends beyond ξ and only slight
deviations are observed in some cases. Perhaps this fact could explain the different results for
the scaling obtained in Refs. [16–18], where it was concluded that the exponents before and after
the reconnection are different. For instance, in Ref. [16] it was found that α− ∈ (0.3,0.44) and
α+ ∈ (0.6,0.73) and in Ref. [18] that either α± = 1/2 or α− = 1/3 and α+ = 2/3, depending on
the initial vortex filament configuration. In these works the time asymmetry was interpreted as a
manifestation of the irreversible dynamics due to sound emission; we will return to this interesting
point in Sec. VI. Let us stress that the tracking algorithm we used is able to measure the intervortex
distances even in the presence of sound waves (the Taylor-Green tangle analyzed contains moderate
sound at all scales) and no asymmetry concerning the exponent is observed.

Although the measured exponent is always α± = 1/2, the full dynamics is not symmetrical with
respect to the reconnection time as it can be immediately deduced by observing Fig. 2. By estimating
the prefactors A± with a fit, shown in Fig. 3(a), we conclude that these are always order of the unity
but are not universal. Moreover, we observe that the vortex filaments usually separate faster than
they approach (A− ! A+).

044701-4

Figure 1.8.Visualization of reconnection events in GP simulations. The initial configuration is
displayed for (a1) perpendicular vortex lines, (b1) antiparallel lines, (c1) trefoil knot and
(d1) turbulent tangle. Red and blue correspond to the reconnecting vortex filaments; the light
blue isosurfaces render the density field at low values. The bottom row shows a zoom at the
reconnection time of the correspondig event in the upper row. Image taken from [229] to which
we refer for further details.

scaling can sussist even for large times far from the reconnection event and in presence
of an external trapping, provided that the vortex-vortex mutual interaction keeps on
governing the dynamics [70]. However, at distances larger than 10𝜉 from the reconnec-
tion event, steeper scalings of the separation rate can be observed, depending on the
presence of extrinsic factors like the presence of other vortices, density gradients and
interaction with the boundaries. In particular, in the fully driven regime the separation
rate is ballistic, scaling as 𝛿(𝑡) ∝ 𝑡.

1.4.5 Vortex waves

When thermal, quantum or turbulent fluctuations are present in a superfluid, or
violent events like reconnections happen, excitations of quantum vortices are induced.
These excitations are helicoidal waves propagating along the filaments, known as
vortex waves. In the case of a slightly perturbed straight vortex filament, vortex waves
propagate with a dispersion relation 𝛺v(𝑘), where 𝑘 is the wavenumber associated to
the vortex direction. At scales much larger than the vortex core size 𝜉, the frequency of
vortex waves matches asymptotically the classical dispersion relation derived by Sir
William Thomson (better known as Lord Kelvin) in 1880 in the case of a hollow vortex
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in an ideal fluid [220]. Such dispersion relation reads:

𝛺KW(𝑘) = 𝛤
2𝜋𝑎2

0

⎡⎢
⎣
1 − √1 + 𝑎0|𝑘|𝐾0(𝑎0|𝑘|)

𝐾1(𝑎0|𝑘|)
⎤⎥
⎦
, (1.161)

where 𝐾𝑛(𝑥) is the modified Bessel function of order 𝑛 and 𝑎0 identifies the size of the
vortex core. The long wavelength limit of Eq. (1.161) is quadratic, with a logarithmic
correction:

lim
𝑘𝑎0→0

𝛺KW(𝑘) = − 𝛤
4𝜋𝑘2 (ln 2

𝑎0|𝑘| − 𝛾E) , (1.162)

where 𝛾E ∼ 0.5772 is the Euler–Mascheroni constant. The explicit formal demonstration
that long vortex waves in the Gross–Pitaevskii model propagate asymptotically as Eq.
(1.162) is already contained in the original work of Pitaevskii himself [177], and has
been refined and extended later by Roberts [192]. In his analysis, Roberts writes the
perturbed vortex filament (in cylindrical coordinates) as the solution 𝜓v + 𝛿𝜓v of the
GP equation, where 𝜓v is the straight vortex state (1.133) and 𝛿𝜓v a small amplitude
linear fluctuation:

𝛿𝜓v = [𝑢1(𝑟)𝑒−𝑖(𝑘𝑧+𝑚𝜑𝜑−𝛺v𝑡) + 𝑢∗
2(𝑟)𝑒𝑖(𝑘𝑧+𝑚𝜑𝜑+𝛺v𝑡)] 𝑒𝑖𝜑, (1.163)

where 𝑚𝜑 is the (integer)mode of the vortex excitation and 𝑢1(𝑟) and 𝑢2(𝑟) are complex
radial functions. The solutions for which the angular velocity 𝛺v is real are called
“bound modes”, while if 𝛺v has a non vanishing imaginary part the solutions are “free
modes”, which lose energy through sound radiation as time passes. The main result
reported in [192] is that almost all the modes are free for all 𝑘 and the only mode which
is bound for all 𝑘 is the slow mode with 𝑚𝜑 = 1. In the long wavelength limit, this
mode is exactly the one which propagates with the dispersion relation (1.162):

lim
𝑘𝜉→0

𝛺v(𝑘) = lim
𝑘𝑎0→0

𝛺KW(𝑘), (1.164)

with the vortex core parameter 𝑎0 ∼ 1.12𝜉. For this reason, superfluid vortex waves are
usually called Kelvin waves at these scales, as their classical analog. It is interesting
to notice that the angular velocity (1.161) has an opposite sign with respect to the
vortex velocity field (1.132), meaning that the helicoidal Kelvin waves rotate in the
opposite verse with respect to the superflow around the vortex. An example of Kelvin
wave obtained tracking a vortex filament in a GP simulation is displayed in Fig.1.9.
In the small scale limit, vortex excitations behave as Bogoliubov free particles with a
quadratic dispersion relation, namely

lim
𝑘𝜉→∞

𝛺v(𝑘) = lim
𝑘𝜉→∞

𝜔−
B (𝑘), (1.165)

where 𝜔−
B (𝑘) is given by Eq. (1.110). A complete analytical formula that matches

the two asymptotics of the GP vortex wave dispersion relation has been given in the
publication [79], in which the propagation of Kelvin waves in presence of particles
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Figure 1.9. Example of Kelvin wave obtained tracking a vortex filament in a GP simulation. See
text for further details.

trapped inside the vortex filaments is investigated. Such work constitutes one of the
major findings of this Thesis and it is reported in chapter 4.

From the experimental side, Kelvin waves have been visualized directly in superfluid
helium only recently, by using solidified hydrogen particles [64] (see section 2.1.3).
On the other hand, the theoretical achievements are further ahead and the non-linear
interactions of vortex waves have been deeply investigated, producing intense debates
during the last two decades in the framework of the weak wave turbulence theory [126,
136, 141]. The non-linear interactions among waves produce a direct energy cascade
towards small scales, which is believed to be one of the fundamental dissipation
mechanisms in quantum turbulence [236]. Indeed, at scales smaller than the inter-
vortex distance, the Kelvin wave cascade transfers the hydrodynamics energy of the
vortex lines towards smaller scales along the filaments, until it is radiated in the form of
soundwaves at the scale of the vortex core size. Twopredictions for the energy spectrum
associated to such cascade have been derived. The first one, by Kozik and Svistunov,
invoked a symmetry argument which saves the locality of the energy transfer in a
six-wave non-linear interaction theory and leads to an energy spectrum 𝐸KS ∝ 𝑘−7/5

[126]. The second one, by L’vov and Nazarenko, showed the actual non-locality of
the Kozik–Svistunov theory and derived an energy spectrum 𝐸LN ∝ 𝑘−5/3 as a result
of an effective four-wave interaction theory [136]. Numerical evidences in the Gross–
Pitaevskii framework support this last prediction [129]. Recently, the actual presence of
Kelvin waves in a GP quantum turbulent regime has been detected [43] and a spectrum
compatible with the cascade in the four-wave interaction theory has been measured
[228].
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In this second introductory chapter, we give a motivational background to the study
of particle dynamics in superfluids and present the model that has been used to
achieve the results reported in this manuscript. We first provide a general overview
of the main techniques involving the use of particle as probes in superfluid helium
experiments. Then we review the physics that governs the motion of spherical
particles in a classical fluid, highlighting the concepts which apply for quantum
fluids as well. In the last part, we discuss the theoretical and numerical models
developed in the past and current years for the description of particle dynamics in
a superfluid. These models include the one-way coupling, which is a generalization
of the classical dynamics to the two-fluid model and the vortex filament method
with moving spherical boundary conditions. Finally we introduce the coupling
between the Gross–Pitaevskii model and moving repulsive potentials, which is
the principal investigation tool used in this Thesis, besides mentioning the bubble
fields and multi-component condensate models.

How an object moves when it is immersed in a fluid is one of the most natural
questions that can be asked in hydrodynamics. In the case of quantum fluids, the fact
that an object can move without experiencing any drag is the natural consequence of
superfluidity, or it can be even considered as the feature which defines superfluidity.
As already predicted by Landau, superfluidity is broken if the velocity of the object
is larger than a critical value [139, 176] (see section 1.1). Nowadays, experimental
evidence in liquid helium and numerical studies agree that the appearance of a drag is
accompanied by the emission of quantum vortices [54, 67, 101, 180, 245]. Moreover,
the temperature of a quantum fluid can never be strictly zero, and therefore a normal
fluid component is always present. Besides interacting with the superfluid component,
the normal flow always couples to any particle or impurity immersed in it, necessarily
affecting its motion. Thus, in the most general case the behaviour of a particle in a
quantum fluid is determined by the combined action of superfluid, the quantized
vortices therein, and normal fluid. At the same time, particles modify actively the flow,
making their dynamics rather far from obvious and in need of being studied.

In the case of superfluid helium, the main interest in understanding the motion of
particles relies on the experimental implementation of particles as probes for visualizing
the flow [91, 208]. In general, the two most successful techniques for flow visualization
are the Particle Image Velocimetry (PIV) and the Particle Tracking Velocimetry (PTV)
[185]. The first one requires the use of a dense distribution of particles and consists in
the local average of their velocities, resulting in a smooth velocity field. The second
one involves the tracking of each individual particle trajectory, providing a tool for
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the investigation of Lagrangian properties of the flow. Practically, in both techniques
particles are suspended in the flow and reflect the light of a laser sheet, making possible
to capture their time dependent position. Whilst in experiments with classical fluids
the visualization techniques are currently employed with a high level of precision, for
superfluid helium suchdevelopment is yet to be achieved, given the intrinsic complexity
of quantum fluids, as well as the practical issue of reaching and maintaining very low
temperatures. Several methods which involve the use of particles have been developed
for the visualization of superfluid and quantum vortex dynamics in liquid helium.
The early efforts date back to the late 50’s, when ions were implemented to study the
properties of liquid helium and to detect the motion of vortex filaments [37, 83, 186,
241]. During the last 20 years, PIV and PTV techniques have been adopted in superfluid
helium experiments using different categories of particles, from solidified hydrogen
and deuterium to He2 excimers [28–30, 91].

We give an overview of such techniques in the next section 2.1, enlighting some of
the most important results obtained with their use. Afterwards, in section 2.2 we will
discuss the theory behind the motion of spherical particles in a classical fluid, starting
from the inviscid case and then considering the effects of viscosity. The specific models
used to describe the dynamics of particles in quantum fluids are examinated in the
last section 2.3, emphasizing the analogies with the classical theory. Note that a prime
principle theory for superfluid helium is missing, so that the use of phenomenological
methods is required. In this regard, the main difficulty is caused by the large extent
of scales involved in the problem, which makes currently impossible to have a single
model able to capture at once all the physical properties. In this chapter we will give
a major focus on the modeling of particles at very low temperature, where viscous
thermal excitations are absent, which is the setting in which the largest part of the
findings exposed in this manuscript is concerned. In particular, in section 2.3.3, the
model based on the coupling between moving repulsive potentials and the Gross–
Pitaevskii model is described, which is central for the follow-up of the Thesis. Indeed,
starting from the next chapters, specific problems related to the interaction between
particles and superfluid will be addressed using this model.

2.1 Visualization experiments in superfluid helium

2.1.1 Ion trapping and electron bubbles

When a single negative charge carried by an electron is injected in liquid helium, it
self-localizes in a spherical void region from which 4He atoms are excluded. This is
the phenomenon that leads to the formation of the so-called electron bubbles, charged
particles of size between 12Å and 20Å, that can be used as detectors of quantum
vortices [37, 83, 186]. The idea is that negative ion bubbles are attracted to the vortices
because of Bernoulli force and eventually get captured. Such mechanism is actually
the same at the basis of the use of positive ions and even large solid particles, given
that in general the energy of the system is lower when an object is trapped in the core
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2.1 Visualization experiments in superfluid helium

Figure 2.1. Photographs of discrete quantized vortex lines (left) and stable vortex arrays (right)
in rotating 4He experiments with trapped ion bubbles. Different labels correspond to different
angular velocities. Images taken respectively from [240] and [247], to which we refer for further
details.

than far from it [55, 173]. We will give more details on this mechanism in chapter 3.
In the case of a positive ion, the particle attracts the surrounding fluid, triggering a
liquid-solid transition and generating a “snowball” of solid helium [6]. However, given
the extremely small size of such objects (∼ 8Å) and therefore of the cross-section of
the snowball-vortex interaction, their practical use in experiments is limited.

Being the electron bubbles charged, the application of an external electric field can
be used to manipulate them. In the early experiments, the technique consisted in
generating straight vortices by rotating a bucket of liquid helium, loading them with
ions injected orthogonally to the filaments and applying an electric field parallel to them.
As a consequence, the electron bubbles slided along the vortices and reached a detector,
where they were revealed. In this way it was eventually possible to detect individual
vortex lines [168], and an improvement of such method led to the measurement
of vortex line density in a turbulent tangle [215]. Later, a photographic technique
combined with the negative ion detection allowed for the first direct visualization of
individual quantized vortices and symmetric arrays of vortices in rotating 4He [240,
247]. These first photographs of quantum vortices are reported Fig. 2.1.

In conclusion, the advantages of the standard bubble ion trapping technique is
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that the smallness of the particles prevent them from disturbying the flow and can
be implemented in very low temperature regimes. On the other hand, the actual
visualization of the full three dimensional dynamics of superfluid vortices is hardly
possible and when the temperature is too high (> 1.7 𝐾) they do not remain trapped
inside the vortex filaments [208].

We mention here that a further technique based on the acoustic cavitation imaging
of electron bubbles is being developed. The basic principle behind this method is that
if a negative pressure is applied to liquid helium, the size of the bubbles increases from
the typical radius of ∼ 12Å up to several microns. After a critical value of the negative
pressure there is no longer an energy minimum, thus a bubble becomes unstable
and eventually explodes [44, 73, 93, 104]. Recently, bubble expansions of 1mm have
been observed [246]. In these experiments, the variation of pressure is generated by
an acoustic forcing and the large bubbles can be visualized using standard optical
methods. Unlike the traditional ion trapping technique, the cavitating electrons are
those already present in the system (by natural or induced ionization), and no external
electron beam is used. As a consequence, they are supposed to trace the normal fluid
component, unless they get captured by quantized vortices and slide along them,
which could explain the observation of snakelike paths [93]. Finally note that since
the pressure around particles trapped inside quantum vortices is reduced (see section
3.1), the explosion can be triggered at a lower critical pressure, providing thereby a
way to distinguish the trapped bubbles from the free ones [73].

2.1.2 PIV with solid particles

Micron-size polymer micro-spheres have been used in combination with the PIV
method to study average properties of liquid helium below the critical temperature
[249–251]. This technique has been implemented particularly in the specific setting of
turbulent thermal counterflow.

One of themost relevant early experiments with counterflow sampledwith PIV is the
one reported in [250] by Zhang and Van Sciver, where the sedimentation of heavy solid
particles is studied. A heat source is applied at the bottom of the helium container, so
that the normal fluid component flows upwards and the superfluid component flows
downwards. Heavy particles (with amass density 9 times higher than the liquid helium
one) are immersed in the system in a temperature range between 1.62 𝐾 and 2.0 𝐾 and
with heat fluxes between 𝑞 = 110mW/cm2 and 𝑞 = 1370mW/cm2. In these conditions,
one could have expected the viscous Stokes drag due to the normal fluid to balance
the gravitational body force, so that the particle velocity is given by 𝑣p = 𝑣n − 𝑣slip ,
namley the difference between the normal fluid velocity 𝑣n and the terminal velocity
of particle sedimentation 𝑣slip. Instead, the instructive result of [250] is that the actual
particle velocity has an extra contribution 𝑣add in the direction opposite to the normal
fluid. This deviation, which produced an average particle velocity 𝑣p ∼ 0.5 𝑣n for all
the temperatures analyzed, can be indeed explained with the presence of a tangle of
superfluid vortices strongly interacting with the particles.

The same authors used similar particles in the same range of temperatures to study
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thermal counterflow past a macroscopic cylinder [251]. The striking result of the PIV
measurements was the emergence of large eddies at the scale of the cylinder both
downstream and upstream. Also in this case, Zhang and Van Sciver explained these
unclassical structures as the consequence of mutual friction between quantized vortex
lines and the normal fluid. However, in this case an alternative explanation has been
proposed, based on the existence of stationary locations in the point vortex model in a
setting analogous to the experiment [207].

In general, the interpretation of PIV measurements in finite temperature superfluids
is much harder than in classical hydrodynamics, given the intrinsic bifluid nature of
the flow. In particular, particles interact with both the superfluid and the normal fluid
component, and they are affected by the presence of quantized vortices. Therefore,
although the use of this technique gave important results in the description of the
mean flow properties, it is not suitable for the investigation of the detailed structure of
quantum turbulence and the dynamics of superfluid vortices. For this reason, other
techniques and innovative kind of particles have been recently implemented, which
are described in the following.

2.1.3 Vortex imaging and PTV with solidified particles

The PTV technique, which consists in the tracking of each single particle trajectory, is a
powerful method that provides more insights about the details of the flow than PIV.
Since the solid particles usually used in PIV experiments turned out to be generally too
dense to allow for a detailed description of superfluid turbulence, solidified hydrogen
(or deuterium) particles have been introduced for the PTV measurements [28, 30, 91,
208]. These new probes are produced via injection of a gaseous mixture of hydrogen
and helium directly in the liquid helium sample at a temperature slightly above the
transition point. The solidification of hydrogen then leads to “ice” particles with
a diameter of few microns and a density slightly less than the liquid helium one
(𝜌H = 0.7𝜌He) [30]. After the generation of solidified particles inside the liquid helium
sample, the temperature is slowly decreased below the critical value, so that turbulent
vortex filaments appear. In 2006, the groundbreaking experiment [28] by the Lathrop’s
group in Maryland used this new technique to directly visualize quantum vortex
filaments in superfluid helium for the first time. The already famous images of this
experiment are reported in Fig. 2.2.

Subsequent studies used the same procedure to characterize the dynamics of super-
fluid vortices, especially the process of vortex reconnection [29, 169] and the propaga-
tion of Kelvin waves [64], introduced in the first chapter of this Thesis. In particular,
the experiments strongly suggest that the reconnections between vortex filaments
effectively take place [29] (see Fig. 2.3) and the measured vortex approaching rate
before and after the reconnection is compatible with the scaling (|𝑡 − 𝑡0|)1/2 predicted
in theory [70, 162, 229], with some deviation that may be due to the local properties of
the environment [169]. The reconnection scaling, which is ultimately determined by
the presence of the quantum of circulation as the only significant parameter at small
scales, has been proposed to be the physical origin of the power law tails observed in
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Figure 2.2.Visualization of quantumvorticeswith solidified hydrogen particles in the experiment
[28]. (a) Slightly above the superfluid transition temperature. (b,c) Tens of mK below the
transition temperature, regrouped in branching filaments and (d) along vertical lines for
stationary rotation about the vertical axis. Images taken from [28] to which we refer for further
details.

cannot say this with certainty because of the limited thickness of
the field of view. In addition, at least one of the candidate
vortices often has several particles along its core, although this
was not a required criterion.

For each event satisfying the above criteria, we locate, by
inspection, the pair of particles that are abruptly moving away
from each other and nearest to the reconnection point. The
locations of the particles are estimated with subpixel accuracy by
fitting the particle images to a Gaussian function and finding the
peak of the Gaussian function. We then determine the particle
positions for each image frame for as long as the particle pair is
visible after reconnection.

Data analysis proceeds as follows. Consider that the recon-
nection of two vortices occurs at some time, t0, but is invisible
until the recoil of the vortices propagates far enough to change
the positions of the particles nearest to the reconnection point.
The initial separation of the pair of particles that move first is a
measure of their distance from the reconnection point and is 85
�m on the average. We then assume that the distance, l�(t),
between the pair of particles closest to the reconnection point
evolves as a power law, l�(t) � a(t � t0)�. We estimate the time
origin of the reconnection, t0, and the scaling exponent, �, and
the amplitude of the event, a, in the following way. We perform
a linear least-squares fit of the logarithm of the data to a
first-order polynomial to obtain estimates of a and �, for a series
of values of t0. Next, we select the t0 that minimizes the mean
square of the differences between the data and the power law.

We recorded 52 candidate reconnections and on average
capture each with 13 observations of particle position pairs,
spanning �1.5 decades in time. In Fig. 3, we plot the data, l�(t),
divided by a power law with a scaling exponent of 1⁄2, and by using
the estimates t0 and a. The figure shows that individual trajec-
tories are nearly power laws, whose scaling exponents deviate
slightly from 1⁄2. This is further illustrated in Fig. 4, which shows

the distribution of scaling exponents, whose mean value is 0.45
and whose standard deviation is 0.07. The mean value of the
amplitude of reconnections, a, is 718 �m/s�, �2.3 times larger
than �1/2.

Also shown in Fig. 4 is the distribution of scaling exponents for
the distance separating pairs of initially proximal particles that
are chosen arbitrarily from the background by using the same
sequences of images as those chosen for reconnection studies;
353 pairs of tracks that were nearby at some moment during their
trajectory are studied. The mean scaling exponent for these
random particle pairs is zero, which reflects the fact that the
background flow evolves over longer time scales and on larger
length scales than do reconnections. We are aware that the
negative values of the exponent in the background flow suggest
a loss of differentiability but are prevented from commenting on
this property further because the choice of the virtual origin
imposes a large uncertainty in the determination of the exponent
when it is close to zero. We interpret the main conclusion of the
figure to imply that our analysis gives random pairs an exponent
close to zero whereas those involving reconnections have an
exponent centered near 0.5.

Discussion
Here, we argue why the scaling exponent for the distance
separating vortices after reconnection is approximately 1⁄2. The
motions of the interacting vortices that we observe occur on
scales of a few tens to a few hundreds of micrometers. Because
these length scales are much larger than the vortex core size and
much smaller than the distance to other vortices and the
boundaries of the container, it is plausible that the influences of
the initial and boundary conditions are negligible. To capture the
gross dynamics of the system, we characterize the configuration
of the vortices at some time, t, in terms of a single length scale,
l(t). Therefore, we seek an intermediate asymptotic description

A

B

C
1 mm

Fig. 2. Images of reconnecting vortices in superfluid helium, made visible by particles trapped on the vortex cores. (A–C) The series of frames are images of hydrogen
particles suspended in liquid helium, taken at 50-ms intervals. Some of the particles are trapped on quantized vortex cores, whereas others are randomly distributed
in the fluid. Arrows show where the decorated vortex cores appear to leave the illuminating light sheet and become invisible. Before reconnection, the particles drift
collectively with the background flow in a configuration similar to that shown in the first frames of A–C. Subsequent frames show reconnection as the sudden motion
of a group of particles. (A) Both vortices participating in the reconnection have several particles along their cores. In projection, the approaching vortices in the first
frame appear to be crossed. (B) Particles initially decorate only one vortex, and the other vortex probably has not yet trapped any particles. (C) We infer the existence
of a pair of reconnecting vortices from the sudden motion of a single pair of particles recoiling from each other.

13708 � www.pnas.org�cgi�doi�10.1073�pnas.0806002105 Bewley et al.
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Figure 2.3.Visualization of individual pairs of reconnecting vortices decorated with hydrogen
particles in superfluid helium. Different labels refer to different events with different visual
perspectives. Subsequent snapshots in each row are taken at intervals of 50ms. Images taken
from [29] to which we refer for further details.

58



2.1 Visualization experiments in superfluid helium

where σ is the arc length along the vortex, using the Biot–Savart
integral. Schwarz (10) laid the foundation for studying vortices after
reconnection, using the so-called local induction approximation
(LIA) (44). This approximation truncates the Biot–Savart integral
by neglecting nonlocal terms, reducing it to a much more tractable
form. We note that this approximation has in fact been redis-
covered several times (45) since the original work of Da Rios in
1906 (46). The LIA implies

∂s
∂t

’ β
∂s
∂σ

×
∂2s
∂σ2

; [1]

where β ’ κ. We neglect logarithmic corrections that depend on
the radius of curvature of the vortex and the core size, absorbing

them into the constant parameter β. This equation has self-similar
solutions for the evolution of the vortex shapes after reconnection
(33, 47) and predicts emission of Kelvin waves as an inevitable
consequence of the relaxation of any angle-like configuration (8).
Note that waves excited by the relaxation of a cusp are localized
and polychromatic unlike, for example, the periodic waves artifi-
cially excited on straight vortices in recent numerical studies of the
Kelvin wave cascade (48, 49). First we define the dimensionless
similarity coordinate η= σ=

ffiffiffiffi
βt

p
. Then, substituting a self-similar

solution of the form sðσ; tÞ= ffiffiffiffi
βt

p
GðηÞ into the LIA equation gives

1
2
G−

1
2
ηG′=G′×G″; [2]

where the primes denote differentiation with respect to η. How-
ever, solutions to this simple equation cannot exactly describe
our system, which is at finite temperature. Coupling between the
superfluid and the residual normal component via the mutual
friction must be included. Therefore, we consider a modified
LIA equation with a phenomenological temperature-dependent
damping term αðTÞd2s=dσ2 as done by Schwarz (10) and Lipniacki
(33), which after the substitution used to obtain Eq. 2 results in

1
2
G−

1
2
ηG′=G′×G″+ αðTÞG″: [3]

Solutions to Eq. 3 are a two-parameter family of curves that can
be completely specified by the temperature-dependent damping
term αðTÞ and the initial curvature c0, which determines, via
integration of Eq. 3, the opening angle between the two tails
of the retracting vortex line (illustration in Fig. 1B). Note that
c0 =A=4, where A is the dimensionless prefactor of the scaling
law of the interfilament separation distance. Based on our tem-
perature and previous measurements of the mutual friction co-
efficient (50), we estimate α = 0.27.
In addition to the LIA model, we considered novel simi-

larity solutions of a Biot–Savart model akin to that described by
Hormoz and Brenner (51) but modified to include the damping
term, which leads to an equation analogous to Eq. 3:

1
2
G−

1
2
ηG′=G′×G″+ αG″+F½G�: [4]

The additional term F½G� approximates nonlocal contributions to
the velocity of the filament. We solve Eq. 4 using coupled-delay
differential equations to incorporate the nonlocal interactions.
As with LIA, the solutions are a two-parameter family of curves
characterized by the prefactor A and the temperature-dependent
constant α.

t < t0

t = t0

t > t0

A B

Fig. 1. (A) Schematic diagram of two vortices reconnecting and exchanging
tails, where the red and blue arrows represent the direction of vorticity. (B)
After reconnection, the relaxation of the vortex excites Kelvin waves thought
to propagate in a self-similar manner. Reprinted with permission from Schwarz
KW, Phys Rev B Condens Matter 31:5782–5804 (1985). Copyright 1985 by the
American Physical Society, http://prb.aps.org/abstract/PRB/v31/i9/p5782_1.
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Fig. 2. (A) Four frames of our movie sequence (see Movie S1) along with
circled particles used in the tracking analysis. (B) The positions of the particle
tracks on the upper branch show oscillatory behavior after the reconnection
event. The cross is the estimated location of the reconnection event.
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Fig. 3. (A) The vertical position of the particle tracks on the upper branch
shows marked oscillatory behavior just after the observed reconnection. (B)
The observed maxima and minima of the vertical positions from A. These are
consistent with the expected behavior for spatial scales close to a reconnec-
tion event z− zo ∼ ðt − toÞ1=2.
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Figure 2.4.Visualization of Kelvin waves propagating after a reconnection event in superfluid
helium. The circles indicate hydrogen particles decorating the vortex. Images taken from [64]
to which we refer for further details.

the velocity distribution of particles in quantum turbulence experiments [137, 170].
Such issue will be discussed in more detail in chapter 5.

The first observation of Kelvin waves in superfluid helium sampled with hydrogen
ice particles [64] is reported in Fig. 2.4. The helicoidal perturbation observed in the
experiment is generated after a reconnection event and it is compatible with LIA and
Biot-Savart self-similar solutions, adjusted with a damping term that takes into account
finite temperature mutual friction effects.

Solidifed particles have been adopted in combination to PTV to study thermal
counterflow as well. An important counterflow experiment was performed by Paoletti
et al. [197] in the same range of temperatures of [250] but at lower values of the heat
flux (between 𝑞 = 13mW/cm2 and 𝑞 = 91mW/cm2). Thanks to the PTV method, a
bimodal probability distribution for the particle velocity along the counterflow was
observed, with one peak associated with smooth trajectories following the normal fluid
component and another associated with irregular trajectories moving in the opposite
direction. These results partially confirmed the scenario arised in the PIV experiment
[250] in which a fraction of particles moves in the direction opposite to the normal fluid
component, being trapped in a tangle of quantum vortices carried by the superflow.
However, the peak associated to the particles trapped in the tangle drops when the
temperature is increased (which means lower vortex line density) or the heat flux is
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increased (which means higher normal fluid velocity). Therefore, an apparent paradox
emerged, since in the PIV experiment [250] the average particle velocity was always
proportional to 𝑣n and independent of temperature. This contradition was solved by
further theoretical studies in the vortex filament framework [114, 115] and a subsequent
PTV experiments over a wider range of heat fluxes and normal fluid velocities [39,
148]. It was shown that the bimodal behaviour is present only for sufficiently low
counterflow velocities. Conversely, above a critical velocity the particles get untrapped
from the vortices and the distribution becomes monovalued, with the tangle causing a
friction slowdown as in the original PIV experiment [250].

In conclusion, the PTV technique with solidified ice particles as probes is a powerful
and promising method for the investigation of superfluid physics, provided that a
strong theoretical backgroung is able to support them. This is indeed the main motiva-
tion that led to the work exposed in the following chapters of this Thesis, which has
been inspired precisely by the avant-garde experiments described in this section.

2.1.4 Fluorescence ofHe∗
2 excimers

Finally, we mention a recent visualization technique using excited He∗
2 molecules as

probes, which are claimed to be sensitive only to the normal fluid [71, 90, 147, 151]. In
particular the triplet stateHe2(𝑎3𝛴+

u ) is metastable but with a long decay time (∼ 13 s),
and can be produced easily and in large amount by excitating helium ground state
atoms. Excimers immersed in liquid helium form very small bubbles of radius 6Å,
which can be detected using a laser-induced fluorescence technique [91]. Given their
small size, the binding energy of theHe∗

2 molecules to quantumvortices at temperatures
larger than 1K is not sufficient to get them trapped and Stokes drag is expected to be the
dominating force [235]. Therefore these excimers are perfect candidates for sampling
the normal fluid component, even at the Kolmogorov scale. In the experiments [71, 90,
147] a tracer line of excimers is produced with a laser-field ionization and then probed
using a laser in a counterflow setting of superfluid helium. The presence of a turbulent
regime in the normal fluid is shown, in which the dissipation acts at all scales due to the
mutual friction with the superfluid component. Such turbulence is achieved when the
heat flux generating the counterflow is large (see Fig. 2.5) and the local velocity can be
measured by dividing the displacement of a small line segment along the counterflow
direction by the drift time (i.e. the time gap between the creation and the imaging of
the tracer line). One limitation is thus that only the velocity component perpendicular
to the tracer line can be measured, but some expedients are being studied to overcome
this issue [92].

The imaging of helium excimers is an interesting technique because it allows for the
estimation of useful quantities in turbulence like structure functions, and thus helps
in characterizing the normal fluid component in thermal counterflow. Moreover, at
sufficiently low temperature, triplet molecules could become trapped in quantized
vortex cores, allowing for the imaging of superfluid vortices [235] and tracing a tur-
bulent quantum vortex tangle [252]. As we will stress in the publications [76, 79],
having small particles as probes for quantum vortices is theoretically the best solution,
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the closed end of a flow channel containing superfluid helium. The
normal-fluid component carries the heat and moves away from the
heater at a mean velocity vn = q=ρST, where q is the heat flux, ρ is
the helium density, T denotes the temperature, and S represents
the specific entropy of helium (54). The superfluid component
moves toward the heat source, serving to eliminate any net mass
flow. It has been known for many years that, above a (small) critical
value of heat flux, the superfluid component in counterflow
becomes turbulent. This results in a tangle of quantized vortex
lines, whose dynamical behavior is an essential ingredient of
quantum turbulence (55). Counterflow allows a controlled forcing
of the superfluid state away from equilibrium.
A number of flow visualization experiments have been per-

formed in thermal counterflow. Early PIV experiments indicated
that average particle velocities were typically less than the nor-
mal-fluid velocity vn (26). Subsequently, using PTV techniques,
Paoletti et al. showed that, at low relative velocity, the particle
velocity distribution is indeed bimodal (56). Some particles move
in the opposite direction to the heat current. These particles are
interpreted as being trapped in the tangle of quantized vortices
generated by the counterflow [note that the vortex tangle moves
toward the heat source with a velocity that is generally different
from the superfluid velocity (48)]. The rest of the particles are
mainly influenced by Stokes drag, from the normal-fluid flow,
and their velocity agrees with the prediction of Landau and
Lifshitz (54). Note, however, that particle trapping is generally
a dynamical phenomenon; i.e., particles can also escape from
vortices, depending on the experimental conditions. More re-
cently, Chagovets and Van Sciver (19) also used PTV to show
that the bimodal velocity distribution occurs only at low relative
velocities and that above a critical velocity, associated with the
particles being untrapped from vortex lines, the velocity distri-
bution becomes monovalued, similar to that observed by Zhang
and Van Sciver, using PIV (26).

To unambiguously examine the normal-fluid motion in ther-
mal counterflow, the He*2 molecule visualization technique was
recently used (23). The He*2 tracers were produced by a tungsten
field-emission source in a glass counterflow channel. A focused
pump laser pulse at 910 nm was used to tag a line of molecules
across the channel by driving the molecules to a long-lived vi-
brational level a(1) (Fig. 3A). This tagged line was imaged sub-
sequently, using a probe laser pulse at 925 nm. Up to 40 images
were superimposed at each given pump–probe delay time to
achieve a good image quality. Typical summed images are shown
in Fig. 3B, suggesting a flat averaged normal-fluid velocity profile
that should be expected for turbulent flow, in a long enough
channel. The observed rapid growth of the averaged line width
with time further supports the claim that the normal-fluid flow is
turbulent (23). Note that, due to the mutual friction between the
two fluid components, dissipation occurs at all length scales in
the normal fluid, which contrasts with the situation in classical
turbulence, where dissipation is deemed to take place only below
a small length scale, called the Kolmogorov length scale (54).
The experiment revealed a unique normal-fluid turbulence in
counterflow (57).

Normal-Fluid Turbulence in Counterflow. The unique type of tur-
bulence just discussed obviously calls for further attention.
Studying it not only will likely broaden our understanding of
turbulence in general, but also might have practical significance
because the turbulent normal-fluid flow could, e.g., alter our
understanding of heat transfer. An experiment has been specif-
ically designed at Florida State University to examine the nor-
mal-fluid velocity field in counterflow. A thin line of He*2 tracers
is created via laser-field ionization in helium. To achieve the
required high electric field for ionizing ground state helium
atoms, laser intensity as high as 1013 W/cm2 is needed (58). Such
a high instantaneous laser intensity can be achieved by focusing
a femtosecond laser pulse through a tiny cross-section. The
molecule density so created is high enough to allow high-quality
single-shot imaging of the tracer line. Fig. 4 shows fluorescence
images of He*2 tracer lines that have been successfully generated
and imaged in counterflow, at 1.85 K, with a 35-fs laser pulse, at
55 μJ. At low heat fluxes, a straight tracer line deforms into
a parabolic shape, indicating the Poiseuille laminar velocity
profile of the normal fluid. At large heat fluxes, the tracer line
distorts, possibly due to the turbulent eddies in the normal fluid.
The local normal-fluid velocity could then be estimated by di-
viding the center displacement of a small line segment by the
drift time. Structure functions of the turbulent flow could be
computed based on the derived velocities (59), which should
allow us to gain information on the turbulent energy spectrum.
By creating multiple lines to include crosses or grid tracer
structure, measurements of normal-fluid vorticity and other
complex velocity derivatives can be made.
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Fig. 3. (A) Schematic diagram showing the optical transitions for imaging
the He*2 triplet molecules. The levels, labeled 0, 1, 2 for each electronic state,
are the vibrational levels of the corresponding state. (B) Averaged images of
a line of tagged helium molecules via the tagging fluorescence method
across a square channel (5 mm side width) in thermal counterflow with
a heat flux of 640 mW/cm2.
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Fig. 4. Fluorescence images showing the motion of a thin line of He*2 tracers in thermal counterflow. The tracer line is created via laser-field ionization by
focusing a femtosecond laser pulse into superfluid helium. The drift time denotes the time between the creation and the imaging of the tracer line. The
second image was taken in steady-state flow, whereas the third image was taken by the time the heater was turned off.
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Figure 2.5. Fluorescence imaging of a thin line of He∗
2 excimers in thermal counterflow. Images

taken from [91], to which we refer for further details.

therefore excimers could be a promising option also for vortex tracking at very low
temperature, if succesfully developed.

2.2 Dynamics of particles in classical hydrodynamics

In this section we review the key steps for the derivation of the equation of motion
for a body immersed in a classical fluid. Some of the concepts introduced here will be
recovered in the following section describing the models for particles in superfluids,
as well as in the results presented in the publications included later in this Thesis. In
particular, we focus on the case of an incompressible fluid described by the velocity
field 𝒗(𝒙, 𝑡), which obeys the Navier–Stokes equation:

𝐷𝒗
𝐷𝑡 = −1

𝜌∇𝑝 + 𝜈∇2𝒗 + ̃𝒈, (2.1)

with the incompressibility condition

∇ ⋅ 𝒗 = 0, (2.2)

and where 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + (𝒗 ⋅ ∇) is the material derivative, 𝜌 is the constant homo-
genous density, 𝑝(𝒙, 𝑡) is the pressure field, 𝜈 is the kinematic viscosity and ̃𝒈 is the
gravitational acceleration. We start by defining a tracer, also called Lagrangian particle
or fluid particle, which is a point 𝒒(𝑡) following the streamlines of the flow. Its equation
of motion is thus

̇𝒒(𝑡) = 𝒗(𝒒(𝑡), 𝑡), (2.3)

with the initial condition ̇𝒒(𝑡0) = 𝒗(𝒒(𝑡0), 𝑡0). By definition a tracer is a passive and
buoyant point particle. The trajectories of tracers are fundamental objects, since all
the Lagrangian description of fluid dynamics is based on them. However, the dynam-
ics of real finite size and inertial particles is more complex than the one of an ideal
fluid particle. We will show at the end of this section some limits in which the tracer
behaviour can be recovered.
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2 Particles in fluids and superfluids

In general, we assume that a particle immersed in a fluid is a rigid body of mass 𝑀p
described by the position of its center of mass 𝒒(𝑡), which moves with a velocity ̇𝒒(𝑡).
Note that the incompressibility approximation (2.2) is valid as long as the velocity
of the particle remains smaller compared to the speed of sound in the liquid. The
equation of motion for such particle is given by

𝑀p ̈𝑞𝑖 = 𝑀p ̃𝑔𝑖 + 𝐹𝑖 with 𝐹𝑖 = ∮
𝜕𝔹

𝜎𝑖𝑗𝑛𝑗 d𝛴, (2.4)

where 𝔹[𝒒(𝑡)] is the volume occupied by the particle and the integral is extended
over the full particle surface 𝜕𝔹[𝒒(𝑡)]. The unit vector ̂𝒏 is the outward normal to the
particle surface and 𝜎𝑖𝑗 in the stress tensor of the fluid

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜈𝜌 (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

) . (2.5)

In this Thesis we deal with spherical particles but many of the conclusions can be in
principle generalized to the case of rigid particles with an arbitrary shape. The problem
consists in giving an explicit expression for the force 𝐹𝑖 in Eq. (2.4) that only depends
on the particle degrees of freedom, or in other words evaluating the stress tensor on the
particle surface. In the following, we first consider the case of an inviscid irrotational
fluid, adding later the contribution due to rotational and viscous effects.

2.2.1 Particle motion in ideal irrotational fluids

We indicate with 𝒗0(𝒙, 𝑡) the undisturbed fluid velocity field when the particle is absent,
while 𝒗(𝒙, 𝑡) is the velocity field in presence of the particle, both in the laboratory
reference frame. In the following we will consider the coordinate system moving
with the particle 𝒙′(𝑡) = 𝒙 − 𝒒(𝑡), in which the relative velocity field is denoted by
𝒘(𝒙′, 𝑡) = 𝒗(𝒙′ + 𝒒(𝑡), 𝑡) − ̇𝒒. Analytical calculations can be performed if the length
scale at which the flow varies is much larger than the particle size 𝑎p, namely if the
following parameter remains small:

𝜖p = 𝑎p
∥∇𝒗0(𝒒)∥

∣𝒗0(𝒒) − ̇𝒒∣ = 𝑎p
∥∇𝒗0(𝒒)∥
∣𝒘0(𝟎)∣ ≪ 1. (2.6)

In the case of an ideal (inviscid) fluid the viscous term proportional to 𝜈 in Eq. (2.1)
is absent, and the stress tensor (2.5) is just given by the diagonal terms proportional to
the pressure 𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗. The presence of the particle imposes the free slip boundary
condition for the flow around it

𝒘(𝒙′) ⋅ ̂𝒏 = 0, ∀𝒙′ s.t. ∣𝒙′∣ = ∣𝒙 − 𝒒∣ = 𝑎p, (2.7)

while far from the particle the flow tends to the undisturbed field

𝒘(𝒙′) → 𝒘0(𝒙′), ∀𝒙′ s.t. ∣𝒙′∣ = ∣𝒙 − 𝒒∣ ≫ 𝑎p. (2.8)
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In the standard treatment of the problem, the fluid velocity field is splitted into the far
field component plus corrections due to the presence of the particle [8, 150, 181]:

𝒘 = 𝒘0 + 𝒘p + 𝒘BC, (2.9)

where we are assuming that the flow is also irrotational. In this case, Eq. (2.9) can be
written also in terms of the corresponding velocity potentials:

𝜙 = 𝜙0 + 𝜙p + 𝜙BC, (2.10)

so that 𝒘 = ∇𝜙, 𝒘0 = ∇𝜙0, 𝒘p = ∇𝜙p and 𝒘BC = ∇𝜙BC. The contribution 𝒘p is of the
order of magnitude of 𝒘0, and it represents the perturbation of a homogeneous flow
due to the presence of a sphere. Its potential reads [19]

𝜙p =
𝑎3
p

2|𝒙′|3
𝒙′ ⋅ 𝒘0(𝟎, 𝑡) =

𝑎3
p

2|𝒙 − 𝒒|3
(𝒙 − 𝒒) ⋅ (𝒗0(𝒒, 𝑡) − ̇𝒒) , (2.11)

so that at the boundary of the particle

𝒘p(𝑎p ̂𝒏) ⋅ ̂𝒏 = −𝒘0(𝟎) ⋅ ̂𝒏 = ( ̇𝒒 − 𝒗0(𝒒)) ⋅ ̂𝒏 (2.12)

In the case of a homogenous flow this correction would be sufficient to satisfy the
boundary condition (2.7) by construction, while the general case of an inhomogenous
flow it is necessary to add the contribution 𝒘BC. This is indeed fixed by the condition

𝒘BC(𝑎p ̂𝒏) ⋅ ̂𝒏 = (𝒘0(𝑎p ̂𝒏) − 𝒘0(𝟎)) ⋅ ̂𝒏 = (𝒗0(𝒒 + 𝑎p ̂𝒏) − 𝒗0(𝒒)) ⋅ ̂𝒏, (2.13)

which is satisfied at the order 𝒪(𝜖p) if the potential 𝜙BC reads

𝜙BC = 1
2𝑒𝑖𝑗𝑥′

𝑖𝑥′
𝑗 = 1

2
⎛⎜⎜
⎝

𝜕𝑣𝑖
𝜕𝑥𝑗

∣∣∣∣𝒒
+

𝜕𝑣𝑗
𝜕𝑥𝑖

∣∣∣∣𝒒
⎞⎟⎟
⎠

(𝑥𝑖 − 𝑞𝑖)(𝑥𝑗 − 𝑞𝑗), (2.14)

where 𝑒𝑖𝑗 is a shortcut for the strain rate tensor evaluated at the particle position. The
pressure field 𝑝′(𝒙′, 𝑡) in the coordinates system of the particle can be evaluated writing
the momentum equation (2.1) for an inviscid irrotational fluid

𝜕𝒘
𝜕𝑡 + ̈𝒒 + 1

2∇|𝒘|2 = −1
𝜌∇𝑝′ + ̃𝒈, (2.15)

which implies the Bernoulli equation

𝑝′ = −𝜌 (𝜕𝜙
𝜕𝑡 + 1

2|∇𝜙|2 + ̈𝒒 ⋅ 𝒙′ − ̃𝒈 ⋅ 𝒙′) + 𝐶𝑝(𝑡), (2.16)

where 𝐶𝑝(𝑡) is a homogenous term which is fixed by the far field boundary condition
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(2.8). Therefore, the force term in Eq. (2.4) can be computed as

𝑭 = − ∮
𝜕𝔹

𝑝′ ̂𝒏d𝛴 = 𝜌 ∮
𝜕𝔹

(𝜕𝜙
𝜕𝑡 + 1

2|∇𝜙|2) ̂𝒏d𝛴 + 𝑀0 ( ̈𝒒 − ̃𝒈) , (2.17)

where in the last term we have used the divergence theorem and defined the fluid
mass displaced by the particle as

𝑀0 = 𝜌 ∫
𝔹
d𝒙′ = 4

3𝜋𝜌𝑎3
p. (2.18)

Using the definition (2.10) with (2.11) and (2.14) and applying again the divergence
theorem we get the formula for the hydrodynamic force [8]

𝑭 = (𝐶a + 1) 𝑀0
𝐷𝒗0
𝐷𝑡 ∣

𝒒
− 𝑀0 ̃𝒈 − 𝐶a𝑀0 ̈𝒒, (2.19)

where the value of the coefficient 𝐶a = 1/2 is due to the spherical shape of the particle.
Considering particles of different shapes would give a different value, for instance for
a cylinder 𝐶a = 1 [19]. The equation of motion (2.4) can be rearranged in the following
way:

𝑀eff ̈𝒒 = (𝑀p − 𝑀0) ̃𝒈 + (𝐶a + 1) 𝑀0
𝐷𝒗0
𝐷𝑡 ∣

𝒒
, (2.20)

where we have defined an effective mass

𝑀eff = 𝑀p + 𝐶a𝑀0, (2.21)

in which we have collected the actual mass of the particle 𝑀p and the so called added
mass 𝐶a𝑀0. The physical origin of such increment of the inertia lies in the finite size of
the particle, which has to displace the same amount of fluid occupied by its volume
while it moves. The force term related to the fluid acceleration is

𝑭acc = (𝐶a + 1) 𝑀0
𝐷𝒗0
𝐷𝑡 ∣

𝒒
, (2.22)

and in Eq. (2.20) we also recognize the familiar body force term

𝑭g = (𝑀p − 𝑀0) ̃𝒈, (2.23)

which is gravitational force minus buoyancy. It arises for a reason similar to the added
mass effect and its consequence is that particles with the same mass density of the
fluid (i.e. with unitary mass ratio ℳ = 𝑀p/𝑀0 = 1) do not feel the effect of gravity.
These kind of particles are usually called neutrally buoyant particles, while they are
called heavy if ℳ > 1 and light if ℳ < 1. It is interesting to notice that in the case of
neutral particles any dependence on the mass disappears in (2.20), which becomes
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simply
̈𝒒 = 𝐷𝒗0

𝐷𝑡 ∣
𝒒
, (2.24)

meaning that particle and fluid feel exactly the same acceleration, given by the pressure
gradient.

At this point we should stress that a quantum fluid like liquid helium close to zero
temperature can be modeled at sufficiently large scales as an inviscid, incompressible
and irrotational classical fluid. The same is true for a fluid described by the GP model
at scales larger that the healing length and if sound waves are weak. As a consequence,
Eq. (2.20) can be used to describe the motion of a large spherical particle in a low
temperature superfluid, in the case in which the flow does not circulate around the
sphere, namely if there are no vortex filaments piercing the particle. This situation is
indeed the one studied in [15] in the framework of the vortex filament method and in
[75] using the GP theory. This latter case is reported in chapter 3 of this manuscript,
where Eq. (2.20) is derived in the GP framework (in absence of gravity), taking as
undisturbed flow 𝒗0 the one generated by a straight vortex line (1.132) far from the
particle.

2.2.2 Rotational effects

We briefly mention what changes in the case of a rotational ambient flow, in which
the vorticity 𝝎0 = ∇ × 𝒗0 is different from zero. At order 𝒪(𝜖p), namely for a uniform
straining flow, the vorticity is also uniform. Then, since the rate of change of vorticity is
of order |𝜕𝝎0/𝜕𝑡| ∼ ∥∇𝒗0∥2, in the time interval needed for the flow to go past the sphere
𝛿𝑡 = 𝑎p/|𝒘0(𝟎)| the change in the vorticity is small |𝛿𝝎0| = 𝑎p∥∇𝒗0∥2/|𝒘0(𝟎)| ≪ 𝝎0.
Therefore the rate of change of the vorticity can be also neglected at the order 𝒪(𝜖p)
and the decomposition (2.9) is still valid with the addition of an extra rotational term
𝒘𝜔. The rotational correction must satisfy the usual boundary condition 𝒘𝜔 ⋅ ̂𝒏 = 0 at
the surface of the particle and leads to the following force [7, 8]:

𝑭𝜔 = 𝐶𝜔𝑀0 (𝒗0(𝒒) − ̇𝒒) × 𝝎0(𝒒), (2.25)

with 𝐶𝜔 = 1/2 for a spherical particle. Such force, which must be added in the right
hand side of Eq. (2.20), represents a lift force orthogonal to the relative velocity between
the ambient flow and the particle, that arises because of the stretching of the vorticity
lines in the vicinity of the particle surface. We write for completeness the full equation
of motion of the particle in an incompressible ideal fluid:

𝑀eff ̈𝒒 = (𝑀p − 𝑀0) ̃𝒈 + (𝐶a + 1) 𝑀0
𝐷𝒗0
𝐷𝑡 ∣

𝒒
+ 𝐶𝜔𝑀0 (𝒗0(𝒒) − ̇𝒒) × 𝝎0(𝒒). (2.26)

The rotational term requires the existence of a continous non-zero vorticity field. The
limiting case in which the vorticity is always zero apart where the particle is gives rise
to the Kutta-Jukovskii lift force (also called Magnus effect), which can be completely
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2 Particles in fluids and superfluids

solved using just the potential flow.

2.2.3 Magnus effect

If the flow is inviscid, incompressible and irrotational but it has a non-zero circulation
𝛤 around the particle another term arises in its equation of motion. This limiting
situation in which irrotationality and circulation coexist in the same flow is possible
only if a line of singular vorticity runs through the particle. Although such picture is
rather unnatural in a classical perfect fluid, it corresponds exactly to what happens
in superfluid helium experiments, where particles used as probes are trapped by
quantum vortex filaments [54]. However, such exotic object is still a solution that can
be treated in classical fluid mechanics, and gives rise to the lift force known as Magnus
effect [109, 138]. The velocity field 𝒗v generated by the vortex is the same given in Eq.
(1.132). We choose the system of reference with the particle center as origin, the vortex
line that lies on the 𝑧 axis and the relative velocity between the particle and the ambient
fluid aligned to the 𝑦 axis. In this configuration, the potential associated to the vortex is

𝜙v = 𝛤
2𝜋 arctan 𝑦

𝑥 , (2.27)

which has to be added to the decomposition (2.10). The Magnus effect arises from
the coupling ∇𝜙p ⋅ ∇𝜙v inside the pressure term integrated in (2.19). In the chosen
coordinates system the only non-zero contribution to the force is along the 𝑥 axis,
orthogonal to both the vortex filament and the particle relative velocity:

𝐹Magnus
𝑥 = 𝜌 ∮

𝜕𝔹
𝜌 (∇𝜙v ⋅ ∇𝜙p) ̂𝒏d𝛴 = 3

2𝜌𝛤𝑎p𝑤0𝑥(𝒒). (2.28)

Generalizing to the laboratory reference frame, the Magnus force eventually reads

𝑭Magnus = −3
2𝜌𝑎p𝜞 × (𝒗0(𝒒) − ̇𝒒) , (2.29)

where the modulus of the vector 𝜞 is the circulation and it is oriented along the vortex
filament. It is evident that such effect is present only if the particle inside the vortex and
the ambient flow have a non-zero relative velocity. Magnus force causes a precession
of the particle around the vortex filament. This dynamics is present in quantum fluids
and studied in detail in the article [79], reported in chapter 4.

It is worthwile to point out a subtle difference between the Magnus effect described
here and the one present in viscous fluids. In fact, the usual Magnus force is a lift force
that arises when an object rotates and at the same time moves with a translational
velocity in a viscous fluid [19, 196]. In this case the presence of viscosity produces
a boundary layer close to the particle surface that rotates together with the particle.
When the rotating particle also moves with a translational velocity, an asymmetry in
the flow is produced. In particular, on one side of the particle the velocity coming from
rotation is added to the one coming from translation, while on the opposite side the
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2.2 Dynamics of particles in classical hydrodynamics

two contributions are subtracted. The velocity difference is converted into a pressure
difference via Bernoulli principle, producing as a consequence a lift force (see [196]
and next section). Therefore, both in the inviscid and the viscous case the Magnus
effect is induced by Bernoulli pressure. The difference is that in a viscous fluid the
circulation results from the rotation of the particle which carries the fluid close to its
boundary, and could not be possible in absence of viscosity. Conversely, in a perfect
fluid the rotation of an object does not have any effect on the sourrunding flow and the
circulation around it must be triggered by another independent mechanism, which is
indeed the presence of a vortex filament.

2.2.4 Viscous effects

When the viscous dissipation is present in a classical fluid described by the incom-
pressible Navier–Stokes equations (2.1) and (2.2), the derivation of the equation of
motion for the particle becomesmuchmore complex, requiring further approximations
besides the smallness of the flow inhomogeneity at the particle scale1 (2.6) [150, 152].
Firstly, the no-slip boundary condition must be satisfied at the particle boundary:

𝒘(𝒙′) = 𝜴 × 𝒙′, ∀𝒙′ s.t. ∣𝒙′∣ = ∣𝒙 − 𝒒∣ = 𝑎p, (2.30)

where 𝜴 is the angular velocity of the sphere and the usual notation 𝒘 = 𝒗 − ̇𝒒 for
the flow in the coordinate system comoving with the particle is used. An anlytical
treatment of the problem has been performed in [150] in the case of a creeping flow.
In particular, we can decompose the velocity field as

𝒘 = 𝒘0 + 𝒘1, (2.31)

where 𝒘0 is the undisturbed flow and 𝒘1 is the term arising because of the presence
of the particle. Then, the advective terms in the equation for 𝒘1 can be neglected if the
particle Reynolds number tends to zero:

Rep =
𝑎p𝒘0(𝟎)

𝜈 ≪ 1. (2.32)

Note that the condition (2.32) is generally satisfied in the typical particle tracking
experiments, in both classical and quantum fluids [208]. The equation of motion
obtained in [150] is

𝑀eff ̈𝒒 = (𝑀p − 𝑀0) ̃𝒈 + 𝑀0
𝐷𝒗0
𝐷𝑡 ∣

𝒒
+ 𝐶a𝑀0

d𝒗0
d𝑡 ∣

𝒒
+ 𝑭drag + 𝑭Faxén + 𝑭Basset. (2.33)

The immediate consequence of the creeping flow condition (2.32) is that the fluid
acceleration term 𝐶a (𝐷𝒗0/𝐷𝑡)∣𝒒 in the inviscid case (2.20) has been substituted with

1Note that in turbulent flows, this condition implies that the particle size must be smaller than the
Kolmogorov length scale 𝜂 = (𝜈3/𝜖d)1/4, where 𝜖d is the dissipation rate.
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𝐶a (d𝒗0/d𝑡)∣𝒒, where now the total derivative follows the particle trajectory d/d𝑡 =
𝜕/𝜕𝑡 + ( ̇𝒒 ⋅ ∇). However, the added mass coefficient 𝐶a remains the same, only de-
pending on the geometry of the particle. It has been proposed that in the case of an
arbitrary viscous inhomogenoeus flow, the generalization of Eq. (2.33) should contain
the material derivative 𝐷/𝐷𝑡, in analogy with the inviscid case (2.20) [152].

Several new forces emerge in the dynamics of a sphere in a viscous fluid. At low
particle Reynolds number, the dominant one is the Stokes drag

𝑭drag = 6𝜋𝜌𝑎p𝜈 (𝒗0(𝒒) − ̇𝒒) , (2.34)

whose effect is to align the particle velocity to the flow velocity.
The Faxén corrections arise because of the local inhomogeneities of the undisturbed

flow:
𝑭Faxén = 𝐶a

10 𝑀0𝑎2
p
d
d𝑡 ∇2𝒗∣𝒒 + 𝜋𝜌𝑎p𝜈 ∇2𝒗∣𝒒 , (2.35)

and it is of order 𝒪(𝑎2
p/ℓ2

f 𝑭drag), where ℓf is the length scale of the fluid motion. In
turbulent flow it is equal to the Kolmogorov dissipative scale 𝜂, so that the Faxén
correction is generally neglected if 𝑎p < 𝜂.

The Basset history term takes into account the time lag in the development of the
viscous boundary layer as the relative particle-fluid velocity varies with time:

𝑭Basset = 6𝜋𝜌𝑎p𝜈 ∫
𝑡

−∞
𝐾(𝑡 − 𝑡′, 𝑡′) d

d𝑡′ [𝒗0(𝒒(𝑡′), 𝑡′) − ̇𝒒(𝑡′) + 1
6𝑎2

p ∇2𝒗∣𝒒]d𝑡′, (2.36)

with the kernel 𝐾(𝑡 − 𝑡′, 𝑡′) = 𝑎p/√𝜋𝜈(𝑡 − 𝑡′) for short times. The analysis of these
terms at larger times has been developed in [110]. If the viscous relaxation time

𝜏p =
𝑎2
p(2ℳ + 1)

9𝜈 , (2.37)

is shorter than the timescale of the fluid motion 𝜏f, then the Basset hystory term can
be neglected. In turbulent flows, this means that the viscous relaxation time must be
smaller than the Kolmogorov dissipative timescale 𝜏p < 𝜏f = 𝜏𝜂 = (𝜈/𝜖d)1/2.

When Stokes drag is the only non negligible viscous effect, the equation of motion
of the particle can be written in the compact form

̈𝒒 = 𝛾p ̃𝒈 + 𝛽p
𝐷𝒗𝟎
𝐷𝑡 ∣

𝒒
+ 1

𝜏p
(𝒗n(𝒒) − ̇𝒒) , (2.38)

where the parameters

𝛾p = 2ℳ − 2
2ℳ + 1 and 𝛽p = 3

2ℳ + 1 (2.39)

account for the inertial effects. If 𝜏p/𝜏f ≪ 1/𝛽p and 𝜏p/𝜏f ≪ 1/𝛾p then the drag force
(2.34) is dominant with respect to all the other terms and we obtain the equation of
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2.3 Models for particles in quantum fluids

motion for a heavy particle
̈𝒒 = 1

𝜏p
(𝒗0(𝒒) − ̇𝒒) , (2.40)

which gets aligned to the fluid velocity exponentially fast, with a characteristic time 𝜏p.
Eventually, when the relaxation time 𝜏p is so short to be negligible compared with the
shortest timescale of the flow, then the left hand side of Eq. (2.40) can be set to zero
and one recovers the equation for a tracer (2.24).

Note that other subleading terms have been neglected in (2.33), like the Saffman
lift in presence of high shear [198], which become more important when the particle
Reynolds number is larger and are out of the scope of this Thesis. We just mention
that among these extra terms we find also the viscous Magnus force, mentioned in the
end of the previous section, which arises because of the asymmetry in the flow close
to the surface of a rotating particle. If both the particle Reynolds number (2.32) and
the rotational Reynolds number 4|𝜴|𝑎2

p/𝜈 are small, such lift force reads [196]:

𝑭𝜴 = −𝜌𝜋𝑎3
p𝜴 × (𝒗(𝒒) − ̇𝒒) , (2.41)

and must not be confused with the Magnus force in absence of viscosity (2.29), which
is independent of the particle spin 𝜴.

We finally mention that the use of particles to study the Lagrangian properties of
(classical) turbulent flows has seen an important development during the last 30 years,
thanks to the introduction of fast cameras and particle tracking techniques [222]. From
the theoretical side, the behaviour of particles in turbulent flows has been thoroughly
investigated as well [61]. In particular, many studies focused on the transition from the
ballistic regime of particle pairs dispersion (in which the squared separation scales as
𝑡2) to the Richardson regime (in which the squared separation scales as 𝑡3, accordingly
to the Kolmogorov theory) [21, 200, 202]. Moreover, the preferential concentration
of particles in turbulent flows has been extensively studied [36]: for instance, in the
case of heavy particles it was observed that they form fractal clusters in the dissipative
range [20]. In general, the amount of results for classical Lagrangian turbulence is
huge compared to the quantum case. In the next section we will present the main
theoretical and numerical models developed to understand the dynamics of particles
in superfluids and quantum turbulence.

2.3 Models for particles in quantum fluids

Now we outline the models which have been used to describe theoretically and numer-
ically the motion of particles in superfluids. The analytical treatment of the classical
hydrodynamical problem prompted in the previous section will serve as a guidance
for comparison and analogies, both here and in the results presented later.
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2 Particles in fluids and superfluids

2.3.1 One-way coupling

The equations for the dynamics of spherical particles in a classical fluid can be straight-
forwardly generalized to superfluids in the case in which the particles are passive
(they do not modify the flow properties), they are small compared to the scale of
the flow variation, and do not interact strongly with quantized vortices. The last con-
dition in particular implies that particles are not trapped into vortex lines and do
not interfere with their dynamics. Such assumptions are rather constraining, being
satisfied for those flows in which both the Kolmogorov length scale and the mean
inter-vortex distance are much larger than the particle size [181, 208]. If this is the case,
the equation of motion of the particle at finite temperature can be written collecting the
force terms coming from both the superfluid and the normal fluid component, which
have respectively densities 𝜌s and 𝜌n, and velocities 𝒗s and 𝒗n. The two components
contribute equally to the body force 𝑭g (2.23) and the effective inertia 𝑀eff (2.21). Being
the superfluid irrotational and assuming no vortex trapping, the contribution of the
superflow alone is only a Bernoulli fluid acceleration 𝑭(s)

acc (2.22). The normal fluid also
contributes with a term in the form 𝑭(n)

acc (2.22), besides the viscous effects. Among the
latter, at small particle Reynolds number only the Stokes drag 𝑭(n)

drag (2.34) is taken into
account. Eventually the equation of motion for the particle in this one-way coupling
model reads [181, 208]:

𝑀eff ̈𝒒 = 𝑭g + 𝑭(s)
acc + 𝑭(n)

acc + 𝑭(n)
drag = (2.42)

(𝑀p − 𝑀0) ̃𝒈 + (𝐶a + 1) 𝛩p [𝜌s
𝐷𝒗s
𝐷𝑡 ∣

𝒒
+ 𝜌n

𝐷𝒗n
𝐷𝑡 ∣

𝒒
] + 6𝜋𝜌n𝑎p𝜈 (𝒗n(𝒒) − ̇𝒒) ,

where 𝛩p = 4
3𝜋𝑎3

p is the volume of the particle and the displaced mass is computed
with the total fluid density 𝑀0 = 𝛩p𝜌 with 𝜌 = 𝜌s + 𝜌n. Note that Eq. (2.42) implicitly
assumes incompressibility, which is a good approximation for superfluid helium. An
even more compact way of writing Eq. (2.42) is the following:

̈𝒒 = 𝛾p ̃𝒈 + 𝛽p [𝜌s
𝜌

𝐷𝒗s
𝐷𝑡 ∣

𝒒
+ 𝜌n

𝜌
𝐷𝒗n
𝐷𝑡 ∣

𝒒
] + 1

𝜏p
(𝒗n(𝒒) − ̇𝒒) , (2.43)

where the parameters 𝛾p and 𝛽p are the same defined in the previous section in Eq.
(2.39) and the viscous relaxation time 𝜏p (2.37) represents how fast the particle adjusts
its motion to the normal flow. It is evident that the effect of superfluidity is the lack of
a relaxation force aligning the particle velocity to the superflow. This fact was checked
in the case of neutrally buoyant particles [181]. For these particles, with relative mass
ℳ = 1, the effect of gravity is absent 𝛾p = 0, as well as the added mass effect 𝛽p = 1:

̈𝒒 = 𝜌s
𝜌

𝐷𝒗s
𝐷𝑡 ∣

𝒒
+ 𝜌n

𝜌
𝐷𝒗n
𝐷𝑡 ∣

𝒒
+ 1

𝜏p
(𝒗n(𝒒) − ̇𝒒) . (2.44)
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Therefore, if the particle relaxation time 𝜏p is much shorter than the timescale of the
fluid motion 𝜏f, particles behave as tracers of the normal fluid [181]. If 𝜏p ≳ 𝜏f, the
force term coming from the fluid acceleration becomes important. Considering for
example the simplest case in which the two fluids are locked 𝒗s = 𝒗n = 𝒗 (which is
true if the mutual friction is high) , we get the equation

̈𝒒 = 𝐷𝒗
𝐷𝑡 ∣

𝒒
+ 1

𝜏p
(𝒗(𝒒) − ̇𝒒) . (2.45)

Such equation admits the formal solution ̇𝒒(𝑡) = 𝒗(𝒒, 𝑡) with the initial condition
̇𝒒(𝑡0) = 𝒗(𝒒(𝑡0), 𝑡0), meaning that in principle neutral particles could follow the flow.

However it has been shown that this is not the case, since the particle trajectories are
unstable and separate from the streamlines [181]. A similar situation occurs at zero tem-
perature, when the normal fluid is absent. In particular, for neutral particles the equa-
tion of motion becomes the Eq. (2.24) already recovered for an incompressible, inviscid
and irrotational fluid in which the particle acceleration equals the fluid acceleration.
In such case, although in principle imposing the initial condition ̇𝒒(𝑡0) = 𝒗(𝒒(𝑡0), 𝑡0)
would allow the particles to trace the superflow, this is nevertheless impossible for
finite-size particles. Indeed, when the particle velocity is aligned to the superfluid
velocity, next orders in the parameter 𝜖p (2.6) become important and Eq. (2.24) is
not a good description anymore. Such consideration applies perfectly to the setting
of a particle placed far from a vortex line at very low temperature. The trajectories
instability in this particular scenario has been pointed out by the Newcastle group
[15] and recovered in the GP model in the publication [75], presented later in this
manuscript.

As we will show later, particle trapping into quantum vortices seems to be the
dominating mechanism at very low temperature. As a consequence, the one-way
coupling is a suitable model if the temperature is sufficiently high and the inter-vortex
distance is sufficiently large, so that the trapping of particles into quantized vortices is
prevented. It has been shown, indeed, that the presence of a normal fluid can generate
a viscous dipolar disturbance in the vicinity of a quantized vortex [103], which deflects
the particle trajectory and avoid the capture [210]. Other numerical works showed that
in specific settings, the use of a one-way coupling can be appropriate. In [116] a single
vortex ring modeled with the Biot-Savart equation (1.143) with finite temperature
correction collides with a plane sheet of neutrally buoyant particles. It is shown that
less than the 5% of the particles is likely to get trapped, and the particle velocity is similar
to the normal fluid one. An anologus result is shown in [112], where a counterflow
with laminar normal fluid and a vortex tangle is simulated for temperatures larger
than 𝑇 = 1.3K.

Recently, the equation of motion for inertial particles (2.44) has been simulated
coupled with the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model [54], which
is a coarse-grained set of equations, suitable to describe the large-scale motion of a
turbulent superfluid at finite temperature. It consists of two coupled incompressible
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Navier–Stokes equations for the velocity fields 𝒗n and 𝒗s:

𝜕𝒗n
𝜕𝑡 + (𝒗n ⋅ ∇)𝒗n = − 1

𝜌n
∇𝑝n + 𝜈n∇2𝒗n − 𝜌s

𝜌n
𝒇ns + 𝝓n (2.46)

𝜕𝒗s
𝜕𝑡 + (𝒗s ⋅ ∇)𝒗s = − 1

𝜌s
∇𝑝s + 𝜈s∇2𝒗s + 𝒇ns + 𝝓s (2.47)

∇ ⋅ 𝒗n = ∇ ⋅ 𝒗n = 0, (2.48)

where 𝜈n is the viscous dissipation of the normal fluid component and the effective
superfluid viscosity 𝜈s accounts for energy dissipation at scales smaller than those
resolved by the HVBK model, originating from quantum vortex reconnections and
Kelvin wave excitation. The velocity fields are coupled by the mutual friction force
𝒇ns = 𝛼𝛺0(𝒗n−𝒗s), where 𝛼 is a temperature-dependent parameter, and𝛺0 is associated
to the density of quantum vortices in the flow. The forcing terms 𝝓n and 𝒇s represent
the stirring of the flow by an external mechanism. Studying such framework in a coflow
turbulence regime, it was found that at sufficiently low temperature (small normal fluid
fraction) particles cluster along vorticity filaments regardless their physical properties
[179]. Instead, when the normal component is significant the distribution of particles
is comparable to the case of heavy particles in classical turbulence [20]. A mean
counterflow may be also imposed in the HVBK model by setting the average of the
external forces to different values for each of the two fluids. In a strong counterflow
regime, the particle distribution is compatible with a quasi-two-dimensionalization of
the flow, consistent with the arising of an inverse cascade [178].

It is important to stress that a possible bias of all these numerical works is the
absence of an active effect of the particles on the two fluids and on the quantum
vortices, which could in principle modify the scenario. The model discussed in the
following section does not present such issue, given that it is based precisly on the
vortex-particle interaction.

2.3.2 Moving spherical boundaries in the vortex filament model

At low temperature, the chance that particles get captured by quantum vortices seems
to be rather high, as we will see many times in the course of this Thesis and given
the experimental signatures mentioned in section 2.1 . Therefore, the development of
models which take into account the mutual interaction between particles and super-
fluid vortices is needed. The most straightforward approach to challenge this issue
is probably the one devised by the Newcastle group, which implemented particles
as moving boundary conditions of the vortex filament model [15, 113–115, 117, 119],
developing theoretically and numerically the seminal calculations by Schwarz [203].
This model consists of two coupled equations of motion, one for the particle and one
for the vortex. The latter is the standard equation of a vortex filament described as a
parametrized curve 𝒔(𝜉a, 𝑡) (1.143) (see section 1.4.1), modified for taking into account
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the presence of a sphere, together with finite temperature effects:

̇𝒔 = 𝒗BS(𝒔) + 𝒗b(𝒔, 𝒒) + 𝒗p(𝒔, 𝒒, ̇𝒒) + 𝒗mf(𝒔, 𝒒, ̇𝒒). (2.49)

The component 𝒗b represents the effect of the presence of a static sphere at the boundary
of the filament, and it is determined by the free slip boundary condition at the surface
of the particle:

(𝒗BS(𝒙) + 𝒗b(𝒙, 𝒒)) ⋅ ̂𝒏 = 0, ∀𝒙 s.t. ∣𝒙 − 𝒒∣ = 𝑎p. (2.50)

The component 𝒗p = ∇𝜙p is the standard potential flow induced by a moving sphere in
a homogeneous fluid (2.11) evaluated along the filament. Finally, the term 𝒗mf accounts
for the mutual friction of the the filament with the thermal excitations of the normal
fluid component. It is given by the the formula (1.159) where the bulk superflow
𝒗𝑠,0 includes now the boundary conditions due to the particle: 𝒗𝑠,0 = 𝒗b + 𝒗p. The
corresponding equation of motion for the spherical particle results from the integration
of the fluid stress stensor (2.5) in the particular case of the flow generated by vortex -
sphere system just described:

𝑀eff ̈𝒒 = (𝐶a + 1) 𝛩p𝜌s
𝜕𝒗BS
𝜕𝑡 ∣

𝒒
+ 6𝜋𝜌n𝑎p𝜈 (𝒗n(𝒒) − ̇𝒒) + 1

2 ∫
𝜕𝔹

∣𝒗𝐵𝑆 + 𝒗b∣2 ̂𝒏d𝛴. (2.51)

Note that in this model gravity forces are neglected and Stokes drag is assumed to
be the only normal fluid force which affects directly the particle dynamics. The last
term of Eq. (2.51) is a novel contribution to the particle dynamics, which is the direct
expression of the vortex-particle interaction.

One of themain applications inwhich the vortex filamentmethodhas been adopted is
the numerical study of the collision between a finite size neutral particle and a quantum
vortex at finite temperature2 [15, 113, 118–120]. Although the coupled equations (2.49)
and (2.51) describe self-consistently the interaction between a particle and a vortex
when they are well separated, the process of capture needs to be implemented with
an ad-hoc numerical mechanism. Indeed, given the singular nature of the Biot–Savart
integral, the reconnection between the filament and the sphere is not reproduced
by the model. The algorithm developed in [113] for this purpose entails that, if the
particle-vortex distance is smaller than the mesh-size on the filament, extra vortex
points need to be added on the particle surface as well as inside the sphere. Then, the
system composed by the vortex and the trapped particle is treated as a single filament
and also the particle detachement is mimicked with an analogous scheme.

A typical simulation of the vortex filament model for the collision problem is dis-
played in Fig. 2.6, in which the particle is shot towards the vortex at high velocity [119].
When the particle gets trapped by the vortex, the generation of Kelvin waves along
the filament can be observed. Subsequently, the particle drags the vortex, producing a

2We refer to chapter 3 for a treatment in greater detail of the fundamental problem of particle capture
by a superfluid vortex, where we present analytical calculations supported by GP simulations.
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Fig. 15 (Color online) Particle-vortex collision [42] at T = 1.3 K. Initial velocity up = 25 cm/s. Particle
moves from the right. From Kivotides, Barenghi, and Sergeev, Phys. Rev. B 77, 014527 (2008). Reprinted
by permission, ©2008 American Physical Society

Fig. 16 (Color online) Particle trapping on the vortex core [42]. T = 1.3 K, initial velocity up = 20 cm/s.
From Kivotides, Barenghi, and Sergeev, Phys. Rev. B 77, 014527 (2008). Reprinted by permission, ©2008
American Physical Society

Note that in these two, somewhat artificial examples a possibility of nucleation
of quantized vortices (and hence extra dissipation) by a moving particle has been
ignored. A rather high particle velocities (20 and 25 cm/s) were used for the purpose
of illustration only; similar results were obtained as well for considerably smaller
velocities. It is unlikely that in the real turbulent 4He the particle velocity relative to
the vortex core can be as high as in these illustrations. For example, in the counterflow
turbulence up can hardly be larger than vns , the latter usually being considerably
smaller than the critical nucleation velocity.
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Figure 2.6. Collision between a neutral particle and a vortex in the vortex filament method
coupled with hard spheres. The temperature is 𝑇 = 1.3 𝐾, the particle size is 1 𝜇𝑚 and the initial
velocity of the particle is 25 𝑐𝑚/𝑠. Images taken from [119] to which we refer for further details.

stretching of the strands attached to it. These become closer until a self-reconnection
of the filament is produced and the particle is finally released with the generation of a
small ring. In other simulations of the same setting but with a smaller initial particle
velocity, it has been observed that the particle does not escape but remains attached
to the filament [119]. The authors suggested the existence of a critical initial particle
velocity (proportional to temperature and inversely proportional to the sphere radius)
above which the particles always escapes from the vortex. It has been noticed, however,
that such velocities are pretty high and therefore constitute extreme events in typical
flows [208]. Moreover, in [113] it is prompted that the occurrence of capture events
depends strongly on the damping force exerted by the fluid on the particles, that is
basically viscous drag present at finite temperature. As a consequence, at very low
temperature capture events should be prevented. However, in the publication [76],
to which chapter 5 is dedicated, we observed that in a zero temperature quantum
turbulence regime modeled by the GP equation, the majority of particles remains
trapped, with just sporadic episodes of particle detachement and recapture.

The motion of a single particle in a thermal counterflow and in presence of a vortex
tangle has been also investigated using the vortex filament model [115], in support of
the PIV experiment [250] discussed in section 2.1. Such situation has been mimicked
by considering 𝒗n in Eq. (2.49) and (2.51) as a prescribed normal fluid counterflow
velocity. The result of the computation in [115] is that for low counterflow velocities
and a dilute tangle, the particle can sample the normal fluid. Some deviations due
to the interactions with the filaments are detected, but never larger than the 4% of
the normal fluid velocity. At the same time, it has been shown that if the number of
particles is too large (as it is the case in PIV experiments) the properties of the tangle
can be drastically modified [227]. In particular, the vortex line density can increase
and the polarization of the tangle can be affected. Indeed, counterflow tangles are
typically partially polarized, because of the mutual friction that tends to organize
them orthogonally to the stream-wise direction. The presence of particles reduces the
anysotropy between the vortex line density in the transverse and in the stream-wise
direction [16]. The reason of such behaviour can be traced back to the effect of Stokes
drag, that aligning the particle velocities to the normal flow, allows them to strech the
vortex lines in the stream-wise direction.

We finally mention that another effect observed in simulations of the vortex filament
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2.3 Models for particles in quantum fluids

model is a drift of particles along a vortex, once they get stably trapped by the filament
[118]. For a neutrally buoyant, micron-sized particle the drift velocity is ∼ 0.5𝑐𝑚/𝑠, and
it has been associated with a momentum transfer between the Kelvin waves present
along the vortex and the particle. Of course, this is the case if an asymmetry of Kelvin
waves with respect to the particle is present. Otherwise the net drift is expected to be
zero, as it has been observed for instance in GP simulations [79].

In conclusion, the vortex filament model has been certainly the main tool for the
investigation of the particle dynamics in (finite temperature) superfluids during the
last two decades. Although such method enables for the use of particles having a size
comparable with the current liquid helium experiments, obvious limitations are the in-
trinsic presence of a numerical cutoff in the system and the fact that both reconnections
and particle trapping must be added with ad-hoc numerical mechanisms. For these
reasons, other models based on the GP equation have been recently adopted, in which
quantized vortices, reconnections and interaction with the particle are self-consistently
included. We will discuss these models in the remainder of this chapter.

2.3.3 Particles coupled with the Gross–Pitaevskii model

In this pivotal section of the manuscript, we introduce the model that has been used
to achieve the results reported in the following chapters. The first appearance of a
model based on the Gross–Pitaevskii equation, in which particles are described as
repulsive potentials dates back to the 1958 milestone work by Gross himself [89]. The
physical intuition behind such method is actually very simple and therefore powerful.
It lies in the observation that from the perspective of the superfluid, a finite-size
particle is nothing but an extended region of space where the fluid is fully depleted.
In the language of the GP framework this is equivalent to ask that the macroscopic
wavefunction 𝜓 must vanish inside the particle (we refer to section 1.3 for more details
on theGPmodel). Instead of imposing by hand such constraint as a boundary condition,
the same result can be achieved considering as external potential of the GPmodel (1.57)
a highly repulsive potential 𝑉ext(𝒙, 𝑡) = 𝑉p(𝒙, 𝒒(𝑡)), localized around the position 𝒒(𝑡).
The effect of this potential is indeed to deplete the wavefunction in all the regions
where 𝑉p > 𝜇, so that if its functional form has a compact support, it can actually
mimic a localized object. The point 𝒒(𝑡) plays the role of the particle position and if the
potential is isotropic, it coincides with its center. Note that the precise functional shape
of the potential is in general not crucial, provided that it extends for a distance larger
than the healing length (where its strength must be larger than the chemical potential),
and that it drops rapidly to zero at the particle boundaries (say in a distance of the
order of 𝜉). A typical particle potential that has been used in the results reported in
the next chapters is the isotropic smoothed hat function:

𝑉p(𝑟) = 𝑉0
2

⎛⎜
⎝

1 − tanh ⎡⎢
⎣

𝑟2 − 𝜁2
p

4𝛥2p
⎤⎥
⎦
⎞⎟
⎠
, (2.52)

75



2 Particles in fluids and superfluids

x

y

−10 0 10 20

(x− qx)/ξ

0.0

0.2

0.4

0.6

0.8

1.0

ρp/ρ0

Vp/V0

T.F.

0.0

0.2

0.4

0.6

0.8

1.0

ρ
p
/ρ

0

Figure 2.7.Ground state of the GP equation with a particle modeled as a repulsive potential.(left)
2D slice of the GP density passing through the particle center. (right) Corresponding density
profile along the 𝑥 direction (solid blue), and Thomas–Fermi approximation (dashed orange).
In green the particle potential (2.52), with the parameters 𝑉0 = 20𝜇, 𝜁p = 6𝜉 and 𝛥p = 1.5𝜉. The
other parameters of the calculation are 𝑁c = 256 collocation points per side, box size 𝐿 = 2𝜋
and healing length 𝜉 = 4𝐿/𝑁c.

where the parameters 𝜁p and 𝛥p are related respectively to the boundary size and the
core size of the particle. We refer to the Appendix for further details on the parameters
and the numerical implementation of the particles. In the left side of Fig. 2.7 we see a
bidimensional slice of the GP density 𝜌p = 𝑚|𝜓p|2, corresponding to the ground state
𝜓p containing one particle modeled in this way. The ground state is obtained as usual
using the gradient descent method. In the right side, the corresponding density profile
in the 𝑥 direction (solid blue line) is compared with the Thomas–Fermi approximation
(1.98), computed taking 𝑉ext = 𝑉p (dashed orange line). The potential (2.52), which
repels the fluid density inside the particle is displayed in green. Note how the density
profile passes smoothly from zero (in the region occupied by the particle) to the bulk
value 𝜌0 in a distance of approximately one healing length. This behaviour does not
depend on the particle potential but it is an unavoidable occurrence in the GP model,
given the intrinsic dispersion of the system. We stress that particles modeled in this
way are by definition active particles, since they emerge from an interaction potential
coupled with the fluid.

The GP model with hard localized potentials has been initally used without giving
any degree of freedom to the potential center (i.e. fixing 𝒒(𝑡) = 𝒒 = cost) to study the
vortex nucleation or the acceleration of an object immersed in a quantum fluid [67, 101,
165, 243–245]. It allowed to measure the critical velocity for which the superfluidity is
broken and a non-zero drag appears, as well as to show that it is related to the emission
of vortex dipoles (for a circle in 2D) and vortex rings (for a sphere in 3D). In this
last case, three possible stationary solutions have been found for a given sub-critical
relative velocity between the condensate and the obstacle [244]. The lowest energy
state is the laminar flow, the middle energy state consists in a vortex ring pinned by
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Fig. 2 – Sequence of surface contour plots of the fluid density for (a) F = 2 and (b) F = 4. The
motion is from left to right, and the real space deflection due to the attraction of the vortex core is
indicated by the transverse position. The momentum (or time) of each frame is indicated by a dot in
fig. 1(b) and (c), except for the last frame in (a), where P = 1562. Note that after detachment, (b),
the ring size remains constant and the object and ring move at different velocities.

When the vortex core begins to separate from the object boundary, the encircling ring
configuration, corresponding to the stationary solution (2), becomes unstable with respect to
transverse motion, and stochastic fluctuations induce a transition to a pinned ring solution
(3), where the object is bound within the vortex core as in frame 4 of fig. 2(a). In our
simulations, defining the external force, F , at a slight angle to the numerical grid axis is
sufficient to induce the transition. On moving into the core, the object acquires a transverse
velocity thereby deflecting its trajectory (fig. 2). The deflection angle is a few degrees, so this
effect could be observable. If the ring detaches, a second ring forms and the object is pulled
back in the opposite direction. Consequently, vortices are emitted on alternating sides of the
object, similar to the vortex shedding behaviour observed in classical fluids.

The jump into the core also leads to the excitation of oscillatory modes of the vortex
ring fig. 2(a). One mode of oscillation dominates [12] and the frequency is independent of
the applied force. As the fluid is compressible, an accelerating object creates sound waves
which damp the motion. This damping is apparent in the oscillations of the object velocity in
fig. 1(a) inset. If the applied force is maintained the vortex radius continues to increase and
eventually the motion becomes indistinguishable from that of a free vortex ring, indicated by
the dotted line in fig. 1(a).

From fig. 1(a), it follows that excluding the ring excitations, the motion closely follows
the time-independent solutions, therefore these solutions may be used to predict the motion
of more complicated objects. To test whether a spherical object favours the encircling vortex
ring configuration, we performed calculations on a sphere (R = 3.3) with a hemispherical
surface bump (R = 1.5). The largest effect occurs when the bump lies in the equatorial plane.
In this case, the critical velocity is reduced from 0.68 to 0.65, and the vortex ring emerges
asymmetrically with its axis pulled towards the bump. However, the initial ring radius is still
similar to the no bump case. Subsequently, the object or ring rotates such that the vortex
core is pinned to the bump.

Figure 2.8. (left) The three stationary solutions (laminar flow, pinned ring and encircling ring)
of the GP model with highly repulsive isotropic obstacle. Figure taken from [244] to which we
refer for further details. (right) Dynamical evolution of the GP model coupled with a repulsive
particle (2.53). The particle is subjected to a constant force towards the horizontal direction,
slightly tilted to break the symmetry. Figure taken from [242] to which we refer for further
details.

the particle, and the highest level is a particle encircled by a ring (see Fig. 2.8 left). For
high velocities the pinned ring and the encircling ring solution are indistinguishable
and a bifurcation between the two appears at a certain (sub-critical) speed, whose
value depends on the obstacle size.

The effective dynamics of a finite size particle within this GP approach was first
investigated 20 years ago in a seminal work by Winiecki and Adams [242], where the
GP fluid back-action on the particle was included. The Hamiltonian of such system,
including the chemical potential as in (1.118), is

𝐻 = 𝒑2

2𝑀p
+ ∫ ( ℏ2

2𝑚|𝛁𝜓|2 +
𝑔
2|𝜓|4 − 𝜇|𝜓|2 + 𝑉p (|𝒙 − 𝒒(𝑡)|) |𝜓|2) d𝒙, (2.53)

where the position 𝒒(𝑡) of the particle is now a time dependent degree of freedom
and where the first term is its kinetic energy, quadratic in the particle momentum
𝒑 = 𝑀p ̇𝒒(𝒕). The associated Hamilton equations can be derived straightforwardly,
variating with respect to the degrees of freedom:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = [− ℏ2

2𝑚∇2 + 𝑔|𝜓(𝒙, 𝑡)|2 − 𝜇 + 𝑉p (|𝒙 − 𝒒(𝑡)|)] 𝜓(𝒙, 𝑡) (2.54)

𝑀p ̈𝒒 = − ∫ 𝑉p (𝒙 − 𝒒(𝑡)) ∇|𝜓(𝒙, 𝑡)|2 d𝒙. (2.55)

The first equation is the standard GP equation, while the second one is a Newton
equation for the particle position, for which the force term is given by the convolution
between the particle potential and the gradient of the superfluid density. The physical
meaning of Eq. (2.55) can be somehow appreciated considering the limit of a point-
particle, namely substituting the particle potential with a Dirac delta 𝑉p = 𝑔p𝛿(𝒙−𝒒(𝑡)),
where 𝑔p is a coupling constant. In this case the equation for the particle becomes

𝑀p ̈𝒒 = −𝜇
𝑔p
𝑔 ∇ ( 𝜌

𝜌0
)∣

𝒒
= −𝑚

𝑔p
𝑔 ∇ (𝑝cl

𝜌 )∣
𝒒

(2.56)
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where 𝑝cl is the classical pressure of a barotropic fluid (1.117). Therefore, it is clear that
also the force in the right hand side of Eq. (2.55) is a hydrodynamical force related
to the classical pressure gradient, and the convolution with the particle potential just
takes into account the finite size effects. The equation (2.56) coupled with GP has
been studied by Pitaevskii and Astrakharchik, who found that even point particles feel
a drag when they travel at supersonic speed because of the Cherenkov radiation of
phonons [5].

Getting back to the case of finite-size particles, in their pioneering article [242]
Winiecki andAdams observed that the time-dependent evolution of the particle velocity
is indeed consistent with the steady states classified in [244]. Their procedure consisted
in adding an extra constant force 𝑭ext in the right-hand-side of the equation for the
particle (2.55), in order to dynamically variates its momentum as time passes. As
displayed in Fig. 2.8 right the transition between laminar and pinned state was detected
at the critical speed. Moreover, it was observed that the interaction between the particle
and the generated ring induces perturbations on the vortex itself, which in turn affect
the motion of the sphere. This was one of the first numerical evidences of the back-
action of the quantum fluid on the sphere, which is entirely due to the interaction
between the particle and the superfluid and it is encoded in the coupling between the
condensate wavefunction and the particle potential.

In recent years, otherworks explored further the phenomenology of such interactions,
in particular in the case where many particles are present in the system. In [212] the
existence of an attractive interaction between particles immersed in the GP fluid was
investigated. The attraction is mediated by the presence of the superfluid and it is a
consequence of the density gradients originated by the particle potential. A downside
of such effect is that adding more particles to the model (2.53) would in principle lead
to the collapse of all the them. The state in which the potentials overlap with each other
is indeed an optimal configuration for the energy of the system. A technique to avoid
such unphysical occurrence has been implented already in [212] and consists in the
introduction of an interaction potential between the particles, which mimics a hard
sphere repulsion. In the case of 𝑁p particles immersed in the system, the modified GP
Hamiltonian reads:

𝐻 = ∫ ⎛⎜⎜
⎝

ℏ2

2𝑚|∇𝜓|2 +
𝑔
2 (|𝜓|2 −

𝜇
𝑔 )

2
+

𝑁p

∑
𝑖=1

𝑉p(|𝒙 − 𝒒𝑖|)|𝜓|2⎞⎟⎟
⎠
d𝒙

+
𝑁p

∑
𝑖=1

𝒑2
𝑖

2𝑀p
+

𝑁p

∑
𝑖<𝑗

𝑉𝑖𝑗
rep, (2.57)

where the new potential 𝑉𝑖𝑗
rep is indeed a repulsive interaction between each couple of

particles (labelled by 𝑖 and 𝑗). Also in this case, its exact functional shape is not crucial,
provided that it is highly repulsive and short range, so that its only effect is to avoid
the particle overlap. Typically, a good choice is the repulsive part of the Lennard–Jones

78



2.3 Models for particles in quantum fluids

potential used in molecular physics [105]:

𝑉𝑖𝑗
rep = 𝛾rep𝜇 (

2𝑟rep
|𝒒𝑖 − 𝒒𝑗|

)
12

, (2.58)

where 2𝑟rep is the range at which the repulsion starts to act and 𝛾rep is an adjusting
numerical pre-factor (see the Appendix A) for further details). Typically the length
2𝑟rep is set equal to the particle diameter. In this way the overlap is prevented but
particles can still collide. In some other cases it is interesting to study specific effects
due to larger or smaller repulsion (as in the publications [80] and [79] reported in
sections 4.1 and 6.3). In particular, if the repulsion range is sufficiently short, particles
can form compact clusters even at finite temperature ??.

We report here for completeness the equations associated with the Hamiltonian
(2.57) with many particles, which are a straightforward generalization of Eqs. (2.54)
and (2.55):

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = ⎡⎢

⎣
− ℏ2

2𝑚∇2 + 𝑔|𝜓(𝒙, 𝑡)|2 − 𝜇 +
𝑁p

∑
𝑖=1

𝑉p (|𝒙 − 𝒒𝑖(𝑡)|)⎤⎥
⎦

𝜓(𝒙, 𝑡) (2.59)

𝑀p ̈𝒒𝑖 = − ∫ 𝑉p (𝒙 − 𝒒𝑖(𝑡)) ∇|𝜓(𝒙, 𝑡)|2 d𝒙 −
𝑁p

∑
𝑗≠𝑖

𝜕
𝜕𝒒𝑖

𝑉𝑖𝑗
rep. (2.60)

The full model (2.57) has been further used to study the interaction between particles
and vortices in 2D [214], extending a previous work with static obstacles [87]. In
particular, it was elighted how the dynamics of particles can easily become chaotic, as
well as the tendency of particles to be captured by vortices, even when the system is
highly perturbed. Always in the bidimensional case of the model (2.57), it was recently
shown that a dynamics based on Magnus force (2.29) drives vortex dipoles loaded
with massive particles [88]. For what concerns the dynamics described by the model
(2.57) in three dimension, we refer to the original results reported in the chapters 3,4
and 5 of the present manuscript. Finally, in chapter 6, we use the samemodel combined
with the truncation technique in order to study the motion of impurities in a quantum
fluid at finite temperature.

We specify that in all the works presented in this Thesis we considered a spherical
particle and without any rotational degree of freedom. This choice allows us to keep
the model minimal. Of course, a generalization of the model discussed here could
take into account an arbitrary shape for the particle. Studies in this direction may be
justified by the actual suspect of some anysotropy existing in the particles used in
liquid helium experiments. For instance, some angular momentum exchanged when
an elongated particle is trapped by a vortex may be identified. Here we propose the
simplest generalization of a spherical particle, which consists in an axisymmetric
ellipsoid. Calling ̂𝒏 = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃) the orientation unit vector of the
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ellipsoid symmetry axis, a Gaussian potential for the particle would read

𝑉p(𝒙 − 𝒒, ̂𝒏) = 𝑉0 exp
⎧{
⎨{⎩

⎛⎜
⎝

−(𝒓 ⋅ ̂𝒏)2

2𝑎2
∥

− |𝒓 − (𝒓 ⋅ ̂𝒏) ̂𝒏|2
2𝑎2

⟂

⎞⎟
⎠

⎫}
⎬}⎭
, (2.61)

where 𝒓 = 𝒙−𝒒 (with 𝒒 the centroid of the ellipsoid) andwhere 𝑎∥ and 𝑎⟂ are the lengths
of the principal axis (parallel and orthogonal to the symmetry axis, respectively). The
new rotational degrees of freedom are 𝜃(𝑡) (which is the angle between the 𝑧 axis and

̂𝒏) and 𝜙(𝑡) (which is the angle between the 𝑥 axis and the plane where 𝒏 lies). Thus, a
rotational kinetic energy term must be added to the Lagrangian of the system [82]:

𝐸rot
kin(𝜃,𝜙) = 𝐼⟂

2 ( ̇𝜙2 sin2 𝜃 + ̇𝜃2) + 𝐼∥ ( ̇𝜙 cos 𝜃)2
, (2.62)

where 𝐼∥ = 1
10𝑀p (𝑎2

⟂ + 𝑎2
∥ ) and 𝐼⟂ = 1

5𝑀p (𝑎2
⟂) are the moments of inertia respectively

along the axis ̂𝒏 and orthogonal to it. Note that these are also the only parameters that
would change if an axisymmetric particle with an arbitrary shape is considered. Then,
the Hamiltonian of the system is the same as (2.53) with the additional term (2.62),
where ̇𝜃 and ̇𝜙 must be expressed in terms of the canonical moments associated to the
variables 𝜃 and 𝜙.

2.3.4 Bubble fields and multi-component condensates

In this last section, we mention another technique that has been used to model particles
and impurities in the Gross–Pitaevskii framework. It appeared for the first time in the
1958 article by Gross mentioned in the previous section [89], and was shortly after
resumed by Clark [41] as a theoretical support of the electron bubble technique for
probing superfluid helium (see section 2.1.1). In this Gross–Clark model a particle
is not simply described as a single classical degree of freedom, but instead as a full
field driven by a partial differential equation. In particular, the motion of an electron
in a quantum fluid can be described by a linear Schrödinger equation for the electron
wavefunction 𝜙 coupled with the mean field equation for the condensate wavefunction
𝜓. Explicitly, the Hamiltonian of the system is

𝐻 = ∫ ( ℏ2

2𝑚1
|𝛁𝜓|2 + 𝑔1

2 |𝜓|4 − 𝜇1|𝜓|2 + ℏ2

2𝑚2
|𝛁𝜙|2 − 𝜇2|𝜙|2 + 𝑔12|𝜙|2|𝜓|2) d𝒙, (2.63)

where 𝑚1 is the mass of the condensed bosons, 𝑚2 is the mass of the impurity atom
(the electron), 𝜇1 is the energy (per atom) of the condensate and 𝜇2 the energy of the
impurity. The coupling constant of the repulsive interaction between the condensate
and the impurity is denoted by 𝑔12 < 0, assuming a local interaction. The corresponing
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17 Å in physical units, which, being much greater than a,
justifies the asymptotic approach through which we derive
our solution.
A vortex in the condensate is a line !or curve" on which

the complex field # is zero and round which its phase in-
creases by 2$ , which is also the circulation of the flow u of
condensate about the line on curve. The Bernoulli effect of
the flow propels the ion and vortex towards one another with
a force approximately proportional to s!3, where s is the
closest distance between them.10
To observe and elucidate the process of capture of the

impurity by the vortex line we solved Eqs. !4" and !5" by
modifying our finite-differences code previously used to
solve the GP model of the flow around the moving ion.6 See
Ref. 11 for details. Initially the impurity was placed at a
distance of 6 healing lengths from the vortex line. The pro-
cess of capture is clearly seen in Fig. 1. What came as a
surprise is that this process can be better characterized as the
reconnection of the vortex line with its pseudoimage inside
the impurity. Initially the vortex line bends towards the im-
purity at the point where the distance between them is least.
As a result of this interaction the impurity moves around the
vortex axis. The process of capture continues as the vortex
line terminates on the surface of the impurity and its feet
move to opposite poles of the impurity surface. At the same

time helical waves start propagating from the impurity along
the two segments of the vortex line. Such helical waves have
been observed during the relaxation of the vortex angle when
two vortex lines reconnect,12 and are just Kelvin waves.
During the time in which the vortex merges with the heal-

ing layer round the ion %the layer of thickness &a in which
neither ' in Eq. !4" nor # in Eq. !5" can be neglected(, the
character of the solution alters rapidly, corresponding to the
topological change that defines the capture of the ion by the
vortex. Once the vortex has divided into two, with separate
feet attached to the healing layer, the flow around the ion has
acquired a circulation that it previously could not possess.
The motion of the curved vortex line can be described

using the local induction approximation )s/)t"*)s/)+
#)2s/)+2, where s"s(+ ,t) is the position vector of the vor-
tex element labeled by arc length + along the vortex and *
"(,/4$)ln(L/a), where L is a cutoff distance. This approxi-
mation can be transformed13 into the nonlinear Schrödinger
equation
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torsion; + has been rescaled to +/a and t to t* . In Ref. 14 it
was observed that the generation of Kelvin waves as the
result of the reconnection of the vortex lines is a conse-
quence of the conservation of the constants of motion In ,
given by In"/!1
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the impurity increases the radius of curvature of the vortex
line, the conservation of these constants of motion would be
impossible without the emission of Kelvin waves. As the
emitted Kelvin waves !left and right antikinks" propagate
from the feet of the vortex lines to infinity radiating energy
as they go, the impurity moves towards the center of the
computational box and its center moves towards the axis of
the straightening vortex line. Due to the circulation around
the ion, the bubble surface is slightly flattened into a roughly
prolate spheroidal form. There is no distortion in the final,
steady-state configuration shown in Fig. 2. The electron
wave function does not penetrate far along the vortex cores.
Schwarz and Donnelly15 have observed that at low tem-

peratures (%0.5 K) the straight-line vortices also can trap
positive ions. When the Kelvin waves have radiated to infin-
ity and the impurity has become situated symmetrically on
the core, it supplants a substantial volume of high-velocity
circulating fluid; the resulting lowering of the energy of the
system is referred to as the ‘‘substitution energy’’ or some-
times as the ‘‘binding energy.’’ Donnelly and Roberts16 used
a healing model of the vortex core and estimated the substi-
tution energy as

3V"!2$4s!5/M "2b%1!!1$a2/b2"1/2sinh!1!b/a "( .
!8"

In what follows, we shall recalculate the substitution energy
for positive and negative ions using the condensate model.

FIG. 1. The results of numerical integration of Eqs. !4" and !5"
for the negative ion initially placed a distance 6a apart from the
rectilinear vortex line. The pictures show the isosurface 4"0.241 at
!a" t"0, !b" t"16.6a/c , !c" t"96a/c , !d" t"146.6a/c , !e" t
"156a/c , !f" t"200a/c , !g" t"263a/c , !h" t"323a/c , and !i" t
"413a/c .
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Figure 2.9. (left) Trapping process of a bubble by a quantum vortex in the Gross–Clark model.
Figure taken from [24] to which we refer for further details. (right) Vortex wake generated by
a bubble in its ground state driven by a strong external force. Figure taken from [231] to which
we refer for futher details.

system of equations of motion is then:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = [− ℏ2

2𝑚1
∇2 + 𝑔1|𝜓(𝒙, 𝑡)|2 − 𝜇1 + 𝑔12|𝜙 (𝒙, 𝑡) |2] 𝜓(𝒙, 𝑡), (2.64)

𝑖ℏ 𝜕
𝜕𝑡𝜙(𝒙, 𝑡) = [− ℏ2

2𝑚2
∇2 − 𝜇2 + 𝑔12|𝜓 (𝒙, 𝑡) |2] 𝜙(𝒙, 𝑡). (2.65)

In the same spirit of the repulsive potential (2.53), the repulsion between the con-
densate and the bubble field generates a depletion in the superfluid which is filled by
the impurity. The main difference between and the model described in the previous
section (2.53) and this one (2.63) is that in the latter case the bubble can deform its
shape, giving rise potentially to a much higher degree of complexity. In particular,
an oblate shape of a bubble moving through a condensate has been observed, which
has been related to a reduction of the critical velocity [25]. As the vortex filament
method (see section 2.3.2), also the bubble model has been used to study the capture
process of a particle by a quantum vortex [24]. Despite the complexity of the model,
the deformation of the bubble appears to be negligible and it keeps an almost spherical
shape (see Fig.2.9 left). The observed dynamics is thus consistent with the general
hydrodynamic picture of the trapping mechanism, that we will describe in the next
chapter.

When parameters compatible with superfluid helium are used, the Gross–Clark
equations become costly to be simulated. Indeed the ratio between the masses of 4He
atoms and the electrons is large, which is translated into a large time scale separation of
the respective dynamics. To overcome this issue, in [231] an adiabatic approximation
(already developed in [25]) has been used, constraining the electronic wavefunction
to remain in its ground state. Such semplification allowed the numerical study of the
transport of negative ions in a superfluid when an external electric field is applied to
the particle. The typical dynamics of the system when a large electric field is applied
is shown in Fig.2.9 right, where a complex wake of vortex rings is visible behind the
impurity. The authors of [231] measured the mobility of the electron, which is the
proportionality between the drift velocity of the particle and the applied electric field,
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and found that the vortex emission is indeed a key contribution to the superfluid drag
force acting on the particle.

In the Gross–Clark model, the bubble field dynamics is not affected by any self-
interaction as it would be in a BEC mixture. Such effect can be implemented adding an
extra non-linear term to Eq. (2.65), making it effectively a Gross–Pitaevskii equation:

𝑖ℏ 𝜕
𝜕𝑡𝜙(𝒙, 𝑡) = [− ℏ2

2𝑚∇2 + 𝑔2|𝜙(𝒙, 𝑡)|2 − 𝜇I + 𝑔12|𝜓 (𝒙, 𝑡) |2] 𝜙(𝒙, 𝑡), (2.66)

with 𝑔2 a new coupling constant. The new set of equations (2.64) - (2.66) models a
system composed of a mixture of two different condensates [107], which have been
observed in experiments with cold atomic gases [156, 160, 171]. In a certain domain
of the parameter space (𝑔1, 𝑔2, 𝑔12), one of the two condensates exists in a localized
region and can be effectively thought as an impurity. Such immiscibility condition
can be simply derived for a homogeneous system [155]. Denoting by 𝑁1 = ∫ |𝜓|2 d𝒙
and 𝑁2 = ∫ |𝜙2|d𝒙 the number of bosons in the two components, the energies of the
uniform configuration and the separated configuration are respectively:

𝐸unif = 𝑔1
2

𝑁2
1

𝑉 + 𝑔2
2

𝑁2
2

𝑉 , 𝐸sep = 𝑔1
2

𝑁2
1

𝑉1
+ 𝑔2

2
𝑁2

2
𝑉2

+ 𝑔12
𝑁1𝑁2

𝑉 . (2.67)

The volumes occupied by each component in the separated configuration are indicated
by 𝑉1 and 𝑉2, while the total volume is 𝑉 = 𝑉1 + 𝑉2. Imposing the mechanical
equilibrium between the two separated condensates 𝜕𝐸sep/𝜕𝑉1 = 𝜕𝐸sep/𝜕𝑉2 and
requiring that such configuration is energetically favourable 𝐸sep > 𝐸unif, one obtains
the immiscibility condition

𝑔12 > √𝑔1𝑔2. (2.68)

It means that the mutual repulsion between the components must dominate over the
self-interactions, as intuitively expected. An application of the two-components model
in the immiscible regime is the study of the dynamics of localized impurites inside the
core of quantum vortices. It was indeed observed that if vortices are present in one of
the condensate, the other component gets trapped inside their cores (as in the other
models analyzed so far), providing them with an effective inertia [190]. The dynamics
of such system is rich and still largely unknown, including for instance the possible
decoupling of the two components during a vortex reconnection [184] or the multiple
splitting of composed vortices [134]. Being the two-components condensate feasible
with current experimental techniques for the manipulation of cold atoms, it constitutes
a promising background for the investigation of non-linear physics.

In this perspective, an even more complex system constituted by a large condensate
with a multitude of impurity fields has been recently studied [188, 191]. Different
phases of the systemhave been identified, depending on the ratios between the different
coupling parameters. In particular, two crystallization mechanisms are possible when
the mutual repulsion among the impurities is larger than their self-interaction. In
one case, if their interaction with the bulk condensate is low, the crystal of separated
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impurities remains immersed in the bulk condensate. In a second case, if the impurities
highly repel also the bulk condensate, a large cluster of separated impurities is formed.
In the publication [80], presented in chapter 6 of this manuscript, we show that the
particle model (2.57) in the finite temperature regime reproduces a similar steady state
with clusters of impurites immersed in a bath of thermal excitations. This supports
that idea that the model (2.57) can be also intended as an approximation of the multi-
condensate system in the strong repulsion limit.
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3 Trapping process and long range interaction
between particles and quantum vortices

In this chapter we analyze the long range interaction between particles and quantum
vortices. We discuss the process of particle capture, which is the fundamental
mechanism that allows particles to get trapped and thus provide information on
the vortex dynamics. After giving some general intuitions behind the trapping
dynamics, we present the original publication “Interaction between active particles
and quantum vortices leading to Kelvin wave generation” [75]. Therein, an effective
model for the particle dynamics is derived from the Gross–Pitaevskii Hamiltonian
and confirmed by numerical simulations. In the same article we show that the
vortex deformations can be included in the effective model, predicting the generation
of a cusp on the filament during the particle approach. In addition, the generation of
Kelvin waves due to the long range particle-vortex interaction is also observed and
explained by a resonance mechanism. Then, we report the article “Quantum vortex
reconnections mediated by trapped particles” [77], in which we study how the
vortex-particle long range interaction affects the reconnection process. We focus on
two different configurations: a dipole of two vortices with a particle trapped in one
of them and a Hopf link of two vortex rings decorated by particles. In the first case
the reconnection is triggered by the symmetry breaking induced the particle, which
is then detached after exchanging momentum with the filaments. In the second
case we observe that light and neutral particles do not affect the time scaling of the
vortex separation.

3.1 Capture mechanism

As an introduction to the the work in which the long range particle-vortex interaction is
investigated in the Gross–Pitaevskii framework, we give the essential intuitions on the
dynamics through which particles get captured by quantum vortices. The following
basic physical insights about the trappingmechanism can be formulatedwith a classical
hydrodynamic approach for an irrotational ideal fluid.

As one might expect, the mechanism of particle trapping when the particle is far
from the vortex, is triggered simply by Bernoulli pressure. Indeed, as we discussed in
section 2.2, this is the only force that drives the particle in an inviscid and irrotational
fluid. Since the velocity field generated by a superfluid vortex rotates about the vortex
filament and scales as the inverse of the distance to the core (1.132), the corresponding
pressure gradient scales as the cube of the distance and it is aligned along the radial
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direction. Therefore, the corresponding attracting force on the particle coming from
(2.22) is simply:

𝑭 = −𝑀0 (1 + 𝐶a)
𝛤2

4𝜋2𝑟3 ̂𝒓, (3.1)

where 𝑟 is the particle-vortex distance. Clearly, if this is the only force that acts on a
particle it will be eventually trapped.

From the perspective of the filament, when the particle is close to it, the vortex
starts to feel its own images inside the region occupied by the particle, which are an
unavoidable consequence of the boundary condition at the particle surface. As a result,
the vortex moves according to its interaction with the images, adding complexity to
the actual vortex-particle dynamics. It is worth it to see this fact more in detail in the
bidimensional case, where explicit calculations can be performed thanks to conformal
mapping. Let us consider a bidimensional flow described by the complex potential
𝑊(𝑧, 𝑡) = 𝛷(𝑥, 𝑦, 𝑡) + 𝑖𝛹(𝑥, 𝑦, 𝑡), where 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜑 and 𝛷 and 𝛹 are respectively
the velocity potential and the stream function, so that 𝒗 = ∇𝛷 = ∇ × (𝛹𝒌̂). If a circular
particle of radius 𝑎p is placed at the origin of the domain, the flow potential is modified
according to the Milne–Thomson theorem [19]:

𝑊̃(𝑧, 𝑡) = 𝑊(𝑧, 𝑡) + ⎡⎢
⎣
𝑊 ⎛⎜

⎝

𝑎2
p

𝑧∗ , 𝑡⎞⎟
⎠

⎤⎥
⎦

∗

= 𝑊(𝑧, 𝑡) + 𝑊∗ ⎛⎜
⎝

𝑎2
p
𝑧 , 𝑡⎞⎟

⎠
, (3.2)

which maps every complex point outside the particle into a point inside the circle, in
such a way that at the particle boundary |𝑧|2 = 𝑧∗𝑧 = 𝑎2

p it reads 𝑊̃(𝑧) = 𝑊(𝑧)+𝑊∗(𝑧∗).
As a consequence the particle boundary is always a streamline with 𝛹̃ = Im [𝑊̃] = 0
and the free slip condition is automatically satisfied. In the case of the flow generated by
a (point) vortex placed at the position 𝑧v(𝑡) outside the particle, the complex potential
is 𝑊(𝑧, 𝑡) = 𝑖 𝛤

2𝜋 log [𝑧 − 𝑧v(𝑡)] and the presence of the particle transforms it as

𝑊̃(𝑧, 𝑡) = 𝑖 𝛤
2𝜋

⎛⎜
⎝
log [𝑧 − 𝑧v(𝑡)] − log ⎡⎢

⎣

𝑎2
p
𝑧 − 𝑧∗

v(𝑡)⎤⎥
⎦
⎞⎟
⎠

. (3.3)

It is easy to check that a consequence of Eq. (3.3) is the emergence of two new singu-
larities inside the particle, that together constitute an image vortex dipole, which keeps
the total circulation constant (and equal to zero around the particle). The first image
vortex is placed at the inverse of the physical vortex position 𝑎2

p/𝑧∗
v and it has opposite

charge with respect it. The second one is placed at the origin, i.e. at the particle center,
and it has the same charge of the physical vortex. A picture of the flow is displayed in
Fig.3.1 left, where both the velocity potential 𝛷 = Re [𝑊̃] (3.3) and the streamlines
are shown. Of course, in 3D the situation is more complex and such an immediate
analytical treatment is impossible, but qualitatively the physical picture is analogous.
In particular, the presence of images inside the approaching spherical particle drives
the motion of the vortex, so that the resulting dynamics of the particle itself is affected.

When the particle capture eventually happens, the new system constituted by the

86



3.1 Capture mechanism

x

y

−π

−π/2

0

π/2

π

2π
Γ Φ

0 1 2 3

d/ap

−4

−3

−2

−1

0

2
π

Γ
2
ρ

0
a

p
∆
E

D
o
n
n
e
ll
y

Figure 3.1. (top) Two-dimensional flow generated by a point vortex and a (static) circular particle.
The colormap is the velocity potential 𝛷 = Re [𝑊̃] (3.3), while the corresponding streamlines
are in green. The particle boundary is indicated by the yellow solid line. Note the presence
of an image dipole inside the particle, aligned with the external real point vortex. (bottom
left) Substitution energy 𝛥𝐸Donnelly (3.5) numerically integrated as a function of the distance
between the spherical particle and the straight vortex line [173]. The vortex core radius is set to
𝑎0 = 0.01𝑎p. (bottom right) Sketch of the origin of restoring force for non symmetrical trapped
particle-vortex configurations (taken from [209]).
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3 Trapping process and long range interaction between particles and quantum vortices

trapped particle and the vortex turns out to be energetically favourable with respect to
the case when the vortex and the particle are well separated. In 1966, Donnelly and
Parks computed explicitly this “substitution energy”, which is the kinetic energy of
the fluid excluded by the presence of the particle [173]

𝛥𝐸Donnelly = 1
2 ∫

𝔹[𝒒]
𝜌v𝒗2

v d𝒙, (3.4)

where 𝜌v and 𝒗v are the density profile and the velocity field of a straight vortex line.
The cited calculation has been performed having in mind the ions which were being
used extensively in that period, but generalizes to every finite size particle. Choosing a
system of reference centered at the particle position, so that a straight vortex is placed
at a distance 𝑑 and aligned with the 𝑧 axis, we call 𝑟 and 𝜑 the radial and the azimuthal
coordinates. Approximating the vortex density profile as 𝜌v = 𝜌0𝑟′2 (𝑟′2 + 𝑎2

0)−1 [62],
where 𝑟′ = √𝑟2 + 𝑑2 + 2𝑟𝑑 cos𝜑 is the radial coordinate in the vortex reference frame
and 𝑎0 is the vortex core size, the substitution energy reads:

𝛥𝐸Donnelly(𝑑) = −𝛤2𝜌0
2𝜋 ∫

𝑎p
0

√
√√
⎷

𝑎2p − 𝑟2

(𝑟2 + 𝑑2 + 𝑎2
0)2 − 4𝑑2𝑟2

𝑟d𝑟. (3.5)

In the two limiting cases of the particle symmetrically trapped by the straight vortex
(𝑑 = 0), or far away from it (𝑑/𝑎0 → ∞), the expression (3.5) can be fully evaluated:

𝑑 = 0 ⟶ 𝛥𝐸Donnelly = −𝛤2𝜌0
2𝜋 𝑎p

⎡
⎢
⎣
1 − √1 +

𝑎2
0

𝑎2p
arcsinh(

𝑎p
𝑎0

)⎤
⎥
⎦
, (3.6)

𝑑/𝑎0 → ∞ ⟶ 𝛥𝐸Donnelly = −𝛤2𝜌0
2𝜋 𝑎p

⎡⎢
⎣
1 − √𝑑2

𝑎2p
− 1 arcsin(

𝑎p
𝑑 )⎤⎥

⎦
. (3.7)

The numerical integration of the substitution energy as a function of the particle-vortex
distance is displayed in Fig.3.1 bottom left, where it is clear that the trapped configura-
tion is the stable one.More than that, for distances 𝑑 < 𝑎p the energy𝛥𝐸Donnelly is steeply
monothonically increasing. This means that there is an attractive force −∇𝛥𝐸Donnelly,
stronger than the long range force (3.1), which tends to keep trapped a particle when
it is displaced from the symmetric configuration. Another qualitative way to see this
attraction is sketched in Fig.3.1 bottom right, originally reported in [209]. If we consider
a non symmetric vortex-particle configuration, the velocity is larger on the side of the
particle surface where the two vortex strands are closer. As a consequence of Bernoulli
principle, the pressure is larger on the opposite side, generating a net restoring force
that tends to establish a symmetric configuration.

In the next section, we present the work [75] in which the capture process is thor-
oughly investigated in the GP framework. Before that, we give a qualitative glimpse
of the complexity of the system when the actual particle-vortex mutual interaction

88



3.1 Capture mechanism
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Figure 3.2. Time evolution of a straight vortex and a trapped particle of radius 7.6𝜉 and relative
mass ℳ = 1 subject to a transverse external constant force 𝐹ext = 12.5 𝜌0𝜉2𝑐2 (top panel) and
𝐹ext = 33.3 𝜌0𝜉2𝑐2 (bottom panel) , according to the GP model. The vortex is rendered as a red
isosurface at low density 𝜌 = 0.15𝜌0 and the particle as a green sphere. The parameters of the
particle potential are 𝑉0 = 20𝜇, 𝜁p = 2.5𝜉,𝛥p = 2.5𝜉 and the other parameters of the simulation
are 𝐿 = 2𝜋, 𝑁c = 256 and 𝜉 = 𝐿/𝑁c.
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3 Trapping process and long range interaction between particles and quantum vortices

(provided by such model) is taken into account. It should be noticed, indeed, that the
substitution energy (3.4) is not necessarily the energy needed to pull out a particle from
a vortex. For instance, consider an external force suddenly applied to a steadily trapped
particle. It may happen that the energy injected in the system thereby is redistributed
among the degrees of freedom of the vortex, instead of allowing the particle to escape.
Specifically, it can induce a deformation or a stretching of the filament, keeping the
particle captured. An example of such phenomenology is displayed in Fig.3.2, where
a particle trapped by a straight vortex is indeed pulled by an external constant force,
transverse to the filament. The time evolution is given by a simulation of the equations
(2.54) and (2.55), with an extra force 𝑭ext added to the right hand side of Eq. (2.55).
Clearly, the vortex and the particle affect each other. In particular, if the force acting
on the trapped particle is sufficiently low (top panel of Fig.3.2) its effect is to pump
energy into the vortex. The filament is stretched and when the particle eventually gets
detached, the vortex is longer (and thus more energetic) than in the intial condition.
Conversely, if the forcing is high enough (bottom panel of Fig.3.2), the vortex does not
react sufficiently fast and the particle can escape without inducing a large stretching
of the filament. Therefore, the particle trapping process is certainly not a reversible
mechanism1 and the stability of the vortex-captured particle system may be more
robust than what expected from static energetic considerations.

3.2 Publication: Interaction between active particles and quantum
vortices leading to Kelvin wave generation

The trapping mechanism discussed in the previous section is somehow simplified,
essentially because it does not take into account the relative interactions between the
vortex and the particle. For this reason, the use of more elaborated models is necessary,
which could give better insights on the actual forces that dominate the dynamics. One
of these model is indeed the GP equation coupled with repulsive potentials presented
in section 2.3.3, which in the article attached below [75] has been used to study the
vortex-particle interaction at large distance. Therein, we derive an effective Hamiltonian
for the attractive interaction between a particle and a straight vortex, which depends
only on the particle degrees of freedom. The procedure consists in guessing an ansatz
for the solution of the GP equation in such setting and imposing the proper boundary
conditions for the phase of the wavefunction about the surface of the sphere. The
effective Hamiltonian follows then from a perturbative analysis in the same small
parameter (2.6) introduced in section 2.2 for the dynamics of a particle in a classical
fluid. Indeed, at the leading order we recover exactly the equation of motion (3.1).
Such prediction and the next-to-leading-order correction are well reproduced by the
direct numerical simulations of the GP model.

Since the effective Hamiltionian describes a central force problem, particularly in-
teresting is the studying of the orbits predicted by it. At the leading order, a critical

1Another direct signature of irreversibility is the pulse of sound emitted at the trapping time [75].
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angular momentum exists belowwhich the particle is always trapped and above which
it always escapes from the vortex. At the critical angular momentum, the leading
order of the attracting force vanishes and a close circular orbit is predicted. The critical
angular momentum is reached for a neutral particle if it initially moves with the same
velocity of the vortex flow (1.132). However, in this case the corrections to the leading
order become crucial: numerics and analytics agree that the actual particle trajectory is
a spiral that eventually collapses to the vortex core. Such fact is perfectly consistent with
the fact that a tracer of the superfluid velocity field cannot exist at zero temperature
because of the lack of Stokes drag.

Another interesting property of the effective Hamiltonian discussed in [75] is a
scaling invariance valid at all the orders. It applies when the particle size and its
distance to the vortex are multiplied by a factor 𝜆 and the time is scaled by a factor 𝜆2:

q → 𝜆q, 𝑎p → 𝜆𝑎p, 𝑡 → 𝜆2𝑡 ∀𝜆 ∈ ℝ+. (3.8)

Such scaling invariance indicates that the main dimensional parameter that actually
controls the dynamics of the system is just the circulation of the vortex. It is indeed
reminiscent of the scaling invariance of the Biot–Savart integral (1.142), which is
also conserved if distances are rescaled by 𝜆 and times by 𝜆2. The symmetry (3.8)
is important because allows us to generalize our results to the case of much larger
particles, in principle similar to the one used in superfluid helium experiments.

In a second part of the publication, we introduce the vortex dynamics in the effective
Hamiltonian. In particular we provide degrees of freedom to the filament, allowing
it to deform according to the Local Induction Approximation (see section 1.4.2). As
a result, we can predict the formation of a cusp along the filament (observed in the
GP simulations) as a consequence of the vortex-particle long range mutual interaction.
Furthermore, such interaction is able to induce the generation of a monochromatic
Kelvin wave along the filament. Indeed, we find that for a given combination of the
particle angular frequency about the vortex and linear velocity along the vortex, a
specific frequency can be excited on the vortex, as a consequence of a linear resonance
mechanism. The far reaching hope associated to this observation is that a similar
mechanism could be used to excite Kelvin waves in a controlled manner2.

2An atomic Bose–Einstein condensate (more than superfluid helium) is probably a better setting for a
possible implementation of a similar mechanism.

91



1Scientific Reports |          (2019) 9:4839  | https://doi.org/10.1038/s41598-019-39877-w

www.nature.com/scientificreports

Interaction between active particles 
and quantum vortices leading to 
Kelvin wave generation
Umberto Giuriato    & Giorgio Krstulovic   

One of the main features of superfluids is the presence of topological defects with quantised 
circulation. These objects are known as quantum vortices and exhibit a hydrodynamic behaviour. 
Nowadays, particles are the main experimental tool used to visualise quantum vortices and to study 
their dynamics. We use a self-consistent model based on the three-dimensional Gross-Pitaevskii (GP) 
equation to explore theoretically and numerically the attractive interaction between particles and 
quantized vortices at very low temperature. Particles are described as localised potentials depleting 
the superfluid and following Newtonian dynamics. We are able to derive analytically a reduced central-
force model that only depends on the classical degrees of freedom of the particle. Such model is found 
to be consistent with the GP simulations. We then generalised the model to include deformations of 
the vortex filament. The resulting long-range mutual interaction qualitatively reproduces the observed 
generation of a cusp on the vortex filament during the particle approach. Moreover, we show that 
particles can excite Kelvin waves on the vortex filament through a resonance mechanism even if they 
are still far from it.

Quantum vortices have a long history in physics of superfluids and superconductors. Already in the 40’s Onsager 
had suggested the existence of quantised flows. This idea was further developed by Feynman by introducing the 
concept of quantum vortices1. What makes these vortices fascinating is that they appear as topological defects of 
the order parameter describing the system. As a consequence their charge or circulation is quantised, making 
them topological protected objects. Their core size varies form a few Angstroms in superfluid 4He to micrometers 
in Bose-Einstein condensates (BECs). In systems such as 4He, 3He and atomic BECs, quantum vortices behave as 
hydrodynamic vortices, reconnecting and rearranging their topology, forming in this way complex vortex tangles. 
Such out-of-equilibrium state is today known as quantum turbulence2. In rotating BECs, quantised vortices nat-
urally appear and they have been studied since the early 2000s3,4. In superfluid helium, ions and impurities have 
been extensively used since long time to investigate the properties of quantum vortices1. However, an important 
experimental breakthrough occurred in 20065, when quantum vortices were directly visualised by using 
micrometer-sized hydrogen particles. These impurities are trapped inside the vortex core and they can be directly 
visualised by using standard particle-tracking techniques, that are commonly exploited in classical hydrodynamic 
turbulence. Thanks to this method, quantum vortex reconnections6 and Kelvin waves propagating along the vor-
tex filaments7 have been observed. In addition, the employment of particles has been helpful to enlighten similar-
ities and differences between classical hydrodynamic and quantum turbulence8,9. For superfluid helium, the 
typical size of hydrogen particles is several orders of magnitude larger than the vortex core, whereas recent exper-
iments have used ⁎He2 excimers that are slightly larger than the vortex core10. Therefore, understanding the inter-
action between particles and vortices has become crucial for current experiments.

In general, utilising particles to unveil the properties of a fluid is a common technique in classical hydro-
dynamics. For instance, air bubbles are used to visualise classical vortices in water since the pioneering work 
of Couder et al. in 199111 and tracers (very small and neutrally-buoyant particles) are followed by using 
ultra-fast-cameras to determine the statistics of turbulent flows12. When particles are not tracers, they manifest 
inertia with respect to the fluid flow, deviating from its stream lines. Although complex, their dynamics is well 
understood in classical fluids if their size is small enough13,14.
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Superfluids differ in several aspects to classical fluids. Firstly, at very low temperature, an object moving at low 
velocity experiences no drag. Secondly, the quantum nature of vortices makes the vorticity field (the curl of the 
velocity) a Dirac-δ distribution supported on the vortex filaments. Finally, at finite temperature, they are modelled 
by an immiscible mixture of two components: the actual superfluid and a normal fluid. The latter is described 
by the (viscous) Navier-Stokes equations. Such mixture of fluids is responsible for some quantum effects with 
no classical analogous such as the fountain effect and second sound1. The dynamics of a particle moving in a 
finite temperature superfluid happens to be richer than in an ordinary fluid. Its equations of motion have been 
generalised to the case where the flow is prescribed by the two-fluid model15,16. This model provides a large-scale 
description of a finite temperature superfluid where vortices are described with a coarse-grained field, therefore 
the quantised nature of superfluid vortices is missing. A different model that does account for the quantised 
nature of superfluid vortices, was introduced by Schwartz and it is known as the vortex filament method17. Also 
in this case, the dynamics of particles has been addressed both theoretically and numerically18,19. Eventually, in 
the limit of very low temperature, superfluids can be described by another important model, the Gross-Pitaevskii 
(GP) equation. This model derives from a mean field approximation of a quantum system and directly applies 
to weakly-interacting BECs, but it is also expected to qualitatively apply to other types of superfluids. The GP 
equation governs the dynamics of the macroscopic wave function of the system, hence quantum vortices are nat-
urally included. In the GP framework, impurities and particles are often described in terms of classical fields20–23. 
In particular, it was shown by Roberts and Rica22 that, depending on the coupling constants, the impurity field 
separates from the condensate and the two fields become immiscible. In this regime, an impurity can be seen as 
a hard-core particle described with classical (Newtonian) degrees of freedom24–26. Such approach is numerically 
much cheaper than the classical field description, and thus allow for simulations of a large number of particles27. 
It also suitable for developing analytical predictions.

In this Report we study numerically and analytically the interaction of quantum vortices and particles by using 
the Gross-Pitaevskii model coupled with a particle having classical degrees of freedom. We take advantage of the 
Hamiltonian structure of the system to derive a simplified model for the particle motion that it is then directly 
confronted with numerical simulations of the full GP model. In particular, we study the trapping of particles by 
a straight vortex, where an explicit analogy of a Newtonian central force problem can be established. The model 
is then generalised to describe the deformation of the vortex filament. The consequences of the long-range inter-
action between the particle and the filament are analytically studied and a prediction for the generation of Kelvin 
wave is obtained.

Results
Model for particles in a superfluid.  We consider a superfluid at very low temperature with one spherical 
particle of radius ap and mass Mp immersed in it. The superfluid is described by a complex field ψ(x, t) and the 
particle classical degrees of freedom are its position q = (qx, qy, qz) and momentum = =


M p p pp q ( , , )x y zp . The 

dynamics of the system is governed by the following Hamiltonian:
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where m is the mass of the fundamental bosons constituting the superfluid, μ is the chemical potential and the 
coupling constant g a m4 /s

2π=  depends on the s-wave scattering length as. The potential V x q( ) 0p μ| − | >
 

is localised around q and it determines the shape of the particle. Its presence induces a full depletion of the super-
fluid around the position q up to a distance ap. The equations of motion for the field and the particle position are 
directly obtained by varying (1) and read
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The Hamiltonian (1), the total superfluid mass ∫ ψ= | |M m xd2  and the total momentum 
∫ ψ ψ= ∇ −⁎P (i

2
 

⁎ψ ψ∇ +x p)d  are conserved quantities. The connection of Eq. (2) with hydrodynamics is made through the 
Madelung transformation x m ex( ) ( )/ i x( )m

ψ ρ= φ  that maps the GP model into the continuity and Bernoulli 
equations of a fluid of density ρ and velocity vs = Δφ.

In absence of the particle, the GP equation has a simple steady solution corresponding to a constant flat con-
densate ψ ρ μ= =∞ ∞ m g/ / . If (2) is linearised about ψ∞, large wavelength waves propagate with the phonon 
(sound) velocity c g m/ 2ρ= ∞

 and dispersive effects take place at length scales smaller than the healing length 
g/22ξ ρ= ∞ .

Another important steady solution corresponds to a straight quantum vortex

ψ ρ= .φx y z x y m e( , , ) ( , )/ (3)
i m x y

v v
( , )v

The vortex density ρv vanishes at (0, 0, z) and the phase is given by 
mvφ κϕ=  , with ϕ the angle in the (x, y) 

plane and κ a non-zero integer. The corresponding velocity field vv satisfies
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where ϕ̂ is the azimuthal versor and x⊥ = (x, y, 0). Similarly, in the following we will denote q⊥ = (qx, qy, 0) and 
q⊥ = |q⊥|. The close path  surrounds the vortex, whose circulation is thus given by κΓ. We will consider κ = ±1 
because it is the only stable solution. Note that the vortex core size is given by the healing length ξ, ρv and vv are 
radial functions and ρv → ρ∞ away from the vortex28.

When a particle is present, the ground state (without vortices) corresponds to a flat condensate with a strong 
density depletion at places where V x q( )p μ| − | > . A good approximation when ξap   is given by the 
Thomas-Fermi ground state that is obtained neglecting the kinetic term. It reads

ρ ρ ρ
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with θ the Heaviside function. The size of the particles is thus roughly determined by the relation Vp(ap) ≈ μ. The 
results presented in this work are independent of the functional shape of Vp, provided that it is isotropic.

In numerics, we express the particle mass as M Mp 0= , where M0 is the mass of the displaced superfluid. 
Therefore, neutral-mass particles have 1 = , heavy particles have 1 >  and light particles have 1< . 
Lengths are expressed in units of ξ, times in units of τ = ξ/c, velocities in units of c and energies are normalised by 
M c0

2. Details on the numerical implementation and the particular choice of Vp are given in Methods.

Interaction between particles and quantum vortices.  We begin by presenting some numerical exper-
iments where a particle is attracted and captured by a vortex. We integrate the model (2) in a 3D periodic domain 
of size L = 256ξ with an initial condition consisting of one particle at rest and one straight vortex initially sepa-
rated by a distance q q0 ξ=⊥ 

. The domain contains image vortices in order to preserve periodicity that are not 
displayed in figures. Their effect on the particle has been checked to be negligible. Snapshots of the superfluid 
density field with the particle at different times are displayed in Fig. 1. The top row refers to a relatively small 
particle (ap = 7.6ξ), while the bottom row to a large one (ap = 23.5ξ). Both particles have a neutral relative mass 

= 1 . Note that hydrogen particles used for visualization of quantum vortices in superfluid helium have a rel-
ative mass 0 7 ∼ .  and a typical size of ξ∼a 10p

3 . Simulating such particle size is not achievable numerically, 
however a clear difference is already observed for our large particle. In both cases, the particle is attracted by the 
vortex. Before the merging, while the particle is moving closer to the vortex, a deformation of the vortex line is 
observed. Such deformation is a cusp regularised at the scale of the healing length by the dispersion of the GP 
equation. Initially, the cusp develops perpendicularly to the particle velocity. Later, it curves towards the particle, 
until the contact point the vortex separates into two branches. The two contact points then slide on the particle 
surface towards opposite directions. The oscillation of the trapped particle excites helicoidal waves on the fila-
ment. Such waves, that propagate along the vortex line, are known as Kelvin waves. We note that the vortex defor-
mation is less marked for smaller particles and the amplitude of Kelvin waves increases with the particle size. A 
similar behaviour has been already observed in the hydrodynamical model adopted in refs15,29,30, as well as in the 

Figure 1.  Snapshots of the superfluid density and a neutral-mass particle during the trapping (times varies 
from left to to right). Vortices are displayed in red, particles in green and sound waves are rendered in blue. Top: 
small particle (ap = 7.6ξ). Bottom: large particle (ap = 23.5ξ). Images were produced with VAPOR rendering 
software.
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classical field impurity model studied by Berloff and Roberts21. The trapping process was then interpreted as a 
reconnection of the straight vortex with its images inside the particle, whose presence is necessary to set the 
boundary conditions for the flow around the particle.

The model (2) also allow us to observe the sound emitted by the particle-vortex pair during the trapping 
process. In a first stage, a big pulse is emitted at the moment of the trapping due to the strong acceleration expe-
rienced by the particle. In a later time, for the smaller particle a clear quadrupolar radiative pulse is observed 
(t = 1548τ, top row of Fig. 1). Remarkably, this kind of pattern is expected in superfluids when some symmetry 
cancels the first order of the multipolar radiative expansion. For instance, this is the case in 2D counter-rotating 
vortices31,32. Here, the symmetry could be related to the two antisymmetric traveling waves emerging from the 
particle and meeting at the boundary of the periodic domain. This issue will be investigated further in a future 
work. Finally, the particle remains trapped inside the vortex and coexists with a bath of sound waves. For the big 
particle, all the phenomena are amplified. Movies of the numerical simulations can be found as a Supplementary 
Information.

From these simulations it is manifest that the trapping of a particle by a quantum vortex is accompanied by a 
myriad of complex physical phenomena. In the next sections, we take advantage of the simplicity of the model to 
derive effective equations for the particle and the vortex Filament dynamics.

Reduced theoretical model for the particle-vortex interaction.  In the following we set the origin of the reference 
frame at the intersection between the unperturbed vortex line and its orthogonal plane where the particle lies. At 
t = 0, the vortex line coincides then with the z axis. To derive a simplified theory, we consider the following ansatz 
for the superfluid field:

ψ
ρ

ρ ρ= | − | φ∞

m
ex q q x x q( ; , ) ( ) ( ) ,

(6)
i m x q q

v p
( ; , )


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where /v v
ρ ρ ρ= ∞

 and ρ ρ ρ= ∞/p p

 are the normalised ground states of an isolated vortex and an isolated par-
ticle given in (3) and (5) respectively. At first approximation, we neglect the deformation of the vortex. This last 
assumption is valid at the stages where the particle is attracted by the vortex, but still far from it. We will consider 
the vortex deformation in the last section. The ansatz (6) also neglects small density variations due to sound emis-
sion and might not be valid at the exact moment of the trapping, but it gives a good description elsewhere. The 
phase φ leads to the superfluid velocity field vs = ∇φ and it is determined by imposing the boundary conditions 
around the particle and at infinity:

aq n v n x x q v vs t and
(7)x qs p s v
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| − |→∞

where n = (x − q)/|x − q| and vv the vortex velocity field (4). Since vv describes a non-uniform irrotational flow, we 
have to take into account how the superfluid velocity field is modified when the particle accelerates in it. As it is 
done in classical fluid mechanics13–15, we include in the superfluid velocity the corrections to the pure vortex flow 
vv that are generated by the moving particle. We set vs = vv + vp + vBC, or in terms of the phase φ = φv + φp + φBC.

The potential φp describes the flow of a sphere of radius ap moving in a uniform flow given by the relative 
velocity 


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where we have used | | ∼ ⊥qv q( ) 1/v . We include in our calculations φBC up to ( )2ε .
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We use the ansatz (6) to explicitly perform the space integrals. From (5), we observe that for a strong localised 
potential Vp μ

 the field 

ρ− x1 ( )p  is supported on a ball of center q and radius ap, up to a layer of size ξ. We use 

this fact to reduce the domain of integration. Inside this ball and if ε 1, we can assume that ρ ρ≈ ⊥qx( ) ( )v v 

 and 
≈ ⊥qv x v( ) ( )v v . All the integrations can be then carried out. Details on these computations are given in Methods. 

The Hamiltonian components (10) eventually read
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where C = 1/2 and overbars denote constants at the leading order. Eadd is the classical added mass energy in three 
dimensions33 modified by the density profile. Gathering all the terms, we obtain the reduced Hamiltonian (RH)
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In (13) the added mass has been absorbed in the effective particle mass M M C M C M( )eff p v 0 v 0ρ ρ= + = +
 

 
and the particle momentum has been redefined as = Mp qeff  . Note that, as vρ  only depends on q⊥, the coordinate 
qz of the particle is cyclic and can be trivially integrated. The dynamics thus simplifies to a motion in the plane 
perpendicular to the vortex. The reduced model (13), therefore describes a classical central force problem in two 
dimensions with a potential given by its last term. Note that the same calculations can be performed in two 
dimensions, by redefining the phase (8) which leads to the constant C = 1.

The reduced Hamiltonian (13) can be further simplified using the asymptotic behaviour of 
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The equations of motion for the particle position are then:
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Note that the added mass effect is suppressed for neutral-mass particles having = 1 and the particle size 
explicitly appears only at high order terms. The attractive force scaling as q 3

⊥
−  was first proposed by Donnelly34 as 

the result of a pressure gradient. Equation (15) has been also studied for neutral-mass particles in the framework 
of pure hydrodynamical models15,16.

Finally, note that if we replace in (13) the density by its leading order ρ =


1v , then the associated equations of 
motion are invariant under the following scaling transformation:

a a t tq q, , (16)p p
2 λ λ λ λ→ → → ∀ ∈ +

Such invariance will be also preserved in terms coming from higher orders in ε.

Numerical measurements and comparison with theory.  We compare now our reduced model to the numerical 
experiment presented in Fig. 1. We first consider a small neutral-mass particle of size ap = 2.7ξ. For this particle, 
the condition (9) is valid for a wide range of separations and the deformation of the vortex during the particle 
approach is negligible. We measured the variation of the different components of the Hamiltonian (10) as a func-
tion of distance between the particle and the vortex. Figure 2a displays such energies (markers) compared to the 
respective theoretical predictions (lines).

The striped region identifies the particle radius ap/ξ where the particle and the vortex overlap. Since the added 
mass energy Eadd (11) only modifies the particle inertia but has no effect in determining the force in the r.h.s. of (15), 
we subtract it from the hydrodynamic component Hhydro

GP  and the total GP energy HGP = H − K. We have used the 
Padé approximation given in Methods as an analytical expression for the vortex density profile 


ρv, so that both 

asymptotics (large and short vortex-particle separations) are reproduced. Even if our model is not supposed to be 
quantitatively accurate for ∼⊥q ap, we can still observe a quite good agreement. Remarkably, the hypothesis that 
leads to neglect Hq

GP is perfectly valid up to a distance about twice of the particle radius. Moreover, H Hp
GP

int
GP≈ −  

and thus during the particle approach ≈H HGP
hydro
GP . Figure 2b shows in a log − log plot the absolute value of the 

measured energies for large distances. Clearly, all the energy contributions follow the predicted q 2
⊥
−  scaling, as 

long as the vortex-particle separation is large. We have checked that the data in Fig. 2 are almost independent of 
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the particle mass. Discrepancies between data and theory might be due to sound radiation or to sub-leading terms 
in the boundary conditions of the superfluid velocity. We conclude that the effective potential energy is relatively 
well described by U(q⊥) in Eqs (14) and(15) gives a good approximation for the motion of the particle.

Equation (15) can be straightforwardly integrated and the solution for the particle-vortex distance reads

q t E
M

t q q q t( ) 2 ,
(17)eff

2
0
2

0 0= + +⊥
⊥

where q0 = q⊥(t = 0), q q t( 0)0 = =⊥  and E H t t p Mq p[ ( 0), ( 0)] /2zeff
2

eff= = = −⊥  is the conserved energy in the 
effective model. In the case of a neutral-mass particle with zero initial velocity Eq. (17) reduces to the one derived 
by Barenghi et al.30. In Fig. 3 the prediction (17) and the one obtained numerically from RH (13) are compared 
with numerical data.

Figure 3a shows the particle-vortex distance for neutral-mass particles of different sizes initially located at a 
distance q0 = 45.3ξ. The markers denote the capture times, after which particles keep moving inside the vortex. 
The assumption (9) is ideally satisfied for point-like particles but it reasonably applies as long as the particle 
radius is sufficiently small compared to its distance to the vortex. Indeed, for the particle ap = 7.6ξ the accordance 
with theory is good, while for the one having ap = 23.5ξ is just qualitative. For such particle, the full reduced 
Hamiltonian gives a better description. In addition, the motion curve of a particle of radius ap = 2 × 23.5ξ, ini-
tially located at 2q0 is in good agreement (pink dashed-dot-dotted curve) with the scaling relation (16). It is inter-
esting to note that close to the capture time the particle-vortex separation scales as

Figure 2.  (a) Different energies as a function of the vortex-particle distance q⊥/ξ during the approach of a 
particle with size ap = 2.7ξ. The initial separation is q⊥ = 45.3ξ and the particle has zero velocity. Markers are 
numerical data and lines theoretical curves of corresponding colours. (b) Same energies as in (a) in (log − log 
scale). Initial q⊥ = 85.1ξ and initial velocity q c0 04 = − .⊥ .

Figure 3.  (a) Measured vortex-particle separation as a function of time for neutral-mass ( = 1 ) particles of 
different sizes moving towards a straight vortex (solid lines). The initial condition is q⊥ = 45.3ξ and q = 0. Round 
markers indicate the corresponding trapping times. †The pink dash-dot-dotted line refers to a big particle 
initially at q⊥ = 90.6ξ rescaled using Eq. (16) with λ = 2. The figure also displays the predictions RH (13) in 
dashed lines of the corresponding colours, the theoretical prediction (17) of the effective model EH (dotted 
golden line) and the scaling q t t( )

1
2∼ −⁎ , obtained by fitting the numerical data (dash-dotted black line). (b) 

The same as (a) but for particles with ap = 2.7ξ and different masses. Data from GP simulation are displayed in 
solid lines whereas the predictions (17) are in dotted lines. The dashed golden line refers to a GP simulation with 
a vortex containing Kelvin waves of rms amplitude 0.5ξ.
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where we have set 


= =tq( 0) 0 for sake of simplicity. In Fig. 3a such scaling is also apparent up to a separation of 
ξ∼q 30  for the particle with ap = 7.6ξ (dotted-dashed line). The capture time t* predicted by the effective model 

is compatible with the one observed in the GP simulation with a relative error of 5%. The scaling (18), that is also 
observed in vortex reconnections35, suggests the idea that the trapping process could be seen as reconnection of 
the vortex with its images inside the particle. Finally, in Fig. 3b the vortex-particle separation has been measured 
for a small particle (ap = 2.7ξ) with the same initial condition but with different masses. Remarkably, the heavier 
the particle, the better the agreement with theory. This could due to the fact that light particles are more sensitive 
to sound waves and compressible effects not taken into account in the theory. For completeness, we also show the 
case of a vortex filament perturbed with small-amplitude Kelvin waves (dashed golden line). As expected, the 
effect of Kelvin waves is sub-leading and no difference is appreciable with respect to the unperturbed case.

It is well known in classical hydrodynamics that light particles go into vortices whereas the heavy ones escape 
from them11. The same situation takes place for a particle in a superfluid, even if there is no Stokes drag at zero 
temperature. Indeed, as a central force problem, the effective Hamiltonian (14) conserves the angular momentum 

= × ⋅⊥ ⊥ ˆ


 M zq q( )z eff . This conserved quantity leads to the emergence of a repulsive potential M q/2z
2

eff
2

 ⊥ in the 
e f fe c t ive  Ham i l ton i an  for  q ⊥ .  T h e re fore  t h e re  e x i s t s  a  c r i t i c a l  ang u l ar  m om e ntu m 
  π= + + ΓC C M(1 )( ) /2crit 0  such that for 

 <z crit particles collapse into the vortex and escape from it for 
 >z crit. Now, if the particle is initially at rest in the reference frame moving with vortex flow, i.e. 

⊥q  = vv(q⊥), the 
condition on the critical value of z  is expressed in terms of the mass, as 1 <  for trapping and  > 1 for 
escaping. At 1 =  the model (14) predicts a closed circular orbit, i.e. a particle tracing the flow. However, this 
orbit is unstable and modified by high order terms (see Methods) that lead to a collapse also in this case. The three 
situations = 1  and  1>  are manifest in Fig. 4a, where we display the trajectories of a small particle 
(ap = 2.7ξ) with initial velocity 


q⊥ = vv(q⊥) but different masses. For the  = 1 case the prediction given by (13) 

works better than the leading order solution. This is consistent with the fact that the terms proportional to q 2
⊥
−  

cancel for = z crit, so that the next-to-leading order becomes predominant.
Figure 4b shows that the angular momentum is conserved up to 4%. Note that the escaping particle feels the 

attraction of image vortices in the periodic box that break down the conservation of 
z.

Generation of cusps and Kelvin waves on the vortex filament.  We now address the effect of the 
particle on the vortex filament. As the vortex remains almost straight, it can be parametrised as z z zR s( ) ( ( ), )= , 
where s(z) is a bi-dimensional vector. The ansatz (6) can be generalised by replacing ⊥x  in ρv and φv by −⊥ zx R( ). 
Assuming 

| | ⊥z qs( )  and small deflections |∂ |s 1z 
, all the calculations made in the previous section to reduce 

the Hamiltonian can be performed in the same way if we keep only contributions at the first order in s(z). The 
vortex deformation appears in the term HGP in (13) and simply corresponds to the Local Induced Approximation 
(LIA) Hamiltonian28 (see Methods). The effective vortex-particle Hamiltonian (14) becomes

∫
ρ

π ρ π
δ= +

Γ 






− ⋅ Λ

∂
∂

−
+

| − |
−









−
∞

∞ ⊥

H
M z

C M
z

z q zq p s
p

s s
q s

[ , , ]
2 8

(1 )
( )

( ) d ,
(19)

L

zv p
eff
2

eff

2

0

2

2
0

2

where from now on q⊥ = (qx, qy). In principle Λ is a non-local operator yielding the correct Kelvin wave disper-
sion relation28. For the moment, we treat it as a constant. Up to a logarithmic correction, this is equivalent to con-
sider the limit of large-scale vortex deformations. Although rough, such approximation provides a qualitatively 

Figure 4.  (a) Trajectories of small particles (ap = 2.7ξ) with 


= =⊥ ⊥t qq v( 0) ( )v  and q⊥(t = 0) = 22.6ξ. GP data 
are displayed in solid lines, predictions of EH (14) in dotted lines and the predictions of RH (13) in dashed lines 
of the corresponding colours. (b) Relative variation of angular momentum as a function of time for the same 
simulations of (a).



8Scientific Reports |          (2019) 9:4839  | https://doi.org/10.1038/s41598-019-39877-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

good description of the vortex dynamics. The equations of motion coupling the vortex filament and the particle 
are thus found to be:




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(21)

z

2

2
0

2 4

where z AA( )i ij jε× =ˆ , with εij the Levi-Civita symbol. The l.h.s of Eq. (21) can be straightforwardly derived fol-
lowing the calculations performed in refs36,37. Note that the r.h.s. of equation for ̈qz is negligible in the limit s 1z|∂ |   
and | | | |q s . In Eq. (21) a point force is exerted by the particle giving rise to the deformation of the vortex line, 
while the dispersive term leads to Kelvin wave propagation. This simplified model reproduces the generation of a 
cusp similar to the one observed in the numerical simulations of the full GP model, as apparent in Fig. 5a.

In previous works, such cusp-shaped deformations have been interpreted as the result of the vortex reconnec-
tion with the images inside the particle21. Such effect is not taken into account in our model and the formation of 
a cusp is the result of a simple action-reaction mechanism between the particle and the vortex. In addition, the 
curvature of the vortex filament during the trapping is not well described by the universal theoretical prediction 
for pure vortex reconnections obtained by Villois et al.35 (data not shown).

From the particle-vortex model (20,21) we can extract further analytical predictions. Since 
| | ⊥s q , we can 

set q s q− ≈⊥ ⊥ in the model. The particle thus decouples from the vortex and just drives the forcing acting on it. 
We write s(z, t) and q(t) in complex variables as = +s z s z t is z t( ) ( , ) ( , )x y  and q t q t e( ) ( ) i t t( )q= | | Ω , and linearise (21) 
for small s. The equation now reads

κ
π

κ
π ρ

∂
∂

= −
ΓΛ

+
| |

=
+ Γ− Ω +

∞

s
t

i k s i F
q t

e F C M
4 ( )

with (1 )
4

,
(22)

k k
k

i t kq t2 0
3

( ( ) )
0

0
2

q z
ˆ ˆ

where sk̂ is the Fourier transform of s(z) and k a wave-vector. We have now phenomenologically included the 
non-local operator Λk that in Fourier space reads Λ = − − ka K ka K ka a k2(1 1 ( )/ ( ) )/( )k 0 0 0 1 0 0

2, with Kn the 
modified Bessel function of order n and a0 = 1.1265ξ. The operator Λk has been defined in order to obtain the 
correct Kelvin wave relation dispersion ω κ π= ΓΛ k /4k

W
k

K 2  computed in refs28,38 and the cut-off a0 has been fixed 
to satisfy the known GP small-k asymptotic expansion38. First, let us consider the case of radial approach (Ωq = 0) 
with vertical velocity =q 0z . Integrating Eq. (22), it follows that the spectrum of the vortex displacement obeys the 
scaling s kk

2 4| | ∼ −ˆ  at large scales, up to a logarithmic correction. Such scaling corresponds to the deformation of 
the vortex line which starts to develop already at the early times of the trapping process. We compute the spectra 
using the tracked vortex lines obtained from GP simulations by using the method explained in refs39,40. They 
present a good agreement with theory (see Fig. 5b). Finally, if 

 ≠q 0z  or Ωq ≠ 0, the particle-vortex model predicts 
the generation of Kelvin waves when the particle is still distant. Indeed, when the particle is far from the vortex, 

Figure 5.  (a) Cusp generated during the trapping of a neutral-mass particle of size ap = 7.6ξ at the capture time 
t*. The initial particle condition is q⊥ = 45.3ξ and q = 0. Red solid line is the vortex line tracked during GP 
simulation, whereas green solid line is s(z, t*) computed with the dynamics (20, 21). (b) Spectrum of vortex 
displacement measured from GP simulation at different times during the trapping of a particle. The parameters 
are the same as in (a). (c) Spectrum of vortex displacement measured from GP simulation during the motion of 
a particle. The parameters for the particle are ap = 7.6ξ, q⊥(t = 0) = 22.6ξ, q⊥(t = 0) = vv(q⊥) and 

q c0 27z = .  (see 
Methods). The inset shows the superfluid density and the particle where Kelvin waves are clearly present on the 
vortex filament.
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the time dependence of |q(t)| and the one of Ωq(t) are much slower than the one of s(t) and they can be treated as 
constants in Eq. (22). Therefore, the model (22) predicts a linear resonance if k qk

W
q z

Kω = Ω + 
. As a conse-

quence, any motion of the particle not purely radial generates waves on the filament. In order to check this claim, 
we performed a GP simulation with a particle orbiting around the vortex while moving parallel to it. A movie of 
the simulation is available as Supplementary Information. The corresponding vortex displacement spectrum is 
presented in Fig. 5c, where the development of a resonance is clearly visible. The resonant mode predicted by the 
model (22) is kξ = 0.24, compatible with the position of the observed peak. In the inset a snapshot of the super-
fluid density shows the corresponding Kelvin waves generated on the filament. Actually, all the small-k modes of 
the filament are growing during the first stages of particle motion. Indeed, the forcing driven by the particle pro-
duces an oscillation in time of such modes, with low frequency and high amplitude. Note that the considerations 
made from Eq. (22) could be in principle formalised using a multi-time asymptotic expansion.

Discussion
We have studied the interaction of a particle and a quantum vortex in a self-consistent framework given by 
the particle-superfluid Hamiltonian (1). The superfluid is described by the Gross-Pitaevskii equation and the 
particle through classical degrees of freedom. This minimal system is able to extend results obtained in more 
complex models21,30 with a much lower numerical cost. The simplicity of the model allowed us to derive the 
reduced Hamiltonian (13) for the particle dynamics, that also includes corrections due to the vortex density 
profile. Similar theoretical computations can be straightforwardly performed in the case of non-local models of 
superfluids, that are more adequate for describing superfluid helium. In such models, the vortex density profile 
shows oscillations as a function of the distance to the core41,42, which could have some impact on the dynamics 
of small and light particles. In our derivation, we have neglected acoustic radiation and interaction of vortices 
with with sound waves. Compressibility effects of this kind might be also important for light particles and they 
could be included, in principle, generalising the ansatz (6). The Gross-Pitaevskii model used in this work has a 
very simple equation of state valid in the weak coupling limit. When the coupling is not so weak, like in superfluid 
helium, the equation of state can be easily modified changing the type of non-linearity of the model to account for 
the effect of beyond-mean-field quantum fluctuations43,44. It would be interesting to study how these fluctuations 
modify the particle dynamics. In the same spirit, at extremely low temperatures, quantum fluctuations could 
excite low-amplitude Kelvin waves45. However, we expect this effect to be negligible as it was shown in Fig. 3b.

The vortex-particle interaction leads to the trapping of the particle by the vortex. The bounded state with a 
particle trapped inside a vortex line possesses an energy lower that the state in which the vortex and the particle 
are far apart. This energy gap, known as substitution energy, was first computed by Parks and Donelly46. It simply 
corresponds to the vortex kinetic energy contained in the volume occupied by the particle. We have checked 
that this estimate gives the good order of magnitude for the incompressible kinetic energy difference. However, 
it overestimates it as it does not account for dynamical processes like the generation of Kelvin waves after the 
capture. The substitution energy was then used in ref.46 to assess the life time of a Brownian ion inside a vortex in 
presence of an electric field. The model used in this Report can be trivially extended to describe a charged particle 
by adding an external potential, and similar considerations could be easily rephrased. We have observed that 
the vortex considerably stretches while the particle is pulled out from it by an external force (data not shown). 
Therefore, even at zero temperature, the energy needed to remove a particle can be much larger than the substi-
tution energy. The release of a particle from a vortex is an interesting problem for traditional and modern experi-
ments with superfluids. We plan to use the model studied here to study this issue in a future work.

We have observed a non-trivial dynamics of vortex filament if a particle moves around it. The vortex dynamics 
has been included in the effective model (19), and we explained the motion of the vortex as the result of a mutual 
long-range interaction between the particle and the vortex itself. Moreover, we highlighted that long-range 
particle-vortex interaction is sufficient to generate Kelvin waves on the filament even if the particle never touches 
the vortex. It would be interesting to include such a simple interaction term in the vortex filament model, to study 
the effect of a large number of particles. In this regard, note that the model (2) can be trivially extended to include 
many particles, both at zero and finite temperature27. It is then natural to use it for studying the effect of particles 
in a quantum turbulent regime. Indeed, it is still not clear how the dynamics of active particles modify the evo-
lution and decay of complex tangle of quantised vortex lines. Addressing such issues is fundamental for current 
experiments, since particles are nowadays the main tool for tracking and visualising vortices in superfluid helium.

Methods
Numerical methods and parameters.  Equations (2) are solved with a standard pseudo-spectral code and 
a 4th order Runge-Kutta scheme for the time stepping in a domain of size L with Np mesh points per dimension. 
We set c = ρ∞ = 1. The steady states for the particle and the vortex are prepared separately by performing imagi-
nary time evolution of the GP equation and then they are multiplied to obtain the wished initial condition. To 
impose the initial flow around the particle, the initial condition is evolved for a short time (~40τ) using GP with-
out the particle dynamics. In Fig. 5c, the target velocity in the z component is reached by adding an external force 

ξ= × − M cF (0, 0,2 10 / )3
0

2  that then is switched off.
The particle potential is a smoothed hat-function =


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 and the mass displaced by the 

particle is measured as ∫ ∫ρ ψ ψ= − | | | |∞ ∞M L x x(1 d / d )0
3

p
2 2 , where ψp is the steady state with just one particle. 

Since the particle boundaries are not sharp, we measure the particle radius as πρ= ∞a M(3 /4 )p 0
1
3  for given values 

of the numerical parameters η and Δl. For all the particles V0 = 20. The parameters used are the following. For 
ap = 2.7ξ: Np = 512, η = ξ and Δl = 0.75ξ. For ap = 7.6ξ: Np = 256, η = 2ξ and Δl = 2.5ξ. For ap = 23.5ξ: Np = 256, 
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η = 20ξ and Δl = 4ξ. Finally, for ap = 47ξ: Np = 512, η = 43ξ and Δl = 5ξ. Only for the last case L = 512ξ, while for 
all the others L = 256ξ.

In theoretical predictions we have used the Padé approximation ρ = + + + +


r a a r a r b r( )/(1v
2

1 2
2

3
4

1
2

+b r a r )2
4

3
6  where r x /ξ= | | . The coefficients are: a1 = 0.340038, a2 = 0.0360207, a3 = 0.000985125, b1 = 0.355931, 

b2 = 0.037502.

Derivation of the reduced model for the particle trapping.  We report here the calculations leading to 
the reduced Hamiltonian (13). We denote by an overbar some constants that at the leading order are independent 
of q. The quantum energy term Hqnt

GP contains gradients of the density and it is sub-leading when aq p ξ| | >
.We 

thus we set H Hqnt
GP

qnt
GP≈ . As discussed in the text, 


ρ− x1 ( )p  is supported on a ball of center q and radius ap 

denoted by aq( , )p . At the leading order we also have 
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v as constant inside  aq( , )p , recognised the displaced superfluid mass 
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used the definition of the speed of sound. A similar calculation can be performed for the the term Hp
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In the first equality we used the Thomas-Fermi approximation (5) and again p
2
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To compute the hydrodynamic term Hhydro
GP  we write v v v v v v v v v(2 ) (2 2 )s
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We have used n n n n d d d( ) / ( 2)i j r s ij rs ir js is ir d∮ ˆ ˆ ˆ ˆ δ δ δ δ δ δΩ = + + Ω + , where Ωd is the surface of the unit sphere in 
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where the term proportional to ξ ⊥q/4 4 turns out to be repulsive if ξ< +a C(1 2 )p
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Vortex deformation.  We can give a rough derivation of the effective vortex-particle Hamiltonian (19) by 
assuming a small deformation of the vortex line. Similarly to the previous calculations, we neglect the gradients 
of pρ . At the leading order, the terms Hhydro
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GP are the only contributing to Hv−p. For distant particles, the 
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where we have neglected the second term in (29) as it subdominant. The constant Λhydro is given by the radial 
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where Ld is a cut-off of the order of the inter-vortex distance. The last integral has been performed numerically 
using ρv  obtained by imaginary time evolution of the GP equation in a infinite domain. The quantum energy term 
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GP gives a contribution equal to (30) but with the constant Λhydro replaced by ∫Λ = = .
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Finally, in Eq. (19) the constant is Λ = Λ + Λhydro qnt. This oversimplified derivation does not recover the full 
dispersion relation of Kelvin waves as it neglects non-linear interactions and the 3D modifications of vv due to 
vortex deformations. For a more accurate discussion see refs28,38,47.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding authors on 
request.
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3.3 Publication: Quantum vortex reconnections mediated by trapped
particles

As we discussed in section 3.1 and in the publication [75] just reported, the long range
interaction that leads to the particle trapping can be interpreted as a reconnection
dynamics between the vortex and its images inside the particle. Such long range inter-
action plays a key role also in the actual reconnection between two real vortex filaments
in the case in which particles are trapped inside them. How the presence of particles
affect a vortex reconnection is indeed the topic addressed in the article [77], presented
below3. The findings of this work are intended to give some theoretical support to the
superfluid helium experiments in which reconnections have been observed by means
of trapped solidified particles [29, 169].

Firstly, we study the reconnection of a vortex dipole, with a single particle initially
trapped in one of the filaments. Note that a vortex dipole movingwith constant speed is
a steady solution of the GP equation (in the co-moving frame) and thus a spontaneous
self-reconnection does not happen unless some instability is induced [26]. However,
the presence of a particle breaks the symmetry of the system, triggering in this way
the reconnection dynamics. The reconnecting point of the bare vortex lies on the plane
orthogonal to the dipole and containing the particle center. As the system evolves, the
separation 𝛿(𝑡) between such point and the particle surface scales accordingly to the 𝑡1/2

scaling (1.160). Unlike what observed for the particle trapping [75], the vortex-particle
separation is independent of the particle mass. This means that, although the reconnec-
tion is triggered by the simmetry breaking induced by the particle, the vortex dynamics
is effectively fully governed only by the circulation. After the reconnection, the particle
is detatched with a higher velocity because of an abrupt momentum exchange with
the vortex. In the paper, we characterize such momentum exchange, which also de-
termines a mass-dependent deflection of the transverse particle trajectory. Moreover,
we observe that in the direction parallel to the initial dipole velocity the vortex and the
particle momenta do not compensate exactly each other. This is compatible with the
expected momentum transfer to a sound pulse orthogonally to the reconnection plane,
which is a signature of the irreversibility of the reconnection process [230]. In order to
check if the scaling invariance (3.8) still holds in this case, we perform another set of
simulations doubling the particle size and the vortex distance. We indeed observe a
good agreement, although the invariance is polluted by the precession of the trapped
particle due to Magnus effect (2.29) (see the publication [79] in the next chapter for
an analysis on such precession motion).

In the last part of the paper, we consider the reconnection of two linked rings
decorated with randomly distributed particles. Unlike the case of the dipole, in such
system a reconnection is known to happen spontaneosly without particles. Thus, the
effect of the presence of the particles can be directly compared with the bare case. Also
here we observe that the reconnection is likely to happen at the particle position. The
main finding is that light particles do not modify the evolution of the separation rate

3We refer to the introductory section 1.4.4 for a review of superfluid vortex reconnections.
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at large scales, apart from a speed-up taking place close to the reconnection event.
Conversely, if the particles are too heavy, the reconnection dynamics is driven by their
ballistic motion.
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Reconnections between quantum vortex filaments in the presence of trapped particles are investigated using
numerical simulations of the Gross-Pitaevskii equation. Particles are described with classical degrees of freedom
and modeled as highly repulsive potentials which deplete the superfluid. First, the case of a vortex dipole with
a single particle trapped inside one of the vortices is studied. It is shown that the reconnection takes place at the
position of the particle as a consequence of the symmetry breaking induced by it. The separation rate between
the reconnecting points is compatible with the known dynamics of quantum vortex reconnections, and it is
independent of the particle mass and size. After the reconnection, the particle is pushed away with a constant
velocity, and its trajectory is deflected because of the transverse momentum exchange with the vortex filaments.
The momentum exchanges between the particle, the vortex, and a density pulse are characterized. Finally, the
reconnection of two linked rings, each of them with several initially randomly distributed particles, is studied.
It is observed that generically, reconnections take place at the location of trapped particles. It is shown that
reconnection dynamics is unaffected for light particles.

DOI: 10.1103/PhysRevB.102.094508

I. INTRODUCTION

One of the most striking features of superfluids is the
presence of quantum vortices, thin tornadoes which arise as
topological defects and nodal lines of the complex order pa-
rameter describing the system [1]. Quantum vortices have
been observed in different kinds of superfluids, from atomic
Bose-Einstein condensates (BECs), where their core is mi-
crometer sized, to superfluid 4He, where the core size is a few
angstroms. The topological nature of quantum vortices con-
strains their circulation to be a discrete multiple of the quan-
tum of circulation � = h/m, where h is the Planck constant
and m is the mass of the bosons constituting the superfluid.

The dynamics of such vortex filaments is rich and still
not fully comprehended. In particular, a fundamental phe-
nomenon is the occurrence of reconnection events. In general,
in fluid mechanics a vortex reconnection is an event in which
the topology of the vorticity field is rearranged [2]. In the case
of classical fluids, the presence of viscosity breaks the Kelvin
circulation theorem, allowing the reconnection between
vortex tubes [3]. In the case of inviscid superfluids, the
vorticity is supported exclusively along the unidimensional
vortex filaments, and the reconnection between them is made
possible because of the vanishing density at the core of the
vortices [4]. Specifically, the process of superfluid vortex
reconnection consists in the local exchange of two strands of
different filaments after a fast approach, allowing the topology
to vary. In quantum turbulence, reconnections are also thought
to be a fundamental mechanism for the redistribution of
energy at scales smaller than the intervortex distance [5].

The separation δ(t ) between the two reconnecting points
is the simplest observable that characterizes a vortex recon-
nection. Given that a reconnection is an event localized in
space and time, sufficiently close to the reconnection event
it is expected to be fully driven by the interaction between

two filaments. Assuming that at this scale the only parameter
that determines the dynamics is the circulation � about each
filament, a simple dimensional analysis suggests the following
scaling for the separation rate:

δ(t ) = A±(�|t − trec|)1/2, (1)

where A± are dimensionless prefactors, trec is the reconnec-
tion time, and the labels − and + refer, respectively, to the
times before and after the reconnection event. Such scal-
ing has been demonstrated analytically in the context of the
Gross-Pitaevskii (GP) model for δ → 0 [6–8], and it has been
observed to be valid even at distances that go beyond several
healing lengths [7,9]. Note that previous studies reported dis-
parate exponents that still need to be explained [10–12]. The
scaling (1) has also been observed in Biot-Savart simulations
[9,13,14] and superfluid helium experiments [15]. If an exter-
nal driving mechanism is absent, the scaling (1) is considered
a universal feature of vortex reconnections, and the filaments
always approach slower than they separate, i.e., A+/A− > 1.
This last observation has been explained by a novel match-
ing theory as the consequence of an irreversible mechanism
related to the sound radiated during the event [8,16].

In recent years, vortex reconnections have been directly
observed in atomic BECs by means of destructive absorp-
tion imaging [17] and in superfluid helium experiments by
using solidified hydrogen particles as probes [15,18]. This
latter technique has become a standard tool for the investi-
gation of the properties of superfluid helium and quantum
vortices, following its first utilization in 2006 [19]. Indeed,
such particles get captured by quantum vortices thanks to
pressure gradients and are carried by them, unveiling in this
way the dynamics of the filaments. Besides the reconnections
between vortices and Kelvin waves (helicoidal displacements
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that propagate along the vortex filaments), solidified hydro-
gen particles succeeded in revealing important differences
between the statistics of classical and quantum turbulent states
[20,21]. However, given that the typical size of such particles
is four orders of magnitude larger than the vortex core size, it
is far from trivial that they actually behave as tracers. For this
reason, understanding the actual vortex-particle interactions
and how particles and fluids affect each other’s motions is a
crucial theoretical task.

Many models have been developed and studied in this
regard. The main difficulty is caused by the large extent
of the scales involved in the problem, so that different
phenomenological approaches need to be used. For what
concerns large scales, the dynamics of particles in classical
fluids has been phenomenologically adapted to the two-
fluid description of a superfluid [22], and the distribution
of inertial passive particles has been studied in the Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) model [23]. In this
macroscopic approach, the vorticity is a coarse-grained field,
and there is no notion of quantized vortices. Instead, in the
vortex-filament model, the superfluid is modeled as a collec-
tion of filaments that evolve according to Biot-Savart integrals
[1]. This method involves nonlocal contributions and a sin-
gular integral for the computation of the vortex self-induced
velocity that needs to be regularized [24]. In this framework,
hard spherical particles can be modeled as moving boundary
conditions [25,26], although the reconnections both between
vortices and between a vortex and a particle surface need
to be implemented with an ad hoc procedure. These issues
are absent in the GP model, in which the evolution of the
order parameter of the superfluid is described with a nonlinear
Schrödinger equation. Indeed, although the GP equation is
formally derived for dilute Bose–Einstein condensates, it can
be considered as a general model for low temperature super-
fluids, including superfluid helium. Unlike the vortex-filament
method or the HVBK model, the full dynamics of vortices
emerges naturally, including the reconnection events. Particles
modeled as highly repulsive potentials have been successfully
implemented in the GP framework, allowing for an extensive
study of the capture process [27], the interaction between
trapped particles and Kelvin waves [28], and the Lagrangian
properties of quantum turbulence [29]. Recently, the dynamics
of particles trapped inside GP vortices was also addressed in
two dimensions [30].

Because the GP equation is a microscopic model, regular
at the vortex core, it is the natural setting in which quantum
vortex reconnections can be studied. In this work, we combine
such suitability with the simplicity of modeling particles in
the GP framework to study vortex reconnections in the pres-
ence of particles trapped by the filaments. We focus on two
different configurations. In Sec. III we study the evolution
of a dipole of two counterrotating straight vortices with a
particle trapped in one of them. In Sec. IV we characterize
the reconnection of two linked rings loaded with a number of
particles. In the first case the reconnection is induced by the
presence of the particle, and its simplicity allows for a system-
atic investigation of the mutual interaction between vortices
and particles during the process of the reconnection. In the
second case, the reconnection happens even in the absence
of particles, so that how the presence of particles effectively
affects the reconnection process can be addressed.

II. MODEL FOR PARTICLES AND QUANTUM VORTICES

We consider a quantum fluid with Np spherical particles of
mass Mp and radius ap immersed in it. We describe the system
by a self-consistent model based on the three-dimensional
Gross-Pitaevskii equation. The particles are modeled by
strong localized potentials Vp that completely deplete the
superfluid up to a distance ap from the position of their center
qi. The dynamics of the system is governed by the following
Hamiltonian:

H =
∫ (

h̄2

2m
|∇ψ |2 − μ|ψ |2

+ g

2
|ψ |4 +

Np∑
i=1

Vp(r − qi )|ψ |2
)

dr

+
Np∑

i=1

(
ppart

i

)2

2Mp
+

Np∑
i< j

V i j
rep, (2)

where ψ is the order parameter of the quantum and
ppart

i = Mpq̇i are the particles linear momenta. The chemical
potential is denoted by μ. The nonlinear self-interaction
coupling constant of the fluid is denoted by g, and m is the
mass of the condensed bosons. The potential V i j

rep is a repulsive
potential between particles, needed to avoid an unphysical
overlap, due to a short-range fluid-mediated interaction
[31,32]. The equations of motion for the superfluid field ψ

and the particle positions qi = (qi,x, qi,y, qi,z ) are

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ − μψ +

Np∑
i=1

Vp(|x − qi|)ψ,

(3)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (4)

We refer to [27–29,33] for further details about the model,
which was recently adopted to study extensively the
interaction between particles and quantum vortices.

In the absence of particles, the ground state of the system
is a homogeneous flat condensate ψ∞ = √

μ/g ≡ √
ρ∞/m,

with a constant mass density ρ∞. Linearizing around this
value, dispersive effects take place at scales smaller than
the healing length ξ =

√
h̄2/2gρ∞, while large-wavelength

excitations propagate with the phonon (sound) velocity c =√
gρ∞/m2. The close relation between the GP model and

hydrodynamics comes from the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), which maps the GP (3) into the

continuity and Bernoulli equations of a superfluid of density
ρ and velocity vs = ∇φ. Although the superfluid velocity is
described by a potential flow, vortices may appear as topo-
logical defects because the phase is not defined at the nodal
lines of ψ (x), and thus, vortices may appear to be topological
defects. Each superfluid vortex carries a quantum of circula-
tion � = h/m = 2π

√
2cξ , and vortices are characterized by a

vanishing density core size of the order of ξ .
In this work, we perform numerical simulations of the

coupled differential equations (3) and (4) in a periodic cubic
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box with sides L = 128ξ with Nc = 2563 collocation points.
We use a standard pseudospectral method with a fourth-order
Runge-Kutta scheme for the time step. In numerics, we mea-
sure distances in units of ξ , velocities in units of c, and times
in units of τ = ξ/c. As described in the Appendix and in
Ref. [34], dealiasing is applied to equations (3) and (4), in
such a way that they conserve the total energy H (2), the total
fluid mass N = ∫ |ψ |2 dx, and the total momentum

ptot = pGP +
Np∑

i=1

ppart, (5)

where pGP = ih̄/2
∫

(ψ∇ψ∗ − ψ∗∇ψ ) dx is the momentum
of the quantum fluid. If dealiasing is not carefully performed,
the discrete system does not conserve momentum. In the sim-
ulations presented here the total momentum is conserved up
to eight decimal digits.

We use two different particle potentials to model the par-
ticles. For the simulations with the dipole, a smoothed hat
function V 1

p (r) = V0
2 (1 − tanh [ r2−ζ 2

4�2
a

]) is used. The parame-
ters ζ and �a are set to model the particle attributes. In
particular, ζ fixes the width of the potential, and it is related
to the particle size, while �a controls the steepness of the
smoothed hat function. The latter needs to be adjusted in
order to avoid the Gibbs effect in the Fourier transform of
V 1

p . For the simulations of the Hopf link, we use a Gaussian
potential V 2

p (r) = V0 exp (−r2/2d2
eff ), where the width is fixed

using the Thomas-Fermi approximation to set an approximate
radius ζ of the particle as deff = ζ/

√
2 ln(V0/μ). Since the

particle boundaries are not sharp, the effective particle radius
is measured as ap = (3M0/4πρ∞)

1
3 , where M0 = ρ∞L3(1 −∫ |ψp|2 dx/

∫ |ψ∞|2 dx) is the fluid mass displaced by the
particle and ψp is the steady state with just one particle.
Practically, given the set of numerical parameters ζ and �a,
the state ψp is obtained numerically with imaginary time
evolution and the excluded mass M0 is measured directly.
We use the repulsive potential V i j

rep = γrep(2ap/|qi − q j |)12 in
order to avoid an overlap between them. The functional form
of V i j

rep is inspired by the repulsive term of the Lennard-Jones
potential and the prefactor γrep is adjusted numerically so that
the interparticle distance 2ap minimizes the sum of V i j

rep with
the fluid mediated attractive potential [31,32].

The initial conditions for the dipole and a single ring (with-
out particles) are obtained using the Newton-Raphson method
and a biconjugate-gradient technique in order to minimize the
sound emission [35]. The Hopf link of two rings is obtained
by multiplying two states containing a ring each.

III. RECONNECTION OF A VORTEX DIPOLE

We start by presenting a series of numerical simulations
of a dipole of two counterrotating superfluid vortices, with a
single particle initially trapped inside one of them. Such a set-
ting is useful to illustrate how a superfluid vortex reconnection
can be triggered by the symmetry breaking produced by the
presence of particles. Indeed, in the absence of trapped par-
ticles, the vortex dipole is a steady configuration, in which a
spontaneous self-reconnection does not happen unless a Crow
instability is induced [36]. At the same time, the simplicity

TABLE I. Simulation parameters for the vortex dipole reconnec-
tion experiment.

λ d/ξ ap/ξ ζ/ξ �a/ξ V0/μ

1 10 4.3 3.0 0.75 20
2 20 8.6 7.4 0.75 20

of the initial configuration allows for the systematic study of
the mutual effects between the particle and the reconnecting
filaments.

In the initial time of each simulation, the vortices are
straight and aligned along the z direction. The initial velocity
of the particle is set equal to the translational speed of the
dipole vd ∼ (�/2πd )ŷ, where d is the distance between the
two filaments and ŷ is the unit vector along the y direction
[30,37]. We performed the same experiment using particles of
two different sizes and for a wide range of mass densities.

It has been observed in Ref. [27] that the effective Hamil-
tonian describing the process of particle capture by a vortex
induces a dynamics which is invariant under the following
scaling transformation:

d → λd, ap → λap, t → λ2t ∀ λ ∈ R+, (6)

where d is the vortex-particle distance. In order to check if the
scaling invariance (6) is valid also in the present simulations,
we set the radius of the large particle exactly λ = 2 times
larger than the radius of the small one. Analogously, in the
case of the large particle, the vortex filaments are initially
placed λ = 2 times more distant than for the small particle.
If such invariance subsists, it would be an indication of the
analogy between the reconnection process and the trapping
mechanism. In addition, it would naturally extend the validity
of the results reported below in the case of particles with larger
sizes, comparable to the ones used in current experiments.
Note, however, that the scaling invariance (6) neglects the den-
sity profile of the vortex core, as well as other more complex
particle-vortex interactions which can become relevant when
a particle is trapped, like the Magnus effect.

The parameters used for these sets of simulations are sum-
marized in Table I [note that the repulsive potential V i j

rep in Eq.
(4) is absent because only one particle is present].

Snapshots of the typical evolution of the dipole configu-
ration under the GP dynamics (3) and (4) are displayed in
Fig. 1 for a neutral particle of size ap = 4.3ξ and initial vortex
separation d = 10ξ . During the motion of the dipole, the
particle starts to precede about the filament because of the
Magnus effect [28,30,38]. At the same time, the two vortices
start to bend, until the filament without a particle reconnects
with the surface of the sphere at time t−

rec. After the recon-
nection, the contact point of the free vortex separates into
two branches, which then slide on the particle surface toward
opposite directions. For a time window of about ∼20τ the
particle is pierced by both vortices, until the couple of pinning
points above and below the particles merge and the vortices
detach symmetrically. The reconnection changes the topology
of the flow, so that the dipole is eventually converted into a
single vortex ring (which in Fig. 1 appears to be folded on the
vertical direction because of spatial periodicity). At the time
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FIG. 1. Snapshots of the superfluid density and a neutral-mass particle of size ap = 4.3ξ during the dipole reconnection (time varies from
left to right). The initial distance between the vortices is d = 10ξ . Vortices are displayed as red isosurfaces at low density; particles are the
green spheres, and sound is rendered in blue.

of the detachment, a clear spherical sound pulse is generated at
the reconnection point. It expands and propagates along the y
direction, which is the dipole propagation direction and coin-
cides with the normal to the reconnection plane, in agreement
with Refs. [8,16]. Simultaneously, the particle is released and
abruptly accelerated. Eventually, it keeps on moving forward
with a constant speed larger than the dipole velocity.

Before exploring in more detail the origin of the particle
dynamics, we address the question of whether the observed
reconnections induced by the particle are compatible with
the standard picture of GP reconnections. In order to do so,
we compute the separation δ(t ) between the reconnecting
points as a function of time. When the circulation � is the
only relevant parameter driving the reconnection dynamics,
δ(t ) is expected to scale as Eq. (1). We operatively define
the separation before the reconnection δ− as the distance
between the reconnecting point on the free vortex and the
particle surface. After reconnection time t−

rec between the free
vortex and the sphere surface, the separation is not well de-
fined until the particle detachment, after which δ+ becomes
simply the distance between the two extremal points of the
outgoing vortex ring (see Fig. 1). The vortex filaments have
been tracked using the method based on the pseudovorticity
developed in [39]. Since the initial measurable value of δ+ is
of the order of the particle diameter 2ap, we extrapolate the
virtual original time t+

rec at which δ+(t+
rec) = 0, performing a

linear fit of [δ+(t )]2 and evaluating the point where it vanishes.
The same protocol was used with δ−(t ) to refine the value of
t−
rec. The evolution of δ(t ) is displayed in Fig. 2(a) for all the

types of particles analyzed. In Fig. 2(b), δ+(t ) and δ−(t ) are
plotted in a logarithmic scale, after rescaling the distances by
a factor of λ and times by a factor of λ2 (λ = 1 for the small
particle, and λ = 2 for the large one), according to Eq. (6).
It is apparent that the separation rate is independent of the
particle mass and always shows a scaling compatible with
t1/2. This evidence confirms that, although the reconnection
is triggered by the presence of the particle, the vortex dy-
namics is effectively fully governed only by the circulation.

Moreover, the scaling invariance (6) seems to be respected
for the separation rate. Finally, note that the observed positive
ratio between the prefactors of the separation rate (1) after and
before the reconnection (A+/A− ∼ 5.5) is consistent with the
irreversibility of the reconnection dynamics, which is related
to the conversion of energy into sound [7,8,16].

FIG. 2. (a) Distance δ(t ) between reconnecting points for par-
ticles of size ap = 4.3ξ and ap = 8.6ξ . Dashed lines correspond
to δ− before reconnection, and solid lines correspond to δ+ after
reconnection. (b) Log-Log plot of δ(t ), with the rescaling (6). λ = 1
for the particle of size ap = 4.3ξ , and λ = 2 for the particle of size
ap = 8.6ξ . Dotted lines indicate the scaling t1/2.

094508-4



QUANTUM VORTEX RECONNECTIONS MEDIATED BY … PHYSICAL REVIEW B 102, 094508 (2020)

FIG. 3. Trajectories of particles of size (a) ap = 4.3ξ and
(b) ap = 8.6ξ during the dipole reconnection. Different colors cor-
respond to different masses, and the shaded regions indicate the area
spanned by each particle. The dashed lines in corresponding colors
are the trajectories of the reconnecting point of the vortex without
particles at times t < t−

rec. (c) Angle of deflection of the particle
trajectory after the reconnection as a function of the particle mass
for both particle sizes (blue circles correspond to ap = 4.3ξ , and
red crosses correspond to ap = 8.6ξ ). The angle considered is with
respect to the dipole propagation direction.

In Figs. 3(a) and 3(b) we show the trajectories of the par-
ticles on the plane orthogonal to the dipole for the small and
large particles, respectively, and for all the different masses
used. The shaded regions indicate the actual area spanned by
each particle. In Figs. 3(a) and 3(b), the dashed lines show the
trajectories of the reconnecting point on the vortex without
the particle (initially placed at x = 0, y = 0) until it touches
the particle surface at time t−

rec. For the large particle one
can appreciate the different Magnus precession frequencies,
which are inversely proportional to the mass. We observe
that the ballistic motion of the particle after the reconnection
is deflected with respect to the propagation direction of the
dipole, and a correlation between the particle mass and the
deflection angle is apparent. In particular, the heaviest par-
ticles show a smooth trajectory and a deflection concordant
with the velocity orientation at the reconnection point. Con-
versely, light particles slightly bounce back in the opposite
direction. In Fig. 3(c) the deflection angle θ of the particle
trajectory with respect to the dipole propagation direction
is displayed as a function of the particle mass. As already
qualitatively observed in Figs. 3(a) and 3(b), both the small
and large particles (indicated, respectively, by blue circles and
red crosses) deviate in a similar manner, with a deflection
angle that saturates at sin θ ∼ −0.2 for the largest masses. The
origin of such behavior can be understood as the consequence

FIG. 4. (a) x component and (b) y component of the particle
momentum increment with the rescaling (6) as a function of time.
Different colors correspond to different particle species, with the
same convention as in Fig. 2.

of a transverse momentum transfer between the vortices and
the particle, which we analyze in the remainder of this section.

The x component and y component particle momentum
increments �ppart (t ) = ppart (t ) − ppart (t = 0) are plotted as
a function of the rescaled time, respectively, in Figs. 4(a)
and 4(b). The data associated with all the species of par-
ticles analyzed are displayed using the same convention as
in Fig. 3, and also the particle momentum has been rescaled
as ppart → ppart/λ, according to the transformation (6). Note
that at the initial time of the simulations the particle is placed
in the reference frame comoving with the dipole, so that
its momentum is aligned with the propagation direction of
the dipole (the y direction) and reads ppart (t = 0) = Mpvd =
(Mp�/2πd )ŷ. We can clearly observe the abrupt acceleration
felt by the particle in both the transverse and longitudinal
directions during the reconnection event, followed after the
detachment by a relaxation to a ballistic motion with constant
speed. The ballistic motion is due to the absence of Stokes
drag in the superfluid, and a negligible interaction with sound
or with the outgoing vortex ring. The shaded area represents
the time window after t−

rec in which the particle is pierced by
both the filaments and the vortex separation δ is undefined.
Remarkably, such a window turns out to be the same in the
rescaled units regardless of the particle size. Note how before
the reconnection the momentum of the trapped particle oscil-
lates weakly about a constant average because of the Magnus
precession induced by the vortex [28]. If the invariance (6)
really holds, the net particle momentum increment after the
detachment in the rescaled units is expected to coincide for
particles of different radii but the same relative mass M. How-
ever, a small mismatch can be observed, which is probably due
to the interaction between the particle and the vortex by which
it is trapped before the reconnection. Such interaction indeed
produces Magnus oscillations of greater amplitude for the
large particle, as well as the generation of Kelvin waves along
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FIG. 5. (a) x component and (b) y component of the net momen-
tum increment as a function of the particle mass for different particle
sizes. Dotted lines are the particle momentum, dashed lines are the
vortex ring momentum, and solid lines show the sum of the two.
Blue lines refer to the small particle (ap = 4.3ξ ), and red lines refer
to the large one (ap = 8.6ξ ).

the filament and sound radiation, which certainly corrupt the
scaling invariance (6).

We eventually analyze the momentum exchange between
the vortices and particle. Parametrizing the vortex ring after
the reconnection as R(s, t ), where s is a spatial parametriza-
tion variable, the linear momentum of the vortex can be
expressed within the Biot-Savart framework as [40]

pvort = ρ0�

2

∮
R(s, t ) × dR(s, t ), (7)

where the contour integral is evaluated along the ring. Note
that the vortex linear momentum (7) is de facto a purely
geometrical quantity, determined by the spatial configuration
of the ring. In fact, each component of the vortex momentum
can be related to the projection of the oriented area enclosed
by the filament onto the corresponding direction [41]. The
momentum contribution of the superfluid pGP to the total
momentum in Eq. (5) contains the vortex momentum (7) and
compressible waves.

The net momentum increment for the vortex is defined as
〈�pvort〉 = 〈pvort (t > trec)〉 − pvort (t = 0), which is analogous
to the net momentum increment for the particle. In practice,
the vortex momentum is computed from the filaments tracked
during the GP simulation. Then it is averaged over a time win-
dow of ∼20τ after the particle detachment, during which it
remains steady. The x and y components of the net momentum
increments as a function of the mass are displayed Fig. 5. The
dotted lines are the particle net momentum increments, the
dashed lines are the corresponding vortex net momentum in-
crements, and the solid lines are the sum of the two. Blue lines
refer to the small particle, and red lines refer to the large one.

In the x direction (perpendicular to the dipole velocity)
the momentum acquired by the particle compensates almost
exactly the momentum increment of the vortex, and thus,

the transfer to sound modes is negligible. On the contrary, in
the y direction and, in particular, for the small particle (solid
blue line with circles), we observe a net momentum transfer
from the particle and the vortices to other degrees of freedom.
This transfer is independent of the particle mass, and it is
consistent with the observation of a sound pulse after the
reconnection in Fig. 1.

IV. RECONNECTION OF TWO LINKED RINGS

In this section we study a different setting in which vortices
reconnect regardless of the presence of particles. In particular,
we consider as the initial configuration a Hopf link consisting
of two vortex rings with radius R = 18ξ , which is known to
spontaneously undergo reconnection. We place Np = 8 parti-
cles of size ap = 3.7ξ randomly distributed along each ring.
The initial condition is shown in the first snapshot on the left
in Fig. 6. The numerical parameters for the particle potential
are V0 = 20μ and ζ = 3ξ .

We set as the initial velocity of each particle the velocity
of the ring by which it is trapped vring. In order to study
how the presence of particles modifies the reconnection we
consider three different particle masses, light (M = 0.51),
neutral (M = 1), and heavy (M = 3.14 and M = 12.56).
The evolution of the system for light particles (M = 0.51)
according to the GP dynamics is displayed in Fig. 6. Analo-
gous to what was observed for the dipole, as a result of the
particle-vortex interaction [27], the reconnection takes place
between one trapped particle and the other filament. In the
particular case of light particles, two unlinked vortex rings
emerge after the reconnection: a large ring which contains the
majority of the particles and a small ring with two particles
still attached. Moreover, because of the violence of the event,
a couple of particles get detached from the vortices.

In order to give a quantitative description, we measured the
separation rate δ(t ) for the different masses. They are reported
in Fig. 7(a) as solid lines with markers. For comparison,
Fig. 7(a) also includes the distance δ for the vortices without
particles (dashed red line). Overall, if the particles are not too
heavy, the reconnection remains almost unaffected by their
presence. However, at very close distances a speedup takes
place due to particle-vortex interactions. Conversely, in the
case of heavy particles, their inertia is so large that vortices
are driven by them. To illustrate this fact, we consider the
fictitious case in which free heavy particles (without vortices)
are set in the same positions as and with the initial velocity
of the trapped ones. The distance in this case is computed
as the minimal distance between the two groups of particles.
Comparing this separation with that of heavy trapped particles
M = 12.56 (light green triangles), it is clear that in the latter
case the ballistic motion of particles governs the dynamics.

Finally, in Figs. 7(b) and 7(c) a reconstruction of the
event displayed in Fig. 6 using the tracked vortex filaments
(rendered as blue solid lines) is also shown from a different
perspective. For comparison, the tracked vortices correspond-
ing to a simulation with the same initial configuration but
without particles are shown as red lines. It is evident that the
dynamics in the two cases are rather similar, especially before
the reconnection. However, in the moments immediately prior
to the reconnection one of the vortices decorated with parti-
cles shows a clear bending toward a particle set on the other
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FIG. 6. Snapshots of the superfluid density and light particles (M = 0.51) during the Hopf link reconnection (time varies from left to
right). Vortices are displayed as red isosurfaces at low density; particles are the green spheres, and sound is rendered in blue.

filament. This is a clear indication of a fast acceleration, which
is induced by the fluid depletion generated by the presence of
the particle.

V. DISCUSSION

In this work we studied how particles trapped inside quan-
tum vortices modify the process of vortex reconnections. We

FIG. 7. (a) Separation between the reconnecting rings for dif-
ferent masses of the trapped particles (solid lines with markers).
The red dashed line is the vortex separation in the absence of par-
ticles, and the green solid line is the separation between ballistic
particles without vortices. A reconstruction of the event for light
particles (M = 0.51) using the tracked filaments (b) before and
(c) at the reconnection. The filaments of the simulation with particles
are displayed as blue solid lines. The filaments corresponding to a
simulation with the same initial conditions but without particles are
shown as red dashed lines.

have investigated two different settings: a vortex dipole with
one trapped particle and a Hopf link with a number of particles
randomly positioned within the vortex. Whereas in the first
case the reconnection is triggered by the symmetry breaking
induced by the particle, in the second one vortices recon-
nect regardless of the presence of particles. In the case of
the dipoles, we observed that the t1/2 temporal reconnection
scaling is preserved independently of the particle mass and
size. During the reconnection process, we observe a net mo-
mentum transfer from vortices to particles in both directions
perpendicular to the axis of the vortex dipole. In the transverse
direction with respect to the dipole initial velocity, the transfer
is proportional to the mass of the particles, and it is almost
exactly compensated by an equal change in the vortex momen-
tum. In the direction of the dipole displacement, the particle
speedup after reconnection is not fully compensated by the
vortices. The net momentum difference is roughly indepen-
dent of the mass, and it could be associated with the emission
of a sound pulse, such as the one studied in [16]. In the case
of the Hopf link vortex, it was observed that the reconnection
process at large distances is almost unaffected by neutral or
light particles. On the contrary, if particles are heavy, it is
driven by the particle ballistic motion. At very close distances,
the reconnection is speeded up because of the interaction
between the particles and the reconnecting vortex. In general,
it was also observed that reconnection takes place generically
between a trapped particle and an approaching filament.

In conclusion, besides providing further insights into the
current knowledge of the vortex reconnection process, our
findings constitute theoretical support and a benchmark for the
superfluid 4He experiments at very low temperature, in which
the vortices are sampled by solid particles [15,18]. In partic-
ular, as has been proved in the case of Kelvin wave tracking
[28], we stress that the use of light particles is recommended
for reproducing the bare vortex dynamics, provided, of course,
that buoyancy effects remain negligible.
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APPENDIX: DEALIASING OF THE EQUATIONS OF
MOTIONS AND CONSERVATION OF THE INVARIANTS

The set of equations of motion (3) and (4) needs to be
dealiased in order to conserve the total momentum (5). The
equations are dealiased by performing a Galerkin truncation,
which consists in keeping only the Fourier modes with wave
numbers smaller than a UV cutoff kmax. The truncated equa-
tions of motion are

ih̄
∂ψ

∂t
= PG

⎡
⎣− h̄2

2m
∇2ψ − μψ + gPG

[|ψ |2]ψ +
Np∑

i=1

V i
pψ

⎤
⎦,

(A1)

Mpq̈i = −
∫

V i
pPG

[∇|ψ |2] dx +
Np∑
j �=i

∂

∂qi
V i j

rep, (A2)

where V i
p = Vp(|x − qi|) and PG is a Galerkin truncation

operator. PG acts on the function f (x) as PG[ f (x)] =∑
k f̂ (k)eik·xθH(kmax − |k|), where f̂ (k) is the Fourier trans-

form of f (x) and θH is a Heaviside theta function. It is
also assumed that the particle potential is always truncated:
V i

p = PG[V i
p ]. Equations (A1) and (A2) exactly conserve all

the invariants (Hamiltonian, fluid mass, and total momentum)
if the 2/3 rule is used, namely, if kmax = 2

3
Nres

2 , with Nres being
the number of uniform grid points per direction [34]. For a
pseudospectral code, this technique implies an extra compu-
tational cost of one extra back and forth fast Fourier transform.
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4 Superfluid vortex waves sampled and affected
by trapped particles

This chapter is devoted to the presentation of the publication “How trapped particles
interact with and sample superfluid vortex excitations”, [79], in which we study
the interaction between an array of trapped particles and wave excitations that
propagate along almost straight vortex filaments. We predict and measure a natural
precession frequency due to Magnus force, which is proportional to the number of
vortices attached to each particle. Then we build an effective theory based on the
Bloch decomposition, thanks to which we can explain the emergence of frequency
gaps in the spectrum of vortex waves and show that large scale Kelvin waves can
be efficiently tracked by trapped particles. The effective model, which agrees well
with GP numerical simulations, can be thought as an analogy with the motion of
electrons in an unidimensional periodic crystal. The original quantum model of
the crystal is described after the paper, and the analogy with the vortex-particles
system is further commented with a direct comparison of the dispersion relations
predicted by the two models.

4.1 Publication: How trapped particles interact with and sample
superfluid vortex excitations

In the last chapter we analyzed the long range interaction between a particles and
vortices using the model described in section 2.3.3. Here we use the same model to
provide some insights about the interaction of particles trapped inside the vortex core
and the excitations of a straight vortex. In particular, we ask to what extent particles
can detect the presence of Kelvin waves on the filaments and simultaneously how
the propagation of Kelvin waves is affected by the presence of particles. Such work is
inspired by the experimental result [64]. We consider first one single particle placed
along a straight vortex filament, and then an array of equally separated particles. We
slightly perturb the filament, in order to excite linear vortex waves (described in section
1.4.5) and look at the motion of the particles.

As it can be derived from classical hydrodynamic arguments (see section 2.2.3), the
dynamics of a particle pierced by a vortex (namely with a circulation 𝛤 about it) is
driven by the Magnus force (2.29). Such force induces a particle precession of a given
frequency

𝛺p = 3
2

𝜌𝛤𝑎p
𝑀effp

, (4.1)
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4 Superfluid vortex waves sampled and affected by trapped particles

which can be detected as a peak in the power spectrum of the particle position in the
plane orthogonal to the filament. The particle precedes in the same direction of the
circulating flow around the vortex and opposite to the Kelvin waves. We recognize
such oscillation in GP simulations, even in the case where a bundle of many polarized
vortices are attached to the same particle. A possible experimental implication of our
measurement is that, since the value of 𝛺p is proportional to the circulation about the
sphere, it gives an indirect estimation of the number of vortices that are piercing the
particle.

In order to investigate the dynamics of the system in the case when a collection of
particles is placed along an excited straight vortex, we build a spatio-temporal spectrum
of the particle transverse displacement 𝑞𝑗(𝑡) = 𝑞𝑥,𝑗(𝑡) + 𝑖𝑞𝑦,𝑗(𝑡), with 𝑗 the particle label.
In particular, we use the positions of the particles along the filament 𝑞𝑧,𝑗 as spatial
mesh points. Note that since by construction there is not a preferential propagation
direction of the vortex waves, the net particle translation along the direction of the
filament is negligible. We first consider an artificial case, with overlapping particles
that mimic a continuous massive wire. This allows us to determine the role of inertia
in the propagation of vortex wave excitations. Using the vortex self-induced velocity
as flow velocity in the Magnus force, we can predict a flattening of the vortex wave
dispersion relation at small scales, which is proportional to the mass and is confirmed
by the numerical measurements.

Then we address the more realistic case of equally separated particles. Note that
in superfluid helium experiments, solidified hydrogen particles are effectively found
to be homogeneously distributed along the vortices (see section 2.1 and references
therein). A possible explanation of this behaviour is the presence of a residual electric
charge on the particles, when they are injected in the system. Indeed this would lead
to a homogeneous distribution as a consequence of Coulomb repulsion1. Both in the
spatio-temporal spectrum computed from the particle positions, as well as in the one
extracted directly from the GP field, we observe striking and unexpected patterns.
Besides the excited frequencies associated with sound waves (1.110) and a constant
frequency at all the wavenumbers compatible with the Magnus precession (4.1), we
observe a deformed vortex wave dispersion relation together with a completely new
branch at high frequency. The effective theory that we develop to successfully explain
such rich dynamics is inspired by the standard Kronig–Penney (KP) model, used in
solid state physics to describe the quantum mechanics of electrons in a crystal lattice
[111, 127]. In our analogy, the vortex waves play the role of the electronic wavefunction
and the particles are akin to the potential barriers that in the KP model represent the
atoms of a 1D solid. We provide more details on the original KP model in section 4.2,
after the article and a further comparison with the vortex-particles system in section
4.3.

The main difference between the KP model and the vortex-particles system is that
in the first one the potential barriers have a fixed amplitude, while in our case they
are also proportional to the frequency squared of the incoming (vortex) waves. The

1Such simple mechanism is however just a hypothesis, devoid of any experimental evidence.
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4.1 Publication: How trapped particles interact with and sample superfluid vortex excitations

fortunate consequence of this fact is that long wavelength Kelvin waves, which have
small frequencies, do not feel high potential barriers and can propagate almost freely.
In other terms, the transversemotion of particles can efficiently follow such slowmodes
and thus sample the long Kelvin wave dispersion relation. The other important result
that can be extracted from the effective theory (always confirmed by GP simulations) is
that lighter particles aremore suitable for the tracking of vortexwaves. This observation
trivially follows from the inverse proportionality with the particle mass of the effective
KP potential.

After the paper, in section 4.2, we will describe the original KP model in order to
deepen the analogy reported in the publication. A direct comparison of the dispersion
relation in the two cases is finally commented in section 4.3.
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Particles have been used for more than a decade to visualize and study the dynamics of quantum vortices
in superfluid helium. In this work we study how the dynamics of a collection of particles set inside a vortex
reflects the motion of the vortex. We use a self-consistent model based on the Gross-Pitaevskii equation coupled
with classical particle dynamics. We find that each particle oscillates with a natural frequency proportional to
the number of vortices attached to it. We then study the dynamics of an array of particles trapped in a quantum
vortex and use particle trajectories to measure the frequency spectrum of the vortex excitations. Surprisingly, due
to the discreetness of the array, the vortex excitations measured by the particles exhibit bands, gaps, and Brillouin
zones, analogous to the ones of electrons moving in crystals. We then establish a mathematical analogy where
vortex excitations play the role of electrons and particles that of the potential barriers constituting the crystal.
We find that the height of the effective potential barriers is proportional to the particle mass and the frequency of
the incoming waves. We conclude that large-scale vortex excitations could be in principle directly measured by
particles and novel physics could emerge from particle-vortex interaction.

DOI: 10.1103/PhysRevResearch.2.023149

I. INTRODUCTION

When a fluid composed of bosons is cooled down, a
spectacular phase transition takes place. The system becomes
superfluid and exhibits exotic physical properties. Unlike any
classical fluid, a superfluid flows with no viscosity. This is
an intriguing example of the manifestation of pure quantum-
mechanical effects on a macroscopic level. The first discov-
ered superfluid is liquid helium 4He in its so-called phase
II, below the critical temperature Tλ � 2.17 K. In one of the
first attempts of describing the behavior of superfluid helium,
London suggested that superfluidity is intimately linked to
the phenomenon of Bose-Einstein condensation (BEC) [1]. In
the same years, Landau and Tisza independently put forward
a phenomenological two-fluid model, wherein superfluid he-
lium can be regarded as a physically inseparable mixture of
two components: a normal viscous component that carries the
entire entropy and an inviscid component with zero entropy
[2,3].

Because of its intrinsic long-range order, a superfluid
can be described by a macroscopic complex wave function.
A stunning quantum-mechanical constraint is that vortices

*Corresponding author: umberto.giuriato@oca.eu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

appear as topological defects of such order parameter. In
three dimensions, such defects are unidimensional structures,
usually referred to as quantum vortices. Indeed, the circula-
tion (contour integral) of the flow around a vortex must be
a multiple of the Feynman-Onsager quantum of circulation
h/m, where h is the Planck constant and m is the mass of the
Bosons constituting the fluid [4]. Such peculiarity is necessary
to ensure the monodromy of the wave function. In superfluid
helium, quantum vortices have a core size on the order of
an angstrom. At low temperatures, below 1 K, the normal
component is negligible and vortices are stable and do not
decay by any diffusion process, unlike their classical coun-
terparts. The understanding of superfluid vortex dynamics has
a direct impact on many interesting, complex nonequilibrium
multiscale phenomena, such as turbulence [5–7].

Most of the experimental knowledge on superfluid vortices
is based on indirect measurement of their properties. The early
efforts in the observation of quantized vortices were made in
the framework of rotating superfluid helium, by using electron
bubbles (ions) as probes [8]. Since then, impurities have
been extensively used to unveil the dynamics of superfluid
vortices. An important breakthrough occurred in 2006, when
micrometer-sized hydrogen ice particles were used to directly
visualize superfluid helium vortices [9]. Thanks to pressure
gradients, particles get trapped inside quantum vortices and
are subsequently carried by them. Hence, it has been possible
to observe vortex reconnections and Kelvin waves (helicoidal
displacements that propagate along the vortex line) by means
of standard particle-tracking techniques [10]. Furthermore,
the particle dynamics unveiled important differences between

2643-1564/2020/2(2)/023149(12) 023149-1 Published by the American Physical Society
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velocity statistics of quantum and classical turbulent states
[11,12]. In experiments, such particles are used as tracers,
despite their very large size compared to the vortex core.
Therefore, it is of the utmost importance that the mechanisms
driving their dynamics are fully comprehended. Specifically,
how well is vortex dynamics reflected by the motion of the
particles trapped in it? How much does their presence in the
core modify the propagation of Kelvin waves? Would they
affect the reconnection rates?

Describing the interaction of particles with isolated vortex
lines or complex quantum vortex tangles is not an easy
task. Depending on the scale of interest, there are different
theoretical and numerical models that can be adopted. A big
effort has been made in adapting the standard dynamics of
particles in classical fluids to the case of superfluids described
by two-fluid models [13,14]. This is a macroscopic model in
which vorticity is a coarse-grained field and therefore there is
no notion of quantized vortices. A medium-scale description
is given by the vortex filament model, where the superfluid is
modeled as a collection of lines that evolve following Biot-
Savart integrals. In this approximation, circulation of vortices
is by construction quantized but reconnections are absent and
have to be implemented via some ad hoc mechanism. Finite-
size particles can be studied in the vortex filament frame-
work but the resulting equations are numerically costly and
limited [15]. A microscopic approach consists in describing
each impurity by a classical field in the framework of the
Gross-Pitaevskii model [16–18]. In principle, such method
is valid for weakly interacting BECs, and is numerically and
theoretically difficult to handle if one wants to consider more
than just a few particles. In the same context, an alternative
possibility is to assume classical degrees of freedom for the
particles, while the superfluid is still a complex field obeying
the Gross-Pitaevskii equation. This idea of modeling parti-
cles as simple classical hard spheres has been shown to be
both numerically and analytically very powerful [19–22]. In
particular, such minimal and self-consistent model allows for
simulating a relatively large number of particles, and describes
well the particle-vortex interaction [22]. Although formally
valid for weakly interacting BECs, it is expected to give a
good qualitative description of superfluid helium.

In this paper we investigate how particles trapped in quan-
tum vortices interact with vortex excitations and in particular
how well they can be used to infer properties of superfluid
vortices. We use the Gross-Pitaevskii equation coupled with
inertial and active particles obeying classical dynamics to
answer this question. We first address how the Magnus force
acting on trapped particles induces oscillations at a certain nat-
ural frequency. This quantity may be experimentally measured
to determine the number of vortices composing a polarized
bundle (see a discussion later in this paper). Second, in order
to understand the effect of particle inertia, we analyze the
spectrum of vortex excitations in the case when a continuous
distribution of mass is contained inside the vortex core. Then,
we study an array of particles trapped inside a vortex, in a
setting similar to the one observed in experiments. Surpris-
ingly, the dispersion relation of vortex waves measured by
the particles is found to contain band gaps and the periodicity
typically observed in the energy spectra of solids. We explain
the numerical observation applying the concepts used in the

standard Kronig-Penney model [23,24], which describes the
motion of electrons in a unidimensional crystal. Finally, based
on our results, we discuss in which regimes particles could be
reliably used to sample vortex excitations.

II. THEORETICAL BACKGROUND

A. Model for superfluid vortices and active particles

We consider a superfluid at very low temperature con-
taining Np spherical particles of mass Mp and radius ap. We
describe the system by a self-consistent model based on the
three-dimensional Gross-Pitaevskii equation. The particles
are modeled by strong localized potentials Vp, which com-
pletely deplete the superfluid up to a distance ap from their
center position qi. Particles have inertia and obey a Newtonian
dynamics. The Hamiltonian of the system is

H =
∫ ⎛

⎝ h̄2

2m
|∇ψ |2 + g

2
|ψ |4 +

Np∑
i=1

Vp(r − qi )|ψ |2
⎞
⎠dr

+
Np∑

i=1

p2
i

2Mp
+

Np∑
i< j

V i j
rep, (1)

where ψ is the wave function that describes the superfluid
and m is the mass of the condensed bosons interacting with
an s-wave scattering length as, so that the coupling constant
is g = 4πash̄

2/m. The potential V i j
rep = ε(r0/|qi − q j |)12 is a

repulsive potential of radius r0 between particles. See Refs.
[20,22] and the next section for further details about the
model. The equations of motion for the superfluid field ψ and
the particle positions qi = (qi,x, qi,y, qi,z ) are

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + (g|ψ |2 − μ)ψ +

Np∑
i=1

Vp(|x − qi|)ψ,

(2)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (3)

This model has been successfully used to study vortex nucle-
ation [19] and trapping of particles by quantum vortices [22].
We denote by GP the Gross-Pitaevskii model without particles
and by GP-P the full coupled system (2) and (3).

In the absence of particles, the chemical potential μ fixes
the value of the condensate ground state ψ∞ = √

ρ∞/m =√
μ/g. Linearizing around this value, wave excitations are

described by the Bogoliubov dispersion relation

�B(k) = c|k|
√

1 + ξ 2|k|2
2

, (4)

where k is the wave number of the excitation. Large-
wavelength excitations propagate with the phonon (sound)
velocity c =

√
gρ∞/m2, while at length scales smaller than

the healing length ξ =
√

h̄2/2gρ∞ excitations behave as free
particles.

The close relation between the GP model and hydrody-
namics comes from the Madelung transformation ψ (x) =√

ρ(x)/m ei m
h̄ φ(x), which maps the GP (2) into the continuity
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and Bernoulli equations of a superfluid of density ρ and ve-
locity vs = ∇φ. Although the superfluid velocity is potential,
the phase is not defined at the nodal lines of ψ (x) and thus
vortices may appear as topological defects. The simplest case
corresponds to a straight quantum vortex given by

ψv(x, y, z) =
√

ρv(x, y)/m ei m
h̄ φv(x,y), (5)

where ρv(x, y) vanishes at the vortex core line (0, 0, z). The
core size of a vortex is on the order of the healing length
ξ and the phase φv = nv h̄

m ϕ, with ϕ the angle in the (x, y)
plane, ensures the monodromy of the solution (5) only if
nv is an integer number. The corresponding velocity field is
vv = nv h̄

m
ϕ̂

|x⊥| , where ϕ̂ is the azimuthal unit vector and x⊥ =
(x, y, 0). The circulation along a closed path C surrounding the
vortex is therefore quantized:

� =
∮
C

vv · dl = nv
h

m
= 2πnv

√
2cξ . (6)

Actually, for |nv| > 1 vortices are structurally unstable and
split into single-charged vortices. We shall consider only nv =
±1 vortices. Note that the Bogoliubov spectrum (3) obtained
in the GP framework describes well the excitations of atomic
BECs, but does not match the one observed in superfluid
helium. In particular, the dispersion relation never changes
convexity and the roton minimum is absent. Nevertheless, the
hydrodynamic description of vortices and of their large-scale
excitations (summarized in the following section) is similar
both in helium and in the GP model.

B. Frequency spectrum of superfluid vortex excitations

Excitations are present in quantum vortices because of
thermal, quantum, or turbulent fluctuations. They are waves
propagating along the vortex line with a certain frequency
�v(k), where k is the (one-dimensional) wave number of the
excitation. At scales larger than the vortex core size (kξ � 1),
such excitations are known as Kelvin waves (KWs) and they
play the important role of carrying energy toward the smallest
scales of a superfluid [25]. At such scales, the dynamics of
a vortex line can be described by the vortex filament model,
according to which the motion of the filament is determined
by the self-induced velocity vsi of the line on itself [8]. This
model involves nonlocal contributions and a singular integral
that needs to be regularized [26]. Note that this model has
also been derived at large scales also in the framework of
the GP equation [27]. The simplest approximation that can be
done is the well-known local-induction approximation (LIA),
where only the contribution to vsi due to the local curvature at
each point of the filament is considered. Such approximation
is valid when the curvature is much larger than the vortex core
size. The LIA model reads [28]

ṡ(ζ , t ) = vsi(ζ , t ), vsi(ζ , t ) = �

4π
�

∂s
∂ζ

× ∂2s
∂ζ 2

, (7)

where s(ζ , t ) is the curve that parametrizes the filament, and
ζ is the arclength. The parameter � > 0 is in principle a
nonlocal operator yielding the correct Kelvin wave dispersion
relation. At a first approximation and for the sake of simplicity
in analytical treatments, it can be considered as a constant. In
the case of small displacements of a straight filament oriented

along the z axis, the vortex line can be parametrized as
s(z, t ) = sx(z, t ) + isy(z, t ). At the leading order (7) reduces
to

ṡ(z, t ) = vsi(z, t ), vsi(z, t ) = i
�

4π
�

∂2

∂z2
s(z, t ). (8)

The LIA equation (8) admits solutions in the form of heli-
coidal waves propagating along the vortex line with a disper-
sion relation

�LIA(k) = −��

4π
k2. (9)

A better description of vortex waves was formally derived
from the Euler equations for an ideal incompressible fluid by
Sir W. Thomson (Lord Kelvin) [29] in the case of a hollow
vortex, namely if the vorticity is concentrated in a thin tube of
radius a0. In this case the frequency of propagation is given
by the well-known Kelvin wave dispersion relation

�KW(k) = �

2πa2
0

[
1 −

√
1 + a0|k|K0(a0|k|)

K1(a0|k|)

]
, (10)

where Kn(x) is the modified Bessel function of order n and a0

depends on the model of the vortex core. It has been shown by
Roberts [30] that the small wave number limit of expression
(10) is valid also for large-scale waves propagating along the
superfluid vortex described by the GP equation:

�v(k) −→
kξ�1

�KW(ka0 → 0) = − �

4π
k2

(
ln

2

a0|k| − γE

)
,

(11)

where a0 = 1.1265ξ and γE ∼ 0.5772 is the Euler-
Mascheroni constant. On the other hand, at small scales
the excitations of a quantum vortex behave as (GP) free
particles and the dispersion relation is simply given by [30]

�v(k) −→
kξ�1

−�B(kξ → ∞) = − �

4π
k2. (12)

Note that all the frequencies (9)–(12) have an opposite sign
with respect to the circulation �; namely KWs rotate opposite
to the vortex flow vv. Since there is not an analytic expression
for the full dispersion relation of vortex excitations of the GP
model, in the numerics presented in this work we use a fit of
the dispersion relation that matches both asymptotic (10) and
(12). It reads

�fit
v (k) = �KW(k)

[
1 + ε 1

2
(a0|k|) 1

2 + ε1(a0|k|) + 1
2 (a0|k|) 3

2
]
.

(13)

The dimensionless parameters ε 1
2

= −0.20 and ε1 = 0.64 are
obtained from the measured dispersion relation of a bare
vortex tracked in a GP simulation without particles. In Fig. 1
the spatiotemporal spectrum of a bare GP vortex is compared
with the result of the fit (solid green line), together with the
asymptotics. Note that in Eq. (13) we used the full Kelvin
wave frequency relation (10) (dashed cyan line) instead of
the asymptotic (11) (dotted yellow line). This is because its
large-k limit �KW(k) ∼ �

2πa2
0
(a0|k|) 1

2 can be straightforwardly
adjusted to obtain the free particle dispersion relation (12)
(dash-dotted magenta line).
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FIG. 1. (a) Spatiotemporal spectrum of a GP bare vortex loaded
with small-amplitude Kelvin waves. Solid green line is the fit (13).
Dashed cyan line is KW dispersion relation (10). Dotted yellow
line is the small-k asymptotic (11), with b0 = a0eγE /2. Magenta
dash-dotted line is the large-k asymptotic (12). The resolution of
the simulation is N⊥ = N‖ = 256 in a computational domain of size
L⊥ = L‖ = 256ξ . (b) A zoom close to small wave numbers.

III. MOTION OF PARTICLES TRAPPED
BY QUANTUM VORTEX

We are interested in the behavior of particles captured by
quantum vortices. Since hydrogen and deuterium particles
used to visualize vortices in superfluid helium experiments
are considerably larger than the vortex core (typically ap ∼
104ξ ) they could be captured not by an isolated vortex but
by bundles of many polarized vortices. In such complex
system, the large particle size and inertia might affect the
vortex dynamics. It is then natural to try to understand how
the dynamics of vortices is modified by the presence of the
particles, or in other terms, how well particles track superfluid
vortices.

An amazing piece of experimental evidence is that trapped
particles distribute themselves at an almost equal spacing (see
for instance Ref. [10]). In this work we do not address the
physical origins of this distribution, but we adopt it as a
hypothesis for setting the initial condition of our simulations.

We start our discussion by presenting the settings of the
GP-P model in our simulations. The GP-P equations are inte-
grated in a 3D periodic domain of dimensions L⊥ × L⊥ × L‖.
The initial conditions consist of a perturbed straight vortex
containing small-amplitude vortex excitations. The vortex is
loaded with a number of particles and then evolved under
GP-P dynamics. The computational domain contains three
other image vortices in order to preserve periodicity. Only
one vortex contains particles whereas the three others are
bare. We have used resolutions up to 256 × 256 × 1024 and
5123 collocation points. We express the particle mass as Mp =
MM0

p , where M0
p is the mass of the displaced superfluid.

Therefore, light, neutral, and heavy particles have M < 1,
M = 1, and M > 1, respectively. Lengths are expressed in
units of ξ , times in units of τ = ξ/c, and velocities in units of
c. Further details on the numerical implementation are given
in Appendix A.

FIG. 2. Visualization of particles trapped by superfluid vortices
from GP simulations. Vortices are displayed in red, particles in green,
and sound waves are rendered in blue. (a) A single particle of size
ap = 13.1ξ trapped in a vortex filament. (b) An array of particles of
size ap = 13.1ξ and relative distance d = 51.2ξ . (c) A wire made
of 50 overlapping particles of size 2.7ξ trapped in a vortex filament.
(d) An array of particles of size ap = 13.1ξ trapped in a bundle of
4 vortex filaments. Movies of the simulations are available in the
Supplemental Material [34].

Figure 2 displays the four different configurations studied
in this work. Figure 2(a) shows one particle moving in a
quantum vortex which clearly induces KWs on the filament.
Figure 2(b) displays an array of particles initially set at equal
distances. We have checked that provided that particles are
distant enough, they remain equally distributed along the vor-
tex, with very small fluctuations along its axis. Figure 2(c) dis-
plays a snapshot in the case where particles strongly overlap
creating an almost continuous distribution of mass inside the
vortex. Producing this state is possible by properly adjusting
the repulsive potential V i j

rep in Eq. (3). The purpose of studying
this configuration is twofold. First, from the theoretical point
of view it will provide an easier way to describe the role of
the particle mass in the vortex dynamics and its effect on
vortex excitations. On the other hand, such setting is similar to
recent experiments that study the nanowire formation by the
coalescence of gold nanofragments on quantum vortices [31]
or experiments with vibrating wires inside quantum vortices
in superfluid 3He and 4He [32,33]. Finally, Fig. 2(d) displays
a bundle of four equally charged vortices loaded with an
array of particles. In all cases, we clearly see the interaction
between particles and vortices producing sound (phonon) and
Kelvin waves. Movies of the simulations are available in the
Supplemental Material [34].

A. Natural frequency of particles trapped by superfluid vortices

We first consider the dynamics of a particle trapped by
an almost straight superfluid vortex. At the leading order
this is the classical hydrodynamical problem of a moving
sphere with nonzero circulation in an ideal fluid. The main
force acting on the particle is the Magnus force, which arises
from the pressure distribution generated at the boundary of
the particle in such configuration [35,36]. We introduce the
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complex variable q(t ) = qx(t ) + iqy(t ) for the center of the
particle in the plane orthogonal to the vortex filament, and
v = vx + ivy for the velocity of the ambient superfluid flow.
In these variables, the equation of motion for the particle in
the absence of any external force is [36]

q̈(t ) = i�p[q̇(t ) − v], �p = 3

2

ρ�ap

Meff
p

, (14)

where Meff
p = Mp + 1

2 M0
p = (M + 1

2 )M0
p is the effective mass

of the particle and M0
p = 4

3πρa3
p is the displaced mass of the

fluid. In Eq. (14), the fluid is assumed to be incompressible
with density ρ ∼ ρ∞, which is a good approximation when
the particle size is larger than the healing length. From (14)
we can derive the temporal spectrum of the particle position

|q̂(ω)|2 = �2
p|v̂(ω)|2

ω2(ω − �p)2
, (15)

where q̂(ω) = ∫
q(t )e−iωt dt and v̂(ω) = ∫

v(t )e−iωt dt . The
vortex line tension, which is responsible for the propagation
of Kelvin waves [37], is implicitly contained in the superfluid
flow v in Eq. (14). It generates particle oscillations in the
rotation direction opposite to the flow generated by the vortex.
However, from Eq. (15) we see that the particle motion is
dominated by a precession with frequency �p, which has
the same sign of � and therefore has the same direction of
the vortex flow. Such frequency is the natural frequency of
the particle: expressing it as a function of M we get

�p = 9

4π

�

a2
p(2M + 1)

. (16)

For current experiments using particles as probes, such char-
acteristic frequency is of order 10–100 Hz, which is actually
measurable [38].

We have performed a series of numerical experiments with
particles trapped in a superfluid vortex excited with small-
amplitude Kelvin waves. Measurements of temporal spectra
(15) for particles characterized by different values of �p are
reported in Fig. 3. In the x axis of the plot we have the angular
frequencies with the same sign of �. The different natural
frequencies have been obtained varying the mass and the size
of the particles. The observed peak at �p is well predicted by
Eq. (15). The natural frequency is also observed for particles
in the particle-array configuration. In particular, if particles
are attached to a bundle of Nv quantum vortices instead of
a single filament, the corresponding characteristic frequency
is Nv times larger. The case of a bundle of Nv = 4 is also
reported in Fig. 3, in a remarkable agreement with theory.
This has an important experimental implication. Measuring
the natural frequency �p could give an independent estimate
of the circulation (and therefore of the number of vortices) in
the bundles visualized by the particles in superfluid helium
experiments.

Note that in general the vortex line tension could have a
nontrivial coupling with the particles and lead to a modifica-
tion of the precession frequency �p. Indeed, in the idealized
derivation of Eq. (14), it is assumed that the particle center
coincides with the center of a straight vortex line. In principle,
one should solve Eq. (14) together with the equation of
motion of the vortex, taking into account the proper boundary
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FIG. 3. Temporal spectra of the particle positions for different
values of the natural frequency �p, obtained varying mass and size
of the particles. The expected natural frequency |�theory

p | (16) is the
dotted vertical line. Inset: Comparison of the measured natural parti-
cle frequency with the theory. A dagger (†) indicates that the particle
considered belongs to a particle array. An asterisk (∗) indicates that
the particle considered is trapped in a bundle of 4 vortices.

conditions between a sphere and a vortex filament [26], which
will include restoring forces maintaining the particle trapped.
Accounting for such phenomena might lead to a more accurate
prediction of the precession frequency. However, the GP
system naturally contains all these effects. Therefore, given
the agreement between the prediction (16) and GP numerical
simulations, we conclude that the modification of the particle
natural frequency �p due to the coupling at the particle-vortex
boundary is a negligible effect. The simple formula (16) can
be thus safely used as a first estimate in current experiments.

B. Dispersion relation of a massive quantum vortex

As already mentioned above, in order to study the dynam-
ics of an array of particles and their interaction with vortex
waves in a setting like Figs. 2(b) or 2(d), it is instructive to
first analyze the case of a massive quantum vortex, as the
one in Fig. 2(c). Our considerations are necessary to give
a picture of the role of inertia in the propagation of vortex
wave excitations. They are not meant to model a real wire,
for which some results are well known in literature [39,40]
and which has been used to measure the quantized circulation
in superfluid helium [41,42]. We consider a wire of length
Lw, radius aw, and mass Mw, filling a superfluid vortex. The
effective mass is Meff

w = Mw + M0
w and the displaced mass is

now M0
w = ρLwπa2

w. Since such wire possesses a circulation,
each mass element is driven by the Magnus force as in
Eq. (14), but with a different prefactor [35]

�w = ρ�Lw

Meff
w

, (17)

which arises because of the geometrical difference between
a spherical particle and a cylinder. We allow the wire to
deform, which means that the complex variable q is now a
function of the z component too. Such physical system is
analogous to a massive quantum vortex with a finite size core,
which is already well known in literature [39,40], and it has
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been used to measure the quantized circulation in superfluid
helium [41,42]. If the curvature radius is much greater than
the wire radius and the healing length, the flow velocity v

can be approximated by the self-induced velocity of the vortex
filament on itself. In the LIA approximation, the self-induced
velocity is simply given by vsi in Eq. (8). The dynamics of the
wire is therefore driven by the equation

q̈(z, t ) = i�w

[
q̇(z, t ) − i

�

4π
�

∂2

∂z2
q(z, t )

]
. (18)

In this simplified model, we are neglecting modes propagating
along the wire due to elastic tension and the wave number
dependence of the added mass. This choice is done because
we want to focus on the inertial effects that will be relevant in
the case of a particle array, developed in the following section.
Equation (18) allows as a solution linear circularly polarized
waves in the form q(z, t ) = q0ei(�±

Mt−kz), where the frequency
is given by

�±
M(k) = �w

2
± 1

2

√
�2

w + �w��

π
k2. (19)

More generally, one can consider a phenomenological extrap-
olation based on a more realistic model for the self-induced
velocity of the vortex in Eq. (18), so that the dispersion
relation of waves propagating along the wire is generalized
as

�±
M(k) = 1

2

[
�w ±

√
�2

w − 4�w�v(k)
]
, (20)

where �v(k) is the bare vortex wave frequency and depends
on the model chosen for the self-induced velocity. We will
refer to (20) as the “massive vortex wave” dispersion relation.
In the LIA approximation we have �v(k) = �LIA(k) (9) and
we recover Eq. (19), but a more accurate result is expected if
the wave propagation is instead described by �KW(k) or by the
measured dispersion relation �fit

v (k) (13). Note that the zero
mode of the branch �+

M coincides with �w and does not vanish
even if Mw = 0 because of the added mass M0

p . This is related
to the fact that the wire possesses an effective inertia because
during its motion it has to displace some fluid [39,43]. In the
limit kξ � 1, the result (20) can be obtained from the one
derived in Ref. [40] using fluid dynamic equations to study
ions in superfluid helium.

We build numerically a massive vortex placing a large
number of small overlapping particles along a vortex fil-
ament. We set the repulsion between particles at a radius
r0 = 2Lw/(Npap) (see Appendix A), so that they are kept at
constant distance r0/2. Such system mimics a continuum of
matter with total mass given by the sum of all particle masses
Mw = NpMp = NpM0

pM. We have checked that the repulsion
among particles leads to matter sound waves with frequencies
that are subleading with respect to other terms present in
Eq. (18). We initially excite the system with small-amplitude
Kelvin waves and we let it evolve under GP-P dynamics.
Figure 2(c) shows a typical snapshot of the system but in
the case of a larger initial perturbation (in order to enhance
visibility). We then use the particle positions to construct the
spatiotemporal spectrum Sq(k, ω) ∼ |q̂(k, ω)|2, with q̂(k, ω)
the time and space Fourier transform of q(z, t ) (see Appendix
B for further details). Density plots of Sq(k, ω) are displayed
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FIG. 4. Spatiotemporal spectra of massive vortices for different
masses. The vortex length is Lw = 128ξ and there are Np = 50
particles of radius ap = 2.7ξ , with repulsion radius r0 = 2Lw/(Npap).
Dotted yellow line is the Bogoliubov dispersion relation �B(k) (4).
Dashed cyan line is low-k KW dispersion relation �KW(k) (10). Solid
cyan line is full fitted vortex wave dispersion relation �fit

v (k) (13).
Dash-dotted green lines are massive vortex wave dispersion relation
�M(k) (20) computed using low-k KW dispersion relation. Solid
green lines are massive vortex wave dispersion relation computed
using full fitted vortex wave dispersion relation. Dotted horizontal
white line is the natural frequency �w (17). The other parameters of
the simulations are L⊥ = L‖ = 128ξ and N⊥ = N‖ = 256. (a) M =
0.5; (b) M = 5; (c) M = 1; (d) same as (c), but displaying the full
range.

in Fig. 4 for different values of the particle mass. For a
better presentation, we have chosen � < 0 so that vortex wave
frequencies lie in the upper plane. This convention will be
adopted also in the following section.

We first observe that the massive vortex is able to capture
the Bogoliubov dispersion relation �B(k) (4) due to the pres-
ence of excitations in the superfluid, as displayed by yellow
dotted lines in Fig. 4. The bare Kelvin wave dispersion rela-
tion �KW(k) and the measured bare vortex frequency spec-
trum �fit

v (k) are displayed by the cyan dashed and solid lines,
respectively. They coincide in the limit kξ � 1, as expected.
The corresponding massive vortex wave predictions (20) are
also displayed in green dashed and solid lines. For low masses,
the effect of inertia is negligible, so that massive vortex wave
(20) and bare vortex wave (13) predictions are similar. As
the mass increases, the wire inertia becomes important and
the measured frequencies of the wire excitations decrease at
small scales, in good agreement with the massive vortex wave
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prediction. The model (20) is not expected to give a good ex-
planation for the negative branches, as it neglects the details of
the internal structure of the wire, as well as the dependence on
the wave number of the effective mass. Such features, which
are out of the scope of the present work, are taken into account
in Ref. [40] in the case of an elastic and massive hollow vortex
(with no notion of the free-particle behavior of vortex excita-
tions at small scales). The predicted natural frequency of the
wire �W = |�+

M(0)| is clearly reproduced by the numerical
measurements and it does not become infinite when M → 0
because of the added mass effect. For completeness, Fig. 4(d)
displays the dispersion relation over the full accessible range
of wave numbers. The dispersion curves are bent due to the
discreteness of the wire at scales of order kξ ∼ 0.8. Note that
the KW dispersion relation (dashed cyan line) seems to be
very similar to the fitted one (solid cyan line). However, the
difference between the two is apparent in Fig. 4(d). Moreover,
it is clear how the massive vortex wave dispersion relation
computed using �v(k) = �fit

v (k) (solid green line) fits the data
for all the masses analyzed. In particular, in Fig. 4(d), it is
shown that it can predict the dispersion relation of a massive
vortex wire with relative mass M = 1 up to a wave number
kξ ∼ 0.7. This is not the case for the massive vortex wave
dispersion relation computed using �v(k) = �KW(k) (dashed
green line). We thus conclude that the main effect of the
inertia of the particles constituting the wire is to modify the
frequency spectrum of vortex waves, as follows from simple
hydrodynamical considerations.

C. Frequency gaps and Brillouin zones for an array
of trapped particles

Now we shall address the main question of this work. How
well do particles, seating in a quantum vortex, track vortex
waves? In order to study this problem, we consider an array of
particles as the one displayed in Fig. 2(b). Particles are placed
in a quantum vortex, initially separated by a distance d . The
system is excited by superimposing small-amplitude KWs.
We can build a discrete spatiotemporal spectrum Sq(k, ω)
of the measured vortex excitations by using the displace-
ment of particles in the plane perpendicular to the vortex.
In Figs. 5(a) and 5(c) we display the particle spatiotemporal
spectra for an array of Np = 20 particles of size ap = 2.7ξ

with masses M = 5 and M = 1, respectively, placed at a
distance d = 12.8ξ . The Bogoliubov waves are still weakly
sampled by the particles, as displayed by yellow dotted lines.
Surprisingly, a higher-frequency branch appears. Such pattern
is similar to those observed in the typical energy spectra
of crystals [24]. Particles are actually able to sample the
vortex excitations only in the first Brillouin zone; namely
they cannot see wave numbers larger than π/d . However,
spatiotemporal spectra can be also computed by directly using
the superfluid wave function. Performing the time and space
Fourier transform of ψ we define the spectrum Sψ (k, ω) =
|ψ̂ (kx = 0, ky = 0, k, ω)|2. The corresponding spectra Sψ are
shown in Figs. 5(b) and 5(d) where wave numbers go now
up to kd ∼ 10, giving access to all the small scales solved
by the numerical simulations. Several Brillouin zones are
clearly appreciated, as well as the opening of band gaps in
the dispersion relation. At the same time, Bogoliubov modes
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FIG. 5. Spatiotemporal spectra computed from the particle po-
sitions (left) and from the wave function ψ (right) for an array of
particles with mass M = 5 (top) and M = 1 (bottom). Solid green
lines are the contour plot of the dispersion relation (22) computed
with �fit

v (13). Dashed cyan line is low-k KW dispersion relation
�KW(k) (10). Solid cyan line is the fitted vortex wave dispersion
relation (13). Dotted yellow line is Bogoliubov dispersion relation
�B(k) (4). Dash-dotted horizontal white line is the predicted natural
frequency �p. The other parameters of the particles are d = 12.8ξ ,
ap = 2.7ξ , r0 = 4ap. The size of the computational box is L⊥ = L‖ =
256ξ , with N⊥ = N‖ = 512 collocation points.

can be observed and also bare vortex waves. The latter belong
to the image vortices in the computational domain, where no
particles have been attached.

The presence of particles clearly affects the propagation of
waves along the vortex line inducing high-frequency excita-
tions not only for small but also for large wavelengths. The
intuitive idea is that when a vortex wave reaches a particle, it
is partially reflected or transmitted, depending on the mass and
the size of the particles, and eventually on its own frequency.
This reminds us of the standard quantum-mechanical problem
of an electron described by the (linear) Schrödinger equation
hitting a potential barrier. Furthermore, if particles are set at
almost equal distances, the system is similar to an electron
propagating in a periodic array of potential barriers, as in the
Kronig-Penney model [23,24]. In order to apply quantitatively
this intuition and explain the opening of band gaps in the
dispersion relation of vortex wave excitations, we start by
considering an artificial system made of segments of bare
quantum vortex of length (d − Lw), alternated with massive
vortex wires of length Lw. A sketch of the problem is given
in Fig. 6(a). To recover the excitations in the case of the
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FIG. 6. (a) Sketch of the lattice vortex wave model. Bare vortex
segments are in red and massive vortex segments are in green.
(b) Right-hand side of Eq. (22) computed with LIA as a function of
ωτ for an array of particles with radius ap = 2.7ξ and mass M = 5.
Bands of allowed frequencies are displayed in gold. (c) The same as
(b) but for particles with mass M = 1.

particle array, we will later take the limit Lw → 0, keeping
the mass of the wires equal to the effective mass of the
particles. The resulting effective theory must be intended
as an asymptotic limit of the actual system for long waves
kap � 1, in which the nonlinear interactions of the vortex
excitations are neglected and the complexity of the vortex-
particle boundary is ignored. The accuracy of such model has
to be checked by comparing its predictions with the results of
the GP simulations. The motion of the bare vortices is driven
by the self-induced velocity that leads to the propagation
of vortex waves, while the wires are driven by the Magnus
force. For the sake of simplicity, we first consider the LIA
approximations (8) and (18), respectively. The dynamics is
thus given in each zone by

q̇(z, t ) = i
�

4π
�

∂2

∂z2
q(z, t ) (I),

q̈(z, t ) = i�w

[
q̇(z, t ) − i

�

4π
�

∂2

∂z2
q(z, t )

]
(II), (21)

where (I) is the region 0 < z < d − Lw and (II) is the region
d − Lw < z < d . Note that the use of LIA in the system (21)
is rather qualitative, given the high level of complexity of the
problem. In particular it ignores the nonlocal dynamics of the
vortex, does not reproduce the good dispersion relation of
vortex excitations, and may not be able to take into account
the exact boundary condition between the particles and the
vortex. However, it allows us to introduce some general
physical concepts and perform a fully analytical treatment of
the problem. The effective model will be then generalized in
order to take into account a more realistic description of vortex
waves and provide quantitative predictions. The dispersion
relation can be found borrowing standard techniques from
solid state physics, in particular by adapting the solution
of the Kronig-Penny model [23,24]. We look for a wave
solution q(z, t ) = �(z)eiωt , where the spatial function �(z)
can be written in the form �(z) = eikzu(z) according to the
Bloch theorem, where u(z) is a periodic function of period
d [44]. The key point is the imposition of continuity and
smoothness of the function �(z) as well as periodicity of

u(z) and its derivative. These constraints lead to an implicit
equation relating the frequency of the excitations ω, the wave
number k, and all the physical parameters. The full derivation
is explained in Appendix C. The last step in order to describe
the excitations of the particle array is to take the limit Lw → 0
at constant Meff . The dispersion relation is finally determined
by the implicit equation

cos(kd ) = cos(αωd ) − sin(αωd )

αωd
Pω2, (22)

where P = 3πdap/���p and αω satisfies the equation
�LIA(αω ) = ω:

αω =
√

−4πω

��
. (23)

In Figs. 6(b) and 6(c) the right-hand side of Eq. (22) is plotted
as a function of ωτ for heavy and light small particles (that
is, low and high �p). The curve must be equal to cos(kd ) and
this selects the only allowed frequencies (displayed in gold).
It is exactly the same mechanism that leads to the formation
of energy bands in crystals [24].

The previous calculations can be directly generalized for
more realistic wave propagators (see Appendix C). In partic-
ular, if we consider a dispersion relation �v(k) for the vortex
excitations, the only change in the result (22) is the functional
dependence of αω (23), which must satisfy �v(αω ) = ω.
Furthermore, the constant P becomes independent of any
adjustable parameter: P = 3πdap/��p. We consider the dis-
persion relation �fit

v (ω) (13) that matches large- and small-
scale excitations and we invert it numerically to find αω.

In Fig. 5 the contour plot of the theoretical prediction
(22) obtained this way is compared with the numerical data
(solid green lines), exhibiting a remarkable agreement with
the observed excited frequencies. From Fig. 6(b), we remark
that the only allowed negative frequencies lie in a thin band
around �p. This is also in qualitative agreement with the
data. Note that the bare Kelvin wave dispersion relation (10)
(dashed cyan line) and the fitted bare vortex wave dispersion
relation (13) (solid cyan line) are very similar in Fig. 5. The
reason is that the smallest scale that can be solved by the
considered array of particles is kξ = 0.25 (i.e., kd = π ), and
for wave numbers smaller than this value �fit

v (k) tends to
�KW(k) by construction.

In order to make a closer connection with experiments, we
now describe an array of larger particles of size ap = 13.1ξ

and relative mass M = 1 set in a single quantum vortex and
in a bundle composed of four vortices. The corresponding
spatiotemporal spectra Sp(k, ω) are displayed in Fig. 7. In
principle such setting should not be well described by our
theoretical approach. However, the excitation curves can be
reproduced by using the model before the limit Lw → 0 (C6)
and phenomenologically replacing Lw = 2ap while keeping
�eff

w = �eff
p . The agreement is remarkably good, considering

the rough modeling that has been done. The case of a bundle
in Fig. 7(b) is even more striking. At large scales, we could
expect that such system is analogous to a hollow vortex with
four quanta of circulation and some effective core size. We
have estimated the effective core size by measuring the mean
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FIG. 7. Spatiotemporal spectra computed from the particle posi-
tions for an array of large particles of radius ap = 13.1ξ and mass
M = 1 placed at a distance d = 51.2ξ . The repulsion radius is r0 =
2ap. Solid green lines are the contour plot of the dispersion relation
(22) computed with �fit

v . Dashed cyan line is low-k KW dispersion
relation �KW(k). Solid cyan line is the fitted vortex wave dispersion
relation. Dash-dotted horizontal white line is the predicted natural
frequency �p. (a) Particles set in a single vortex. Dashed greed line is
the dispersion relation (C6) before the limit computed using a finite
Lw = 2ap. For the LIA calculations � = 2.6. (b) Particles set in a
bundle of 4 vortices. The dispersion relation (22) has been computed
using �fit

v with an effective core size of a0 = 12ξ (see text). The
other parameters of the simulations are L⊥ = 1024ξ , L‖ = 256ξ , and
N⊥ = 1024, N‖ = 256.

distance between the vortices. The theoretical prediction (22)
combined with this phenomenological approach still impres-
sively matches the numerical data.

IV. DISCUSSION

In this work we have presented a theoretical and numerical
study of the interaction between quantum vortices and a
number of particles trapped in them. We have first pointed out
that a trapped particle oscillates with a well-defined natural
frequency that depends on its mass and the circulation of the
flow surrounding it. Because of the typical values of particle
parameters used in current superfluid helium experiments,
such frequency should be measurable. This measurement can
thus provide an independent way of estimating the number
of vortices constituting the bundles at which particles are
attached.

Based on the experimental evidence that particles spread
along quantum vortices keeping a relatively constant interpar-
ticle distance, we have studied how the particles modify the
vortex excitations. The most exciting result of this work is the
strong analogy with solid state physics. Here, particles play
the role of ions in the periodic structure of a crystal and vortex
excitations that of the electrons. When an electron propagates,
it feels the ions as the presence of a periodic array of potential
barriers. One of the simplest and idealized descriptions of this
physical phenomenon is the Kronig-Penney model, where the
barriers have a constant height U0. Similarly, vortex waves
propagate and interact with particles and we have shown that a

similar theoretical approach can be used. The main difference
is that the constant height of the barriers in the standard
Kronig-Penney model induces constant shift of the energy
(frequency here). As a consequence, the lowest energy level
in a crystal is different from zero (unlike the case of free
electrons). Instead, in the vortex case, the interaction potential
is due to the Magnus force and depends on the frequency.
Comparing the models, we can then establish a mathematical
analogy (see Eq. (22) and Refs. [23,24]) by noticing that the
effective potential in the case of vortex excitations is given by

U0 ∼ ω2/�p ∝ ω2Meff
p . (24)

The height of the potential is thus proportional to the squared
frequency of the incoming wave and to the particle mass. In
particular, for very low frequencies the presence of particles
does not perturb much the vortices and large-scale Kelvin
waves could be tracked by directly measuring the particle
dynamics. Moreover, we observe that for particles with a
higher natural frequency �p (namely lighter and smaller
particles), the value of U0 and of P in Eq. (22) decrease. As a
consequence, the bands of allowed frequencies are broadened.
Ideally, in the limiting case of particles with zero mass, the
natural frequency is infinite and P and U0 vanish. Therefore
Eq. (22) gets simplified dramatically and becomes cos(kd ) =
cos(αωd ). This implies

ω(k) = �v

(
k + 2nπ

d

)
, n ∈ Z, (25)

which is just the vortex wave dispersion relation, but repeated
with period kd = 2π/d . In other words, light and small par-
ticles can follow the filament without modifying the vortex
waves. On the contrary, particle inertia reduces the excited
frequencies (in absolute value) of vortex excitations. This fact
(actually coming from simple linear physics) should be taken
into account when one tries to measure the Kelvin waves
experimentally.

In this work we did not take into account the relevance of
buoyancy effects for light and heavy particles. We can esti-
mate it by comparing the buoyancy force Fb = (Mp − M0)g̃,
where g̃ ∼ 9.8 m/s2 is the gravitational acceleration, with the
Magnus force that drives the particles FM = 3

2ρ�apu, where u
is the typical particle velocity estimated as u ∼ �pap. It turns

out that Fb/FM = C(M − 1)(2M + 1), where C = 32
81π2 g̃a3

p

�2 .
This expression strongly depends on the particle size. For
instance, given that the quantum of circulation in superfluid
helium is � ∼ 10−7 m2/s, we get that C ∼ 4 × 10−3 for a
particle of size ap = 1 μm and therefore the buoyancy is
negligible. However C becomes of order 1 for a particle of
size ap = 7 μm. We conclude that small and light particles
would be the most suitable for tracking the vortex excitations.

Several questions can be immediately raised. If particles
are not actually equally distributed along the vortex but in-
stead they present some randomness, vortex waves will then
propagate in a disordered medium. It will be natural then to
study the possibility of Anderson localization in such a system
[45,46]. Such situation could perhaps appear if the vortex lines
are excited by external means, for instance close to the onset
of the Donnelly-Glaberson instability [47,48].
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The physical system studied in this work is a first idealized
picture of what happens in real superfluid helium experiments.
The most evident difference is that the size of particles is
typically orders of magnitude larger than the vortex core
size (ap ∼ 104ξ ). However, the prediction (22) comes from
an asymptotic theory in which kap � 1 and particles can be
considered pointlike, independently of the functional form of
�v(k). Therefore, we expect that our result should still apply
for wavelengths larger than the particle size. Such long waves
are indeed observed in experiments [10]. In particular, the fact
that particle inertia does not affect the (low) frequency Kelvin
waves should be still valid. A more quantitative prediction for
vortices in He II would be always Eq. (22), but with αω such
that ω = �He(αω ), where �He(k) is the true vortex excitation
dispersion relation in superfluid helium. In any case all the
main conclusions remain valid, since the analogy with a crys-
tal is independent of �v(k). Moreover, the behavior at large
scales is expected to work quantitatively also for superfluid
helium vortices because �He(ka0 → 0) ∼ �KW(ka0).

Furthermore, we have used arrays of particles with all
identical masses. Instead, in actual experiments there is not a
perfect control on the mass and size of particles. In particular,
the mass distribution of particles could be polydispersed. In
this case, new gaps in the dispersion relation are opened
revealing much more complex configurations. A preliminary
numerical study confirms this behavior and it will be reported
in a future work. In any case, the basic interaction between
one particle and vortex waves remains the same regardless of
the presence of some disorder. Therefore, large-scale Kelvin
waves are not disturbed by the particles. Studying in detail
the effects of different species of particles trapped in a vortex
can be done systematically in the same spirit of the effective
theory developed in the present work, for example adapting
tight-binding models [24] to the vortex-particles system. We
think that this is a worthy research direction that could es-
tablish new and deeper connections with concepts already
known in solid state physics, introducing a plethora of novel
phenomena in the framework of quantum fluids.

Last but not least, note that the basic equations considered
in this work to build up the effective model are based on clas-
sical hydrodynamics. Therefore, one could expect that most of
the phenomenology remains valid in a classical fluid provided
that a mechanism to sustain a vortex exists. Such mechanism
could be for instance provided by two corotating propellers
at moderate speeds. Since these systems are achievable in
much less extreme conditions than in cold superfluid helium
and because the manipulation of particle parameters is much
simpler, it could be possible to build analogs of solid state
physics phenomena by using classical fluid experiments.
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APPENDIX A: NUMERICAL SCHEME AND PARAMETERS

Equations (2) and (3) are solved with a standard pseu-
dospectral code and a fourth-order Runge-Kutta scheme for
the time stepping in a 3D periodic domain of dimensions
L⊥ × L⊥ × L‖ with N⊥ × N⊥ × N‖ collocation points. We set
c = ρ∞ = 1.

The ground states with particles and straight vortices are
prepared separately by performing imaginary-time evolution
of the GP equation. In order to have an initial state with zero
global circulation (and therefore ensure periodic boundary
conditions) we need to add in the computational box three im-
age vortices with alternating charges. The state with bundles
of Nv = 4 vortices [Fig. 2(d)] is prepared imposing a phase
jump of 2Nvπ around a vortex (including its images). Then,
imaginary-time evolution of the GP equation is performed for
a time ∼150τ , so that the vortex filaments separate and the
bundles form. KWs are generated from the state with straight
vortices slightly shifting each xy plane of the computational
domain. Then the states with KWs and particles are multiplied
to obtain the desired initial condition. Just one vortex filament
is loaded with particles, while the three other images remain
bare. The initial condition is evolved for a short time (∼40τ )
using GP without the particle dynamics in order to adapt the
system.

The particle potential is a smoothed hat function Vp(r) =
V0
2 (1 − tanh[ r2−η2

4�l2 ]) and the mass displaced by the particle
is measured as M0

w = ρ∞L⊥L2
‖ (1 − ∫ |ψp|2 dx/

∫ |ψ∞|2 dx),
where ψp is the steady state with just one particle. Since the
particle boundaries are not sharp, we measure the particle
radius as ap = (3M0

p/4πρ∞)
1
3 for given values of the numer-

ical parameters η and �l . For all the particles V0 = 20. The
parameters used are the following: for ap = 2.7ξ , η = ξ and
�l = 0.75ξ ; for ap = 7.6ξ , η = 2ξ and �l = 2.5ξ ; and for
ap = 13.1ξ , η = 10ξ and �l = 2.8ξ .

The parameter r0 of the potential V i j
rep = ε(r0/|qi − q j |12)

is the radius of the repulsion between particles. The parameter
ε is fixed numerically in order to impose an exact balance
between the repulsive force and the GP force − ∫

Vp(|x −
qi|)∇|ψ |2 dx in the ground state with two particles placed
at distance 2ap when r0 = 2ap. The parameters used for the
repulsion are the following: for the wires in Fig. 4, r0 =
2Lw/(Npap) and ε = 4.4 × 10−5; for the array of particles
in Fig. 5, r0 = 4ap and ε = 4.4 × 10−5; and for the array of
particles in Fig. 7, r0 = 2ap and ε = 1.7 × 10−3.

APPENDIX B: SPATIOTEMPORAL SPECTRA

We use the particle positions to define the spatiotemporal
spectra of vortex excitations by computing

Sq(k, ω) = Cq

∣∣∣∣∣∣
∫ Np∑

j=1

q(z j, t )e−i(kz j+ωt )dt

∣∣∣∣∣∣
2

, (B1)
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where z j is the z component of the particle j. Similarly, the
spatiotemporal spectrum of the superfluid wave function is
defined as

Sψ (k, ω) = Cψ

∣∣∣∣
∫

ψ (x, y, z, t )e−i(kz+ωt ) dx dy dz dt

∣∣∣∣
2

. (B2)

Note that in Eq. (B2) an average of ψ in the x and y directions
is implicit. The normalization constants Cq and Cψ are set
such that the full (k, ω) integrals of the spatiotemporal spectra
are 1. In order to enhance the small-scale excitations, in the
density plots shown in the present work, both the spectra (B1)
and (B2) are further normalized with the frequency-averaged
spectra, respectively

∫
Sq(k, ω) dω and

∫
Sψ (k, ω) dω. All the

color maps shown in the present work are in log scale.

APPENDIX C: DERIVATION OF THE KRONIG-PENNEY
DISPERSION RELATION FOR VORTEX WAVES

We look for a linear wave solution q(z, t ) = �(z)eiωt of
the system (21) and in particular we want to know which
frequencies ω are excited. The function �(z) must satisfy the
system

∂2

∂z2
�(z) + α2

ω�(z) = 0 (I),

∂2

∂z2
�(z) + β2

ω�(z) = 0 (II), (C1)

where αω and βω are such that

�LIA(αω ) = ω, �LIA(βω ) = ω − ω2

�w
, (C2)

which means

αω =
√

−4πω

��
, βω =

√
4π

��

(
ω2

�w
− ω

)
. (C3)

Since the system (C1) is a linear and homogeneous differ-
ential equation with periodic coefficients of period d , it admits
a solution in the form �(z) = eikzu(z), where u(z) is a periodic
function of period d . The solutions of (C1) in the two regions
(I) and (II) are

�I(z) = eikzuI(z) = eikz[Aei(αω−k)z + Be−i(αω+k)z],

�II(z) = eikzuII(z) = eikz[Cei(βω−k)z + De−i(βω+k)z]. (C4)

The coefficients A, B, C, D are fixed by imposing continuity
and smoothness of the function �(z) and periodicity of u(z)
and its derivative:

�I(0) = �II(0),

�′
I(0) = �′

II(0),

uI(d − Lw) = uII(−Lw),

u′
I(d − Lw) = u′

II(−Lw). (C5)

The system (C5) is a homogeneous linear system for the
variables A, B, C, D. It admits nontrivial solutions only if the
determinant of the coefficients is equal to zero. This implies

the following condition:

cos(kd ) = cos(βωLw) cos[αω(d − Lw)]

−α2
ω + β2

ω

2αωβω

sin(βωLw) sin[αω(d − Lw)], (C6)

which determines implicitly the dispersion relation ω(k). Such
expression is structurally identical to the standard Kronig-
Penney condition but the functions αω and βω are different.
The limit Lw → 0 is applied to Eq. (C6), substituting at
the same time the mass of the massive vortex segment Meff

w
with the mass of the particle Meff

p . In this way the system
becomes a vortex filament loaded with massive point par-
ticles (see Fig. 6). The limit implies βω → ∞, βωLw → 0,
sin(βωLw) ∼ βωLw, αω � βω, and β2

ωLw ∼ 6πapω
2/���p,

so that Eq. (C6) becomes Eq. (22).
The previous result can be extended to the case of more

realistic vortex waves with some caveat. We can formally
rewrite the model (21) as

q̇(z, t ) = iL̂v[q(z, t )] (I),

q̈(z, t ) = i�w{q̇(z, t ) − iL̂v[q(z, t )]} (II), (C7)

where L̂v is the linear nonlocal differential operator that
generates the vortex wave dispersion relation �v(k). Namely,
calling s(z, t ) = ∑

k sk (t )eikz the wave operator simply reads

L̂v[s(z, t )] =
∑

k

�v(k)sk (t )eikz. (C8)

The system (C1) thus becomes

L̂V[�(z)] − ω�(z) = 0 (I),

L̂V[�(z)] −
(

ω − ω2

�v

)
�(z) = 0 (II). (C9)

The functions (C4) are still a solution of (C9), but now αω and
βω are defined as

�v(αω ) = ω, �v(βω ) =
(

ω − ω2

�w

)
. (C10)

In general such equations cannot be inverted explicitly, but αω

and βω can be found numerically. In particular the inversion
is intended with respect to �v(k > 0). The functions αω and
βω are well defined (at least for ω/� > 0) because any model
for the self-induced velocity of a vortex generates a dispersion
relation �v(k) that is monotonically increasing for positive k.
For evaluating the limit Lw → 0, Meff

w → Meff
p , we note that

limLw→0 �v(βω ) = ∞. Therefore, we can explicitly use the
asymptotics of �v(k) for large k, which is just the free particle
dispersion relation (12) and can be inverted explicitly:

βω −→
Lw→0

√
4πω2

��w
, (C11)

so that β2
ωLw ∼ 6πap/��p. In this way we recover Eq. (22),

with αω defined as in (C10) and the amplification factor P is
now independent of any free parameter:

P = 3πdap

��p
. (C12)
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4 Superfluid vortex waves sampled and affected by trapped particles

4.2 The original Kronig–Penney model for a one-dimensional crystal

In this section we report the explicit derivation of the Kronig–Penney model, which
describes the quantum mechanics of an electronic wavefunction in a periodic unidi-
mensional crystal [111, 127]. In this way, the reader not familiar with these solid state
concepts can appreciate better the analogy with the vortex-particle system reported in
the publication [79].

Let us consider a quantum wavefunction 𝜓e (which has nothing to do with with
the superfluid field 𝜓), describing an electron of mass 𝑚e in a one dimensional space.
Such wavefunction evolves accordingly to the (linear) Schrödinger equation

𝑖ℏ 𝜕
𝜕𝑡𝜓e(𝑥, 𝑡) = − ℏ2

2𝑚e

𝜕2

𝜕𝑥2 𝜓e(𝑥, 𝑡) + 𝑉(𝑥)𝜓e(𝑥, 𝑡), (4.2)

where 𝑉(𝑥) is an external potential field. The simplest way of modeling a crystal lattice
consists in choosing 𝑉(𝑥) as a periodic series of potential barriers, as sketched in Fig.4.1.
The fundamental cell of the potential field is thus defined as

x

0

V0

−b a0
(II) (I)

Figure 4.1. Sketch of the original Kronig–Penney model. The potential barriers are displayed in
green and the electronic wavefunction 𝜓e is in red. The dotted and dash-dotted lines are the
real and the imaginary part of 𝜓e.

𝑉(𝑥) =
⎧{
⎨{⎩

0, for 0 < 𝑥 < 𝑎 (I)
𝑉0, for − 𝑏 < 𝑥 < 0 (II)

(4.3)

where 𝑉0 is the height of the barrier, 𝑏 its width and 𝑑 = 𝑎 + 𝑏 the distance between two
consecutive barriers. In each of the two zones of the fundamental cell, the equation of
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4.2 The original Kronig–Penney model for a one-dimensional crystal

motion for the quantum wavefunction reads

𝑖ℏ 𝜕
𝜕𝑡𝜓e(𝑥, 𝑡) = − ℏ2

2𝑚e

𝜕2

𝜕𝑥2 𝜓e(𝑥, 𝑡), (I) (4.4)

𝑖ℏ 𝜕
𝜕𝑡𝜓e(𝑥, 𝑡) = − ℏ2

2𝑚e

𝜕2

𝜕𝑥2 𝜓e(𝑥, 𝑡) + 𝑉0𝜓e(𝑥, 𝑡). (II) (4.5)

Such system admits as solution a stationary quantum state of energy 𝐸 > 0 given by
𝜓(𝑥, 𝑡) = 𝛷(𝑥)𝑒− 𝑖

ℏ 𝐸𝑡, where 𝛷(𝑥) is a spatial function that satisfies the system

𝜕2

𝜕𝑥2 𝛷(𝑥) = 𝛼2𝛷(𝑥), (I) (4.6)

𝜕2

𝜕𝑥2 𝛷(𝑥) = 𝛽2𝛷(𝑥), (II) (4.7)

where we have defined

𝛼 = √2𝑚𝐸
ℏ2 , 𝛽 = √2𝑚e

ℏ2 (𝑉0 − 𝐸). (4.8)

The problem consists in finding the energy levels of such system, i.e. the energy spec-
trum of an electron immersed in a periodic lattice of potential barriers. The analogous
of the energy 𝐸 in [79] is the frequency of Kelvin waves when an array of particles is
trapped by the vortex filament. Note that the definition of 𝛽 is valid both for 𝐸 < 𝑉0
and 𝐸 > 𝑉0, being purely real in the first case and purely imaginary in the latter.

Fromnowon, the derivation is formally equivalent to the one showed in the appendix
of Ref. [79], although the physical meaning of the various terms is rather different.
Since Eqs. (4.6) and (4.7) constitute together a linear and homogeneous differential
equation with periodic coefficients of period 𝑑 = 𝑎 + 𝑏, one can appeal to the Bloch
theorem [111] and look for a solution

𝛷(𝑥) = 𝑒𝑖𝑘𝑥𝑢(𝑥), (4.9)

where 𝑢(𝑥) is a periodic function of period 𝑑 = 𝑎 + 𝑏 (usually called Bloch function)
and 𝑘 the wavenumber. In the two regions (I) and (II) the Bloch function reads

𝑢I(𝑥) = 𝐴𝑒𝑖(𝛼−𝑘)𝑥 + 𝐵𝑒−𝑖(𝛼+𝑘)𝑥,

𝑢II(𝑥) = 𝐶𝑒𝑖(𝛽−𝑘)𝑥 + 𝐷𝑒−𝑖(𝛽+𝑘)𝑥.

The conditions that one need to impose to determine the coefficients 𝐴, 𝐵, 𝐶, 𝐷 are the
continuity of the Bloch function and its derivative at the interfaces between the two
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4 Superfluid vortex waves sampled and affected by trapped particles

region of the fundamental cell:

⎧{{{
⎨{{{⎩

𝑢I(0+) = 𝑢II(0−)
𝑢′
I(0+) = 𝑢′

II(0−)
𝑢I(𝑎−) = 𝑢II(−𝑏+)
𝑢′
I(𝑎−) = 𝑢′

II(−𝑏+)

(4.10)

where the primes indicate spatial differentiation. As usual, nontrivial solutions 𝐴, 𝐵,
𝐶, 𝐷 of the system (4.10) exist if the determinant of the corresponding coefficients
vanishes. This imply the condition

cos(𝑘𝑑) = cosh(𝛽𝑏) cos(𝛼(𝑑 − 𝑎)) −
𝛼2 − 𝛽2

2𝛼𝛽 sinh(𝛽𝑏) sin(𝛼(𝑑 − 𝑎)) (4.11)

which determines implicitly the energy spectrum 𝐸(𝑘) as a function of the wavenumber
𝑘 (the energy is hidden in the variables 𝛼 and𝛽). The equation holds both for𝐸 < 𝑉0 and
𝐸 > 𝑉0, but in the latter case 𝛽 is purely imaginary. Thus, in such case it is convenient

to redefine it as 𝛽 = √2𝑚e
ℏ2 (𝐸 − 𝑉0) so that the the implicit dispersion relation reads

cos(𝑘𝑑) = cos(𝛽𝑏) cos(𝛼(𝑑 − 𝑏)) +
𝛽2 − 𝛼2

2𝛼𝛽 sin(𝛽𝑏) sin(𝛼(𝑑 − 𝑏)), (4.12)

which is structurally identical to Eq. (C6) of [79], but with different 𝛼 and 𝛽. Note
that Eq. (4.11) can be derived in the same way also in the case of attractive potentials
𝑉0 < 0, i.e. for potential wells instead of potential barriers. The equation for the energy
spectrum can be further simplified performing simultaneously the limit of infinite
potential height 𝑉0 → ∞ and infinitesimal potential width 𝑏 → 0, but keeping the
product 𝑉0𝑏 constant. In this situation 𝛽2𝑏 remains also constant, 𝛽𝑏 and 𝛼2𝑏 vanish
and one can substitute sinh(𝛽𝑏) ∼ 𝛽𝑏 and cosh(𝛽𝑏) ∼ 1, so that Eq. (4.11) becomes

cos(𝑘𝑑) = cos(𝛼𝑑) + sin(𝛼𝑑)
𝛼𝑑 𝑃, (4.13)

with the parameter
𝑃 = 𝑚𝑎

ℏ2 𝑉0𝑏, (4.14)

that quantifies the energy barrier. In particular, the free particle dispersion relation is
recovered for 𝑃 → 0, although replicated with period 𝑑. The limit leading to Eq.(4.13)
is also analogous to the one performed to pass from the system made of bare vortex
segments alternated by massive vortex segments to a vortex filament with inertial
point particles placed on it. In the latter case, the length of the massive vortices is sent
to zero, while the inertia is kept fixed.
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4.3 Comparison between the crystal and the vortex-particles dispersion relations

4.3 Comparison between the crystal and the vortex-particles
dispersion relations

The energy spectrum in the limit of delta-supported potential barriers (4.13) can be
compared directly with the dispersion relation (22) of [79], that we report also here:

cos(𝑘𝑑) = cos(𝛼𝜔𝑑) + sin(𝛼𝜔𝑑)
𝛼𝜔𝑑 𝑃𝜔2, (4.15)

where 𝑑 is now the distance between the inertial point particles, 𝛼𝜔 is defined implicitly
in Eq. (C9) of [79] as the inverse of the vortex wave dispersion relation and 𝑃 =
3𝜋𝑑𝑎p/𝛤𝛺p. In Fig.4.2 the contourplot of Eq. (4.13) in the plane 𝐸-𝑘 is compared with
the contourplot of Eq. (4.15) in the plane 𝜔-𝑘 for different values of the parameter 𝑃.

There are basically three main differences between the two spectra (4.13) and (4.15).
The first one is of course the definition of the constant 𝑃, that in the vortex-particles
system contains the parameters of the particle (size and mass) and the circulation,
while in the standard KP model 𝑃 is controlled by the product between the potential
barrier and the potential width. Apart from that, its role is exactly the same, namely
tuning the strenght of the energy barrier due to the impurities (potentials/particles).
When the value of 𝑃 is larger, the gaps between the allowed energies/frequencies are
larger and the allowed bands thinner.

The second difference is the functional form of 𝛼𝜔, i.e. the “bare” wave dispersion
relation. If one considers a realistic vortex wave dispersion relation it basically im-
plies a logarithmic correction for the slow modes. Instead, if one consider the LIA
approximation, the functional form is actually the same for a vortex wave and for
an electron, being 𝛼𝜔 ∝ √𝜔 in the first case and 𝛼 ∝ √𝐸 ((4.8)) in the latter. As a
consequence, when 𝑃 = 0 (upper row of Fig.4.2) the two models reproduce the same
continuous spectrum, which is just the free wave dispersion relation, replicated with
period 𝑘𝑑 = 2𝜋. Such result trivially follows from the fact that both the vortex waves
in the LIA approximation and free electrons are described by a linear Schrödinger
equation with quadratic dispersion.

The last and crucial difference is the presence of an 𝜔2 in the second term of the
right hand side of Eq. (4.15). Such term stems directly from the Newton acceleration
term in the equation for the particles before the limit of zero length, which acts as
an effective potential barrier for the wave propagation. Indeed, substituting the wave
solution 𝑞(𝑧, 𝑡) = 𝛷(𝑧)𝑒𝑖𝜔𝑡 into Eq. (21-II) of [79] one gets

𝜕2

𝜕𝑧2 𝛷(𝑧) = 4𝜋
𝛤𝛬 (𝜔 − 𝜔2

𝛺w
) 𝛷(𝑧). (4.16)

Comparing Eq. (4.16) with (4.7), it is evident that the role of the inertial term 𝜔2/𝛺w
is the same of the potential height 𝑉0. Note that in the limit 𝐿w → 0 with 𝑀eff

w = 𝑀eff
p ,
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Figure 4.2.Comparison between the original KP energy spectrum (4.13) (left) and the vortex
waves KP dispersion relation (4.15) (right) for different values of the parameter 𝑃. The LIA
dispersion relation has been used to model the bare vortex wave dispersion relation and
energies (frequencies) are normalized to match in the free wave regime (𝑃 = 0, upper row).

Eq. (21) of [79] becomes:

𝜕2

𝜕𝑧2 𝛷(𝑧) = 4𝜋
𝛤𝛬 (𝜔 − 3

2𝑎p𝛿(𝑧 − 𝑧𝑗)
𝜔2

𝛺p
) 𝛷(𝑧), (4.17)
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where the Dirac deltas are peaked at the position 𝑧𝑗 of the particles. As already men-
tioned in the discussion of the paper, the dependence on 𝜔2 of the potential implies
that slow modes with low 𝜔 feel a less intense barrier and can propagate freely. A
consequence of this fact is that the dispersion relation is always pinned at the point
(𝑘 = 0, 𝜔 = 0), regardless the value of 𝑃 or the particle mass. As it is clear in Fig.4.2
this is not the case for the original KP model, where the lowest modes are found to
be at a higher energy when the potential barriers of the crystal lattice are different
from zero. We conclude by remarking once again that having these unperturbed slow
modes is an indication that large Kelvin waves could be efficiently tracked by particles
in superfluid helium experiments, which is the fundamental question addressed in
the article.
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5 Quantum turbulence in presence of particles

In this chapter we present the publication “Active and finite-size particles in decay-
ing quantum turbulence at low temperature” [76], in which a zero temperature
quantum turbulence regime with particles immersed in it is investigated. As an
introduction, we first provide the general concepts behind the standard Kolmogorov
theory of turbulence in classical fluids, followed by a summary of the phenomen-
ology of turbulence in quantum fluids. The results exposed later try to answer
the questions whether the presence of finite-size particles affects the development
of a turbulent vortex tangle and how the actual dynamics of particles reflects the
superfluid turbulent motions.

5.1 Main concepts of classical Kolmogorov turbulence

Kolmogorov developed the foundations of the theory of turbulence in 1941 [68, 121,
122], for a classical fluid described by the incompressible Navier–Stokes equations
(2.1), (2.2). The onset of a turbulent regime in classical fluids is controlled by the
Reynolds numberRe, a dimensionless parameterwhich controls the relativemagnitude
of the inertial terms (𝒗 ⋅ ∇)𝒗 with respect to the dissipative one 𝜈∇2𝒗. Calling 𝐿 the
characteristic length of the system, 𝜈 the kinematic viscosity and 𝑣𝐿 the characteristic
velocity of the flow, the Reynolds number reads:

Re = 𝐿𝑣𝐿
𝜈 . (5.1)

A necessary condition for the onset of fluid turbulence in the classical sense is that the
Reynolds number must be large. If this is the case, the viscous dissipation is efficient
in dissipating the flow at small scales, while the high non-linearity leads to complex
and chaotic motion at intermediate scales between the dissipative scale and large scale
of the system.

Two scalar quantities which are important in turbulence are the total energy 𝐸 =
⟨1

2 |𝒗|2⟩ and the total enstrophy 𝛺 = ⟨1
2 |𝝎|2⟩, where 𝝎 = ∇ × 𝒗 is the vorticity and ⟨⋅⟩

stands for spatial average. These global quantities satisfy the balance equation

𝜖 = −d𝐸
d𝑡 = 2𝜈𝛺, (5.2)

which comes directly from the Navier–Stokes equations andwhere we have defined the
dissipation 𝜖 as the negative rate of energy variation in time. An important assumption
in classical turbulence is the existence of a dissipative anomaly [68]. It means that
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5 Quantum turbulence in presence of particles

the dissipation (5.2) remains finite when 𝜈 → 0, which in turn implies a divergent
behaviour of the velocity gradients.

One of the cornerstone ideas of turbulence is the energy cascade, already suggested
by Richardson twenty years before the work of Kolmogorov [189]. Imagine that energy
is suddenly injected at large scale in a fluid at rest. Initially such energy will excite
structures at the scale of the forcing and (if the Reynolds number is high enough) the
dissipation 𝜖 will be small, since the right hand side of Eq.(5.2) is sensitive only to
variation of the flow at small scales. The non-linearity of the Navier–Stokes equations
will start to excite smaller and smaller structures, carrying the energy (in a cascade
process, indeed) down to the scale where the dissipation is strong enough to remove it
definitively from the fluid system.

In his famous 1941 theory [121, 122], Kolmogorov extracted quantitative estimations
from this idea, using simple dimensional arguments. He assumed homogeneity and
isotropy, together with the hypothesis of the existence of an inertial range of scales
in which the transfer of energy is independent of the forcing mechanism and of the
viscosity. Then, if the typical velocity variation1 at the scale ℓ in the inertial range only
depends on the dissipation rate 𝜖 and on ℓ itself, by dimensional analysis it must scale
as 𝛿𝑢ℓ ∼ (𝜖ℓ)1/3. Such scaling law leads immediately to the historical expression for
the 1D energy spectrum in Fourier space:

𝐸(𝑘) = 𝐶K𝜖2/3𝑘−5/3, (5.3)

where the dimensionless Kolmogorov constant 𝐶K is not predicted. Its measured value
is about 1.5 and it was believed to be an universal constant [217]. The Reynolds number
at the scale ℓ can be also estimated as Reℓ = 𝛿𝑣ℓℓ/𝜈 ∼ 𝜖1/3ℓ4/3/𝜈. Thus, the dissipative
scale ℓ = 𝜂 is defined as the scale at which the viscous dissipation balances the inertial
forces, which means Re𝜂 ∼ 1. Such scale is also called Kolmogorov length and it reads

𝜂 ∼ (𝜈3

𝜖 )
1/4

. (5.4)

For completeness, wemention another historical result achieved byKolomogorov, the
so-called 4/5 law. It is a prediction for the third order longitudinal structure function of
the homogeneous and isotropic turbulent velocity field, in the limit of infinite Reynolds
number:

⟨(𝛿𝑣∥(𝒓, ℓ))3⟩ = ⟨([𝒗(𝒓 + ℓ) − 𝒗(𝒓)] ⋅ ̂ℓ)
3
⟩ = 4

5𝜖ℓ. (5.5)

Equation (5.5) is actually one of the few exact results (both scaling and pre-factor) in
the turbulence theory that can be derived directly from the Navier–Stokes equations.

A fundamental role in turbulence is played by strong fluctuations, that can be
characterized by looking at the higher order moments of the structure functions. These
should follow power-laws in the inertial range ⟨(𝛿𝑣∥(ℓ))𝑝⟩ ∼ (𝜖ℓ)𝜁𝑝, as suggested by

1Note that the relevant quantity is the velocity variation because of the Galileian invariance of the
Navier–Stokes equations.
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experimental measurements [68, 69]. Assuming a full self-similar behaviour (according
to the Kolmogorov scenario) one would expect 𝜁𝑝 = 𝑝/3. However, experiments and
numerical simulations show consistent deviations from such prediction (except for
𝑝 = 3, i.e. Eq. (5.5)) meaning that corrections to the self-similar Kolmogorov picture
due to intermittency shall be present [68]. Nevertheless, the prediction for the energy
spectrum (5.3) remains accurate despite intermittency. Indeed, the scaling of the energy
spectrum is related to the exponent of the second order structure function 𝜁2, whose
deviation from the Kolmogorov prediction (𝜁2 = 2/3) due to intermittency is small.

5.2 Turbulence in quantum fluids

Since a superfluid is characterized by the absence of viscous dissipation, the classical
picture sketched in the previous section should not apply directly. Nevertheless, dif-
ferent regimes of turbulent flows have been observed in superfluids, which together
constitute the research branch known as quantum turbulence (intended as the study
and the characterization of turbulence in quantum fluids) [17].

We are particularly concerned with superfluid turbulence at very low temperature,
when the effect of the thermal fluctuations can be neglected. This is the setting studied
in the publication [76], presented later in this chapter. In this extreme case, vortex
filaments organized in a complex tangle are the main actors of the turbulent motions
and the typical picture of quantum turbulence still involves an energy cascade process
from large to small scales. At scalesmuch larger than the typical inter-vortex distance ℓv,
the discrete nature of the quantum vortex filaments is irrelevant. The total vortex line
density can be splitted in a part composed of metastable bundles of polarized vortices
and another made of randomly oriented filaments [10]. The bundles move in a way
reminiscent of the motion of the large-scale eddies in classical turbulent flows [158].
The non-linear interactions between them generates smaller structures, in a cascade
fashion compatible with the Kolmogorov picture. Indeed, the (incompressible) energy
spectrum has been found to be consistent with Eq. (5.3), both in numerical simulations
[10, 164, 213] and in experiments with superfluid helium [149, 201]. Once the scale
of the inter-vortex distance is reached, the isolated filaments become distinguishable
and their quantum origin starts to play a key role in the redistribution of the energy.
In particular, vortices undergo fast and spatially localized reconnection events, which
are followed by the emission of a sound pulse [230]. Moreover, reconnections trigger
the propagation of polychromatic Kelvin waves along the filaments. The non-linear
interactions between Kelvin waves excite modes of larger and larger wavenumbers,
building another cascade of energy down to the scale of the vortex core 𝜉 [136, 228,
233]. Here, at the the bottom of the Kelvin wave cascade, the kinetic energy of the
filaments is eventually radiated away in the form of sound waves (see sections 1.4.4
and 1.4.5 of this manuscript and references therein for details on reconnections and
Kelvin waves). Therefore, unless the turbulence is sustained by a continuous forcing
mechanism at large scales, the vortex line density 𝐿v decays in time until all the energy
has been converted into sound. A decay law 𝐿v ∼ 𝑡−3/2 has been observed for the
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vortex line density [84, 239], which has been argued to be consistent with a classical
Kolmogorov picture [216].

However, another kind of decaying superfluid turbulencemay exist, whose signature
is indeed a less steep scaling law for the vortex line density decay: 𝐿v ∼ 𝑡−1. This regime
is sometimes called “ultraquantum” turbulence in order to distinguish it from the
semiclassical quantum turbulence and consists in a randomvortex tangle, with the inter-
vortex distance ℓv as single dominant scale [17]. It has been produced experimentally
injecting negative ions in superfluid helium below 𝑇 = 0.5 𝐾 [239]. Also numerical
measurements are consistent with the outlined picture, both in simulations of the
vortex filament model [9] and in the Gross–Pitaevskii framework [228]. The vortex line
density decay of ultraquantum turbulence can be explained by a phenomenological
argument due to Vinen (originally formulated in the context of counterflow turbulence)
[237], so that such regime is also known simply as Vinen turbulence.

For completeness, we mention one last cathegory of superfluid turbulence, which
arises when the temperature is high enough to have a relevant density of normal fluid,
besides the inviscid superfluid component. This regime can be achieved in 4He below
the lambda point for instance by a standard mechanical forcing (e.g. towed grids
[218]). It is definitely the most complex kind of quantum turbulence, since both the
two fluid components can be turbulent. In the superfluid component, turbulence has
the features just outlined above due to the quantum constraints on the vorticity, while
in the normal component it develops as a standard classical (viscous) turbulence. What
adds complexity is that the two fluids can interact by means of the mutual friction
between the thermal excitations of the normal fluid and the quantum vortices in the
inviscid superfluid. This constitutes a new channel for the energy transfer, so that each
of the two fluids acts both as forcing and dissipation for the other [17]. Moreover, at
finite temperature a counterflow regime can be established, in which the velocity field
of the two components is different. We refer to section 1.1 and references therein for a
brief description of the phenomenon. Some of the phenomenology associated to this
regime has also been mentioned in section 2.1. It is particularly interesting because the
emergence of a turbulent superfluid vortex tangle in the superfluid component is easily
triggered, and depending on a tunable parameter (the heat flux applied to the system),
the normal fluid can be set as just laminar, rather than turbulent as well. Note that
in the publication shown below we are not concerned with these finite temperature
effects. Indeed, we study a quantum turbulence regime modeled with the GP equation,
which is suitable to describe a very low temperature superfluid system.

5.3 Publication: Active and finite-size particles in decaying quantum
turbulence at low temperature

In the article reported below we consider the decay of a quantum turbulence regime
at very low temperature. Particles are immersed in the superfluid, modeled as usual
with the Gross–Pitaevskii equation coupled with repulsive potentials (see section
2.3.3). The degree of complexity of the system studied here is much higher than in the
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works discussed in the previous chapters. A (relatively) large number of particles is
considered and all the phenomena studied previously in a controlled manner (capture
mechanism, dynamics of trapped objects, reconnections) are present and contribute to
the evolution of the system.

The first part of the publication is dedicated to the characterization of the average
properties of the flow. The time evolution of the energy components and of the in-
compressible dissipation rate are confronted in the case of different particles species.
Fortunately no important differences are detected. This means that, although active,
particles do not prevent the development and the decay of the quantum vortex tangle
and thus they are good candidates to be used as probes for the superflow properties.
Also the evolution of the inter-vortex distance and the incompressible energy spectrum
are the same with and without particles, and the emergence of a Kolmogorov regime
at large scales is confirmed.

Three-dimensional visualizations of the flow show that helicoidal excitations on the
filaments develop earlier if particles are present (as a consequence of the trapping pro-
cess). Although this affects the details of the vortex configurations when the turbulent
stage is achieved, the statistical features of the flow remain unchanged.

In a second part of the paper, the actual motion of the particles is investigated. An
important measurement is the evolution of the fraction of particles trapped inside the
vortices. Almost the totality of the particles is found to be pierced by the filaments
during the turbulent regime and even later, when the vortex line density decays.
Moreover, each particle spends long times inside a vortex, with just occasional episodes
of detachment and fast recapture.We note that in current superfluid helium experiment
with solidified hydrogen particles (see section 2.1.3) there is not a clear measurement
of the fraction of particles trapped and whether this number remains constant.

Our observations suggest that (at least for large scales) particles can behave as tracers
of the vortex motions, which is confirmed by a measurement of the particle velocity
power spectrum. Indeed, at slow frequencies the velocity spectrum is consistent with a
classical Lagrangian picture [248], meaning that particles are effectively able to sample
the Kolmogorov turbulence behaviour of a vortex tangle. At small scales, we recover
a signature of the Magnus precession due to the particle-vortex interaction, already
detected in [79] (see chapter 4). The particle natural frequency is observed as a peak in
the velocity power spectrum and it also identifies the time scale at which the particle
acceleration decorrelates.

Finally, we explore the particle velocity and the acceleration statistics. In experiments,
power law tails in the probability distributions have been observedmore than once [137,
197]. However, in our numerical experiment only Gaussian distributions are detected.
We remark that the origin of the power law behaviour has a two-fold explanation. From
the one hand, given that at scales smaller than the inter-vortex distance the relevant
parameter is the quantum of circulation 𝛤, the time scaling of the vortex velocities is
𝑣 ∼ (𝛤/𝑡), consistently with the reconnection dynamics. On the other hand, the velocity
field of each filament scales in space as 𝑣 ∼ 𝛤/2𝜋𝑟 (1.132). Both these considerations
lead to a velocity probability distribution ℙ [𝑣] ∼ 𝑣−3 [170], but at zero temperature
only the first one could be sampled by the (trapped) particles. Indeed, in order to be
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sensitive to the superfluid velocity field (and not just the vortex one), the particles
must be driven by Stokes drag, which is possible only if a normal component is present
and locked with the superflow. This argument could explain the absence of power law
tails in our simulations, although the lack of sufficient statistics is also a possible cause.

As a final note, we mention that deviations from Gaussian statistics are unexpectedly
detected in our simulations as numerical artifacts if the interpolation method used for
the force exerted by the superfluid on the particles does not have spectral accuracy
(see the section A.4.3 of the Appendix to the present manuscript for further details on
the interpolation methods).
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The evolution of a turbulent tangle of quantum vortices in the presence of finite-size
active particles is studied by means of numerical simulations of the Gross-Pitaevskii
equation. Particles are modeled as potentials depleting the superfluid and described with
classical degrees of freedom following a Newtonian dynamics. It is shown that particles do
not modify the building-up and the decay of the superfluid Kolmogorov turbulent regime.
It is observed that almost the totality of particles remains trapped inside quantum vortices,
although they are occasionally detached and recaptured. The statistics of this process
is presented and discussed. The particle Lagrangian dynamics is also studied. At large
timescales, the velocity spectrum of particles is reminiscent of a classical Lagrangian
turbulent behavior. At timescales faster than the turnover time associated with the mean
intervortex distance, the particle motion is dominated by oscillations due to the Magnus
effect. For light particles, a nonclassical scaling of the spectrum arises. The particle velocity
and acceleration probability distribution functions are then studied. The decorrelation time
of the particle acceleration is found to be shorter than in classical fluids, and related to the
Magnus force experienced by the trapped particles.

DOI: 10.1103/PhysRevFluids.5.054608

I. INTRODUCTION

When a fluid is stirred, energy is injected into the system exciting structures at different scales.
In particular, in three-dimensional classical flows, the energy supplied at large scales is transferred
toward small scales in a cascade process. Eventually, it reaches the smallest scales of the system,
where dissipation acts efficiently. In the presence of a very large separation between the injection and
dissipation scale, this cascade scenario proposed by Richardson leads to a fully developed turbulent
state that can be described by the Kolmogorov phenomenology [1]. Kolmogorov turbulence is
expected to be universal, and it is in fact commonly observed in nature, industrial applications,
and in more exotic flows such as superfluids.

A superfluid is a peculiar flow, whose origin is a consequence of quantum mechanics. At finite
temperature, a superfluid is considered to be a mixture of two components: the normal fluid, which
can be described by the Navier-Stokes equations, and the superfluid component with zero viscosity
[2]. At very low temperatures, the normal component can be neglected and the fluid becomes
completely inviscid. As a consequence, an object moving at low velocities does not experience
any drag from the fluid. However, when the object exceeds a critical velocity, quantum vortices are
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nucleated [3,4]. Quantum vortices (or superfluid vortices) are the most fundamental hydrodynamical
excitations of a superfluid. They are topological defects (and nodal lines) of the macroscopic wave
function describing the system, and as a consequence their circulation is quantized. In superfluid
helium, the core size of quantum vortices is of the order of 1 Å. Despite the lack of viscosity,
quantum vortices can reconnect and change their topology (see, for instance, [5–8]), unlike classical
(prefect) fluids.

When energy is injected in a low-temperature superfluid at scales much larger than the mean
intervortex distance �, a classical Kolmogorov regime is expected. Such a behavior has been
observed numerically [9–11] and experimentally [12,13]. Indeed, at such scales the quantum nature
of vortices is not important and the superfluid behaves like a classical fluid. At the scales of the
order of � and smaller, the isolated nature of quantized vortices becomes relevant. The system
keeps transferring energy toward small scales but through different nonclassical mechanisms [14].
An example of such mechanisms is the turbulent Kelvin wave cascade. Kelvin waves are helical
oscillations propagating along quantum vortices, and the energy can be carried toward small scales
thanks to nonlinear wave interactions. This energy cascade has been successfully described in the
framework of weak-wave turbulence theory [15,16]. The resulting theoretical predictions have been
observed numerically in vortex-filament and Gross-Pitaevskii numerical simulations [17–19].

Flow visualization is certainly a fundamental issue in every fluid dynamics experiment. Among
the techniques that have been developed to sample a fluid, particle image velocimetry (PIV) and
particle tracking velocimetry (PTV) are two of the most common methods [20]. The use of particles
as probes has also been adapted to the study of cryogenic flows, in particular in superfluid helium
4He experiments [21], where micrometer-sized hydrogen and deuterium particles have been used.
For instance, hydrogen ice particles have been successfully employed to visualize isolated or
reconnecting vortex lines [22], as well as the propagation of Kelvin waves [23]. Moreover, the
observation of power-law tails in the probability density of the particle velocity is an important
difference with respect to classical turbulent states [24–26]. Similar deviations from classical
behaviors have recently been reported also for the acceleration statistics [26,27]. Particles in such
experiments typically have a size that can rise up to several microns, which is many orders of
magnitude larger than the size of the vortex core in superfluid helium. For instance, the solidified
hydrogen particles produced in the experiments [22,23] are slightly smaller than 2.7 μm, while
in [25,26] their size is between 5 and 10 μm. Although it has been seen that particles unveil the
dynamics of quantum vortices, it is not yet clear how much they affect the dynamics of quantum
turbulent flows.

Several theoretical efforts have been made in the past decade in order to clarify what is the
dynamics of particles in a superfluid and how particles interact with quantum vortices. For example,
the vortex-filament (VF) method can be coupled with the classical hydrodynamical equations of a
sphere, allowing us to study different specific problems. The interaction between one particle and
one vortex has been addressed [28,29], as well the backreaction of tracers in a thermal counterflow
[30,31]. In the context of finite-temperature superfluids, the spatial statistics of particles have been
recently addressed in simulations of the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model [32].

Finally, since the work of Winiecki and Adams [4], particles described by classical degrees of
freedom have been implemented self-consistently in the framework of the Gross-Pitaevskii (GP)
equation [33–37]. Although the GP model is formally derived for dilute Bose-Einstein condensates,
it is considered a general tool for the study of superfluid dynamics at very low temperature. Indeed,
unlike the VF method or the HVBK model, it naturally contains quantum vortices as topological
defects of the order parameter. It was found analytically and confirmed numerically that the GP
model can reproduce the process of trapping of large active inertial particles by straight vortex
lines [34], in accordance with hydrodynamical calculations [28,29]. In this framework, the interplay
between many trapped particles and Kelvin waves has also been investigated [36].

In the present work, we study the influence of particles on quantum turbulent flows at very
low temperature by using the GP model coupled with classical particles. In particular, we study
the evolution of a free decaying superfluid turbulent vortex tangle loaded with finite-size active
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particles. We consider spherical particles of different masses and having a diameter up to 20 core
sizes. Such a size is about 1000 times smaller than that of solidified particles used in superfluid
helium experiments. Nevertheless, it is slightly smaller than or comparable to the mean intervortex
distance in our simulations, similar to current experiments. We also study the different regimes of
the turbulent evolution from the Lagrangian point of view. The paper is organized as follows. In
Sec. II we describe the Gross-Pitaevskii model coupled with classical particles. We also review the
standard properties of the model and give the basic definitions used later to analyze the flow. We
also describe the numerical method used in this work. Then, in Sec. III, we present our main results.
In particular, in Sec. III A we address whether the presence of particles affects the scales of the
flow at which Kolmogorov turbulence takes place. Section III B is devoted to a study of the particle
dynamics inside the vortex tangle, their trapping by vortices, and their dynamics at scales larger and
smaller than the intervortex distance. Particle velocity and acceleration statistics are then presented
in Sec. III C. Finally, Sec. IV contains our conclusions.

II. MODEL FOR PARTICLES IN A LOW-TEMPERATURE SUPERFLUID

A. Gross-Pitaevskii equation coupled with particles

We describe a superfluid of volume V at low temperature by using the complex field ψ , which
obeys the GP dynamics. We consider Np particles in the system. Each particle is characterized by
the position of its center of mass qi and its classical momentum pi. The presence of a particle of
size ap generates a superfluid depletion in a spherical region of radius ap. This effect is reproduced
by coupling the superfluid field with a strong localized potential Vp, which has a fixed shape and is
centered at the position q j (t ).

All the particles considered have the same size, as well as the same mass Mp. The Hamiltonian
of the system is given by

H =
∫ ⎛

⎝ h̄2

2m
|∇ψ |2 + g

2

(
|ψ |2 − μ

g

)2

+
Np∑

i=1

Vp(|x − qi|)|ψ |2
⎞
⎠dx +

Np∑
i=1

p2
i

2Mp
,+

Np∑
i< j

V i j
rep, (1)

where m is the mass of the bosons constituting the superfluid, and g is the nonlinear coupling
constant between the bosons, related to the s-wave scattering length as so that g = 4πash̄

2/m.
The chemical potential is denoted by μ. The particle interaction potential V i j

rep is responsible for
short-range repulsion between particles, so that they behave as hard spheres and do not overlap.
A detailed discussion on the inclusion of this short-range repulsion and the effect on the particle
collisions in the model (1) can be found in [33]. The equations of motion that govern the superfluid
field and the particle positions are obtained varying the Hamiltonian (1):

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + (g|ψ |2 − μ)ψ +

Np∑
i=1

Vp(|x − qi|)ψ, (2)

Mpq̈i = −
∫

Vp(|x − qi|)∇|ψ |2 dx +
Np∑
j �=i

∂

∂qi
V i j

rep. (3)

This model has been successfully used to study vortex nucleation [4], trapping of particles by
quantum vortices [34], and the interaction between particles trapped inside quantum vortices and
Kelvin waves [36]. We denote by GP the Gross-Pitaevskii model without particles, and by GP-P the
full coupled system (2) and (3).

In the case in which particles are absent, the chemical potential μ fixes the value of the ground
state of the system ψ∞ = √

ρ∞/m = √
μ/g. Large-wavelength perturbations around this state are

sound waves that propagate with the speed of sound c =
√

gρ∞/m2, while they become dispersive

at length scales smaller than the healing length ξ =
√

h̄2/2gρ∞.
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The GP model describes a superfluid with zero viscosity. Using the Madelung transformation
ψ (x) = √

ρ(x)/m ei m
h̄ φ(x), the GP equation (2) is mapped into the continuity and Bernoulli equations

of a superfluid of density ρ and velocity vs = ∇φ. A superfluid flow is potential, but the phase
is not defined at the nodal lines of ψ (x). Therefore, the vorticity is concentrated along these
filaments, which are the topological defects usually called quantum vortices. The effective size
of the quantum vortex core coincides with the healing length ξ , and the contour integral of the
superfluid velocity around a single vortex filament is the Feynman-Onsager quantum of circulation
κ = h/m = 2π

√
2cξ .

Using the Madelung transformation and the Helmholtz decomposition, the kinetic term of
the superfluid energy density is decomposed into incompressible, compressible, and quantum
energy [9]:

EGP
kin = h̄2

2mV

∫
|∇ψ |2 dx = E I

kin + EC
kin + EQ

= 1

2V

∫ (
[(

√
ρvs)I]2 + [(

√
ρvs)C]2 + κ2

4π2
[∇√

ρ]2

)
dx, (4)

where (
√

ρvs )I = PI[
√

ρvs] and (
√

ρvs)C = vs − (
√

ρvs)I, the operator PI[·] being the projector
onto the space of divergence-free fields. The other energies of the superfluid are the internal energy
Eint = (2V )−1

∫
g(ρ/m − μ/g)2 dx, where the energy of the ground state is subtracted, and the

interaction energy with the particles EGP
P = V −1

∫ ∑Np

i Vp(|x − qi|)ρ dx, so that the total energy is
given by Etot = EGP

kin + Eint + EGP
P . From these definitions follow the corresponding energy spectra

defined in terms of the Fourier transform of the fields [9].

B. Numerical methods and parameters

In the simulations presented in this work, we solve the system (2) and (3) in a cubic periodic box
of side L = 341ξ with Nc = 5123 collocation points by using a standard pseudospectral method.
We use a fourth-order Runge-Kutta scheme for the time-stepping and the standard 2/3 rule for the
dealiasing. In numerics, we fix c = 1 and ψ∞ = 1.

To produce a homogeneous and isotropic tangle of quantized vortex lines, we impose an initial
Arnold-Beltrami-Childress (ABC) flow, following the procedure described in [38]. In particular, we
use a superposition of k = 1 × 2π/L and k = 2 × 2π/L basic ABC flows: vABC = v(1)

ABC + v(2)
ABC,

with

v(k)
ABC = [B cos(ky) + C sin(kz)]x̂ + [C cos(kz) + A sin(kx)]ŷ + [A cos(kx) + B sin(ky)]ẑ, (5)

and the parameters A = 0.5196, B = 0.5774, and C = 0.6351. The basic ABC flow is a stationary
(periodic) solution of the Euler equation with maximal helicity. The resulting wave function contains
a tangle whose nodal lines follow the ABC vortex lines. The initial mean intervortex distance is
�(t = 0) ∼ 25ξ . As the flow is prepared by minimizing the energy, most of the energy of the system
is in the incompressible part of the energy and resulting from the vortex configuration.

The ground state for the particles consists in a number of particles (we use Np = 200 and 80) of
the same size and mass, randomly distributed in the computational box. Particles are initially at rest.
This state is prepared using the imaginary-time evolution of Eq. (2). Then, the initial condition for
the simulations is obtained by multiplying the wave function associated with the ABC flow and the
wave function associated with the particle ground state. An example of an initial field containing
particles is displayed in Fig. 1(d).

Because of the presence of a healing layer, the particle boundary is never sharp, independently
of the functional form of the potential Vp. The superfluid field vanishes in the region where
Vp > μ, and at the particle boundary the fluid density passes from zero to the bulk value ρ∞
in approximately one healing length. The potential used to model each particle is a smoothed
hat-function Vp(r) = V0

2 (1 − tanh [ r2−ζ 2

4�2
a

]), where the parameters ζ and �a are set to model the
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FIG. 1. Visualizations of the superfluid vortex tangle. Vortices are represented as isosurfaces in red of the
density field (ρ = 0.15ρ∞), sound is rendered in blue, trapped particles in green, and free particles in purple.
The upper row is without particles, the lower row is with 200 neutrally buoyant particles of radius ap = 4ξ .
(a,d) The ABC initial states. (b,e) The most turbulent regime (t = 1.3TL). (c,f) A late time (t = 8.1TL). TL

denotes the large-eddy-turnover time (see the text).

particle. Their values are listed in Table I. In particular, ζ fixes the width of the potential and it
is related to the particle size, while �a controls the steepness of the smoothed hat-function. The
latter needs to be adjusted in order to avoid the Gibbs effect in the Fourier transform of Vp. Since
the particle boundaries are not sharp, the effective particle radius is defined as ap = (3M0/4πρ∞)

1
3 ,

where M0 = ρ∞L3(1 − ∫ |ψp|2 dx/
∫ |ψ∞|2 dx) is the fluid mass displaced by the particle and ψp

is the steady state with just one particle. Practically, given the set of numerical parameters ζ and
�a, the state ψp is obtained numerically with imaginary-time evolution and the excluded mass
M0 is measured directly. Particles attract each other by a short-range fluid mediated interaction

TABLE I. Simulation parameters.

Run Np ap M ζ �a V0/μ γ /μ

I 0
II 200 4.0ξ 0.125 1.5ξ 1.2ξ 20.0 1.4 × 10−4

III 200 4.0ξ 0.25 1.5ξ 1.2ξ 20.0 1.4 × 10−4

IV 200 4.0ξ 1.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

V 200 4.0ξ 2.0 1.5ξ 1.2ξ 20.0 1.4 × 10−4

VI 80 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VII 200 10.0ξ 0.125 8.0ξ 2.0ξ 20.0 5.8 × 10−4

VIII 200 10.0ξ 0.25 8.0ξ 2.0ξ 20.0 5.8 × 10−4

IX 200 10.0ξ 1.0 8.0ξ 2.0ξ 20.0 5.8 × 10−4
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[33,35], thus we use the repulsive potential V i j
rep = γ (2ap/|qi − q j |)12 in order to avoid an overlap

between them. The functional form of V i j
rep is inspired by the repulsive term of the Lennard-Jones

potential, and the prefactor γ is adjusted numerically so that the interparticle distance 2ap minimizes
the sum of V i j

rep with the fluid-mediated attractive potential [33,35]. We express the particle mass
as Mp = MM0, where M0 is the mass of the superfluid displaced by the particle. Namely, heavy
particles have M > 1 and light particles have M < 1. In Table I all the parameters for the particles
used in the simulations presented in this work are reported. In the following, we will refer to each
simulation specifying the size and the mass of the particles used.

Note that although the model (1) is a minimal model for implementing particles in the GP
framework, we cannot add to the system an arbitrary number of particles. Indeed, since particles
have a finite size, they occupy a volume at the expense of the superfluid field, and packing effects
could become important if the filling fraction is too high. Moreover, the potential Vp must be updated
at each time step, which is numerically costly. Finally, note that the the evaluation of the force term
(3) acting on particles requires us to know the value of the fields at intermesh points. When the
number of particles in the simulation is not large, the force fGP

i (qi ) = −(Vp ∗ ∇ρ)[qi] (3) can be
computed with spectral accuracy using a Fourier interpolation. Such a method has been used in
[34–36], where the particle dynamics is extremely sensitive. In this work, the use of a Fourier
interpolation for each particle is numerically unaffordable, due to the large number of particles
involved and the resolutions used. Instead, we use a fourth-order B-spline interpolation method,
which has been shown to be highly accurate with a reduced computational cost [39] and particularly
well adapted for pseudospectral codes. Indeed, the use of a Fourier interpolation to evaluate the
three-dimensional force for Np particles requires ∼3NpNc operations and evaluations of complex
exponentials (Nc = 5123 in the present work). Such a cost quickly becomes too expensive at high
resolutions and/or a large number of particles. On the contrary, B-spline interpolation requires just
one fast Fourier transform of a field per component, and an interpolation using only four neighboring
grid points per dimension [39]. Such a scheme saves a factor ∼Np of computational cost compared
to Fourier interpolation. Note that in the previous discussion, we have not taken into consideration
parallelization issues, where local schemes (B-splines) are much more advantageous than global
ones (Fourier transforms). Nevertheless, some issues with physical quantities at small scales arising
from the B-spline interpolation are discussed in the Appendix.

III. PARTICLES IMMERSED IN A TANGLE OF SUPERFLUID VORTICES

Superfluid turbulence in the context of the GP model has been studied extensively
[9,11,38,40,41]. In general, quantum turbulence develops from an initial state with a vortex
configuration where the incompressible kinetic energy is mainly contained at large scale. During
the evolution, vortex lines move, interact among themselves, and reconnect, creating complex vortex
tangles. Through this process, sound is produced and incompressible kinetic energy is irreversibly
converted into quantum, internal, and compressible kinetic energy. Eventually, the compressible
energy produced in the form of acoustic fluctuations starts to dominate, thermalizes, and acts as a
thermal bath providing an effective dissipation acting on the vortices. As a consequence, vortices
shrink and eventually disappear through mutual friction effects following Vinen’s decay law [19,42].
In particular, it has been shown that the decrease of the incompressible kinetic energy behaves in a
similar manner to decaying classical turbulence [9]. To make a connection with decaying classical
Kolmogorov turbulence, the incompressible energy dissipation or dissipation rate is usually defined
in the context of GP turbulence as

ε = −dE I
kin

dt
. (6)

As in decaying Navier-Stokes turbulence, in GP the most turbulent stage is achieved around the time
when this quantity is maximal. About this time, the classical picture holds and the incompressible
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FIG. 2. (a) Time evolution of the superfluid energy components in the cases with no particles (dashed
line), 200 small particles (dotted line), 200 large particles (solid line), and 80 large particles (dash-dotted
line). (b) Incompressible energy dissipation rate for different numbers of particles with different sizes and
different masses (solid lines). Dash-dotted horizontal lines of the corresponding colors indicate the value of the
maximum of dissipation, obtained averaging over the shaded region. The dissipation is expressed in units of its
maximum εmax in the case without particles.

energy spectrum satisfies the Kolmogorov prediction

E I
kin = Cε2/3k−5/3,

where C is the Kolmogorov constant, the value of which has been found to be close to 1 in GP
turbulence [11,38,41].

The first purpose of this work is to check whether and to what extent the presence of particles
in the system modifies Kolmogorov turbulence. We add to the ABC initial condition a number
of randomly distributed particles and let the system evolve under the dynamics (2) and (3). In
Figs. 1(a), 1(b) and 1(c), the three stages of the evolution (initial condition, turbulent vortex tangle,
and residual filaments in a bath of sound, respectively) are visualized in the case of 200 neutrally
buoyant particles of radius 4ξ . See the supplemental material [43] for movies of this simulation and
others with particles of a different size. Trapped particles by vortices are displayed in green, whereas
free ones are displayed in purple. The algorithm to distinguish a trapped particle from a free one is
based on the circulation around it and it is discussed in Sec. III B.

In Fig. 1 we observe that the building up and decay of the turbulent tangle is not strongly
modified by the presence of particles. Moreover, it can be noticed how during the first stages of the
evolution of the system the majority of particles gets trapped into the vortices. At zero temperature,
as there is no normal component in the flow, no drag is experienced by the particles and their
motion is completely driven by the pressure gradients. As a consequence, they are attracted by
quantum vortices [28,34,44]. During the turbulent regime, violent and strongly nonlinear events
like reconnections dominate the vortex dynamics and the flow evolution. A fundamental question
is whether and how much the hydrodynamical attraction between vortices and particles is sufficient
to keep them attached to the filaments. Indeed, since quantum vortices are actually the main actors
of turbulence in superfluid, if particles are really able to follow them in this regime, it is a good
indication that they are suitable for use as probes.

In the following subsection, we will quantitatively study the effect of particles on quantum
turbulent flows. We will first focus on the large scales of the flow, where Kolmogorov turbulence
takes place. Then the particle dynamics and their statistics will be addressed.

A. The effect of particles on Kolmogorov superfluid turbulence

We shall start our analysis by comparing the temporal evolution of global quantities. In Fig. 2(a)
the time evolution of the different components of the energy is displayed. Times are expressed in
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FIG. 3. (a) Time evolution of the mean intervortex distance for different numbers of particles of different
sizes and different masses. (b) Incompressible energy spectrum for different numbers of particles of different
sizes and different masses. Inset: Compensated incompressible energy spectrum. Solid lines refer to particles of
size ap = 4ξ , dashed lines refer to particles of size ap = 10ξ . The dotted line is the classical scaling εmaxk−5/3.
The spectrum is computed averaging over times in the shaded region.

units of the large-eddy-turnover time defined as TL = L/2vrms, where vrms =
√

2E I
kin(t = 0)/3 is

the root-mean-square velocity associated with the initial vortex tangle, and L/2 is its characteristic
length scale. We compare the case in which no particles are present in the flow to the cases having
particles of different sizes and of relative mass M = 1. The net transfer of incompressible energy
toward compressible, quantum, and internal energy is qualitatively unchanged in the various cases.
The only difference is a slightly lower value of the incompressible energy in the case of large
particles, in favor of the internal energy of the superfluid. Such an effect is more evident if the
number of large particles is increased, and could be related to an increment of the filling fraction
�, namely the fraction of the total volume occupied by the particles. In fact, for Np = 200 particles
of radius ap = 4ξ the filling fraction is � = 0.1%, for Np = 80 particles of radius ap = 10ξ it is
� = 0.8%, and for Np = 200 particles of radius ap = 10ξ we have � = 2.1%. The kinetic and
repulsion energies of the particles, as well as the particle-vortex interaction EGP

P , are negligible
compared with the other energies throughout the duration of the simulations (data not shown).

The dissipation rate of the incompressible kinetic energy is reported in Fig. 2(b) for particles of
different masses and different sizes. The dissipation increases in the early stages when the energy
begins to be transferred to the smaller scales, it reaches a maximum when all the scales are excited,
and then it starts to decay since no forcing is sustaining the turbulence. We observe that the evolution
of the dissipation is clearly not significantly modified by the presence of particles. In particular, the
value of the maximum of dissipation, which is the signature of the most turbulent state reached by
the tangle, is slightly lower only in the case in which many large particles are moving in the system.
In particular for this case, it is about 90% of εmax, the value measured in the case with no particles.
The shaded region in Fig. 2(b) represents the most turbulent time of the simulations. We consider
that in this short stage the system is in a quasisteady state, and we perform the temporal average of
certain physical quantities in order to improve statistical convergence.

Another important quantity that is not affected much by the interplay between tangle and
particles is the mean intervortex distance �, whose time evolution is reported in Fig. 3(a). The
mean intervortex distance is then estimated as � = √

V/Lv, where Lv is the total vortex length in the
system. This latter is estimated using the method introduced in [9], where Lv is shown to be related
to the proportionality constant between the incompressible momentum density J I(k) of the flow and
the spectrum of a two-dimensional point-vortex J2D

vort (k):

Lv

2π
=

∑
k J I(k)∫

J2D
vort (k) dk

. (7)
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FIG. 4. Closeup of the superfluid vortex tangle at the early stage of the simulation (upper row: t = 0.27TL)
and during the turbulent regime (lower row: t = 1.1TL) for the cases with no particles [left column (a),(d)],
small particles [central column (b),(e): ap = 4ξ ], and large particles [right column (c),(f): ap = 10ξ ]. Vortices
are represented as isosurfaces of the density field (ρ = 0.15ρ∞) and rendered in red, sound is rendered in blue,
trapped particles in green, and free particles in purple.

The spectra of momentum densities are the angle average of the norm in Fourier space of the
momentum density J = ρvs, and the incompressible part is obtained projecting onto the space of
divergence-free fields. We have checked the validity of this formula by using the vortex filament
tracking method described in [45] at some checkpoints.

In the turbulent regime, where the dissipation gets its maximum, the total length of the entangled
vortices is also larger by a factor 4 compared to the initial condition, and the distance between the
filaments is minimum. The value �min ∼ 14ξ of the intervortex distance in this regime will be used as
a characteristic small length scale of the Kolmogorov turbulent regime. Such length is smaller than
the diameter of the largest particles considered (2ap = 20ξ ), but nevertheless this has no appreciable
repercussions on the behavior of the observables studied. Furthermore, as shown in Fig. 3(c), the
scaling of the incompressible energy spectrum E I(k) averaged around the maximum of dissipation
is unaltered by particles in the system. Figure 3(b) displays the incompressible energy spectrum. It
is apparent that the scaling of the spectrum is always compatible with classical turbulence at scales
larger than the intervortex distance, and the way in which the energy is accumulated at smaller
scales is not modified by the particles. In the inset of Fig. 3(b), the spectrum is compensated by
the Kolmogorov prediction E I(k) = Cε

2/3
maxk−5/3 for classical hydrodynamic turbulence. The dotted

horizontal black line shows that the value of the constant C in the Kolmogorov law is a number of
order 1 for superfluid turbulence.

The only appreciable difference observed between the case with and without particles is that in
the early stages of the evolution, the trapping of particles perturbs the vortex filaments and excites
Kelvin waves. A comparison between the volume renderings can be seen in the upper row of Fig. 4.
Such perturbations propagate during the evolution of the tangle. At the times when turbulence is
developed, the details of the vortex configurations are completely different (see the lower row of
Fig. 4). Nevertheless, the statistical properties of the system in this regime remain unchanged. We
stress that the intervortex distance in quantum turbulence experiments lies typically in the range
10–100 μm, which is equal to or slightly larger than the particle size [24,25,27]. In this sense,
the simulations presented here are compatible with the experimental parameters. They thus support
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FIG. 5. (a) Fraction of trapped particles as a function of time for different numbers of particles of different
sizes and different masses. Inset: The same for longer time in the case of 200 neutrally buoyant particles of size
ap = 4ξ . (b) Comparison between the fraction of multiply trapped particles as a function of time for neutrally
buoyant particles. (c) Volume rendering of large particles (ap = 10ξ ) multiply trapped by quantum vortices.
Vortices are rendered in red, sound in blue, particles in green. (d) Probability density function of the continuous
time spent by particles inside vortices for different species of particles. The dotted blue line corresponds to the
same simulation of blue circles (particles with size ap and mass M = 1) but averaged over the full simulation
times). Inset: Absolute value of the circulation around a single particle of size ap = 4ξ and mass M = 1 as a
function of time. The PDF is computed averaging over times in the shaded region.

the belief that active particles have effectively no influence on the typical development and decay
of quantum turbulence. This numerical fact helps to validate past and future experiments that use
particles as probes of superfluids.

On the other hand, because of the lack of a Stokes drag in the system, particles cannot be treated
as simple tracers of the superfluid velocity vs. Nevertheless, if they remain trapped inside the vortices
they can track the evolution of the vortex filaments, which are the structures that effectively become
turbulent. With the purpose of characterizing this scenario, in the next subsection we investigate the
motion of particles once they are immersed in a tangle of quantum vortices.

B. Motion of particles in the superfluid vortex tangle

Looking at the time evolution of the vortex tangle (see Fig. 1 and movies in the supplemental
material), the first thing that is apparent is how particles quickly get trapped into vortex filaments.
This dynamics is expected and it has been studied in the case in which vortices move slowly [34].
It is a consequence of the pressure gradients. However, it is less obvious if such behavior remains
dominant when turbulence take place and reconnections become frequent.

We study the evolution of particles and compute whether they are free or trapped by vortices.
The temporal evolution of the fraction of trapped particles is displayed in Fig. 5(a) for all runs.
This measurement is made by computing the circulation � = ∮

C vs · dx of the superfluid velocity vs
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along contours C encircling each particle, and counting for which particles it is different from zero.
Specifically, we compute the circulation along many parallel square contours of side 2(ap + �x )
around each particle, where �x is the grid spacing. If the circulation around at least one of these
contours is different from zero, the particle is considered as trapped [46]. For practical reasons,
due to the parallelization of the numerical code, we consider only contours perpendicular to the z
axis of the computational box. As a consequence, the protocol is not able to grasp vortices that are
crossing the particles exactly on a plane perpendicular to the z axis. This means that our estimation
of the fraction of trapped particles is effectively a lower bound. However, it should be noticed that
this pathological situation is an extremely rare situation that does not change the conclusions of our
analysis.

In the initial condition the particles are placed randomly in the computational box. It happens
then that some of them are already positioned inside a vortex. In the case of particles with a
size comparable to the intervortex distance, the majority of particles are in this situation. In the
first stages of the evolution of the flow, the number of trapped particles increases rapidly until
it becomes stationary always at times much smaller than one TL. The time needed to reach a
stationary state depends slightly on the mass of the particles, as well as the fraction of trapped
particles once a steady regime is reached. The steady value of N trap

p /Np is between 80% and 90%
for small particles (2ap < �), while on average the totality of particles of size 2ap ∼ � is found
to be trapped by vortices, independently of the filling fraction. When the system reaches the most
turbulent regime (indicated by the shaded region), the fraction of trapped particles does not undergo
any appreciable changing. In the inset of Fig. 5(a), N trap

p /Np is also shown for late times in the case of
small particles of relative mass M = 1. It manifestly remains stable. This means that even when the
density of vortex lines is decaying (along with the intensity of turbulence), the particles stay trapped
inside vortices. Note that in this work we are dealing with homogeneous and isotropic decaying
quantum turbulence at low temperature. We mention that the fraction of trapped particles measured
in thermal counterflow simulated by means of the VF method is lower that the one observed
here [31].

The circulation around each superfluid vortex filament is equal to a single quantum of circulation
κ . As a consequence, measuring the circulation along a closed line C allows us to count the number
of filaments in the region delimited by the line, provided that the quanta of circulation around every
filament have the same sign. This is true also if the vortices are trapping particles, because their
topological nature does not change. In Fig. 5(b) we show again the fraction of trapped particles, but
now separating the number of particles trapped by multiple vortices. It turns out that at least the
5–10 % of the particles with size 2ap ∼ � are always attached to at least two different filaments.
Sometimes even more vortices pass simultaneously through the same particle, as can be visualized
in the volume plot of Fig. 5(c).

Once a particle is trapped by a vortex, it can experience violent events, for instance during vortex
reconnections. In such circumstances, such a particle could be detached and expelled from the vortex
until it will eventually get trapped by another vortex of the tangle. We compute the probability
density function (PDF) of the continuous time intervals �ttrap spent by the particles inside the
vortices regime. The PDFs for particles of different sizes and masses are displayed in Fig. 5(d).
For all the species of particles examined, the probability distribution seems to follow roughly a
power-law scaling in time ∼(�ttrap)−α , with α ∼ 1.67. The PDF certainly vanishes much slower
than an exponential decay at large �t trap, which would typically result from a standard escape
problem over energy barriers. We checked that the intermittency of the circulation and the shape
of the trapping time PDF are not characteristic of the most turbulent regime, since they persist also
at the late times of the simulations [see the dotted blue line in Fig. 5(d)]. Therefore, many particles
spend a time at least of the order of the simulation time (∼10TL) inside a vortex filament, i.e., the
typical escape time from the vortices is virtually infinite. This observation is exemplified in the
inset of Fig. 5(d), where the evolution of the circulation around a single-small neutral particle is
reported (the qualitative behavior is the same for the other particles). It is also clear that the time
spent by the particles with zero circulation around them (namely free from vortices) is short. Since
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FIG. 6. Frequency spectrum of the particle velocity for particles of different masses and different sizes,
compensated with the prediction for the Lagrangian spectrum in classical turbulence ∝ ε/ω2: (a) small particles
with ap = 4ξ ; (b) large particles with ap = 10ξ . The dash-dotted gray line is the frequency spectrum of a
single small particle trapped in a straight vortex slightly perturbed. Dotted lines of corresponding colors are the
prediction for the particle natural frequency �p. The dashed red line is the scaling due to vortex reconnection
or Kelvin waves ∝ |ω|−1. The dashed golden line is the spectrum evaluated at late times in the simulation
(6TL < τ < 7TL).

we established that particles immersed in a tangle spend most of the time inside vortex filaments, in
the following we study their motion once they get trapped.

At large scales, the vortex tangle seems to behave as a classical hydrodynamic turbulent system.
Therefore, the first natural question is whether the particles can trace such large-scale fluctuations.
In classical turbulence, it is well known that the Lagrangian velocity spectrum scales as

〈|v̂p(ω)|2〉 = Bεω−2, (8)

where B is a constant of order unity and v̂p(ω) is the Fourier transform of the Lagrangian
particle velocity vp(t ) [47,48]. Such scaling is valid in the inertial range 2π/TL � ω � 2π/τη,
where τη is the Kolmogorov timescale. In our case, we build an analog of the Kolmogorov
time scale under the assumptions that the dissipation rate εmax is the only important physical
parameter in the classical turbulence regime and that the Kolmogorov turbulent cascade ends
at the intervortex distance �min. Therefore, we define the smallest timescale of the classical
turbulence regime as τ� = (�2

min/εmax)1/3, and we expect classical turbulent phenomenology to
hold for times τ� � t � TL. In Fig. 6, the measurement of the frequency spectrum of the particle
velocity 〈|v̂p(ω)|2〉 = 〈| ∫ q̇(t )e−iωt dt |2〉 during the turbulent regime is shown for different species
of particles, compensated with the classical scaling εmaxω

−2. Note that the average that defines
the spectrum is meant over different realizations. In numerics we average over all the particle
trajectories during the turbulent regime. At frequencies ω < τ�/2π , the spectra approach a plateau
of value 1, confirming that particles sample well the flow and their behavior is described by the
standard classical turbulence picture at large scales. Note that the classical temporal inertial range
of our simulations is pretty small, since TL ∼ 5τ�. For comparison, we also present the velocity
spectrum of a particle of size ap = 4ξ and mass M = 1, computed in a temporal window at much
later times, when Kolmogorov turbulence has decayed and only a few vortices are left. Note that a
ω−2 scaling of the Lagrangian velocity spectrum has also been observed in numerical simulations
of the vortex filament model [49], although not in the Kolmogorov inertial range and not related to
the energy dissipation rate nor to Kolmogorov turbulence.

As expected, in our simulations no Kolmogorov scaling is observed at small timescales. Indeed,
one of the most striking features of quantum turbulence is the crossover between the classical
Kolmogorov regime and the physics taking place at scales smaller than the mean intervortex
distance. Unlike classical turbulence (see, for instance, [47]), there is still a nontrivial scaling at
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timescales shorter than τ�. Such a difference is a consequence of the quantum nature of the system,
here manifested by the presence of quantized vortices.

When a particle is trapped by a vortex, the superfluid flow turns around it. As a consequence,
while the particle moves, it experience a Magnus force. This lift force is simply expressed as
FMagnus = 3

2ρ∞ap� × (q̇ − vs ), where the circulation vector � is oriented along the vortex filament,
and the superfluid velocity vs contains the contributions of the mean flow and the vortex motion
[36,50]. The Magnus effect induces a precession of the particle about the filament with the
characteristic angular velocity

�p = 3

2

ρ∞ap

Meff
p

�, (9)

where the particle effective mass Meff
p = Mp + 1

2 M0 = (M + 1
2 )M0 takes into account the added

mass effect due to the mass of the superfluid displaced by the particle M0. As mentioned in
[36], for current experiments with hydrogen particles in superfluid helium, this frequency is of
order 10–100 Hz. If the Magnus force is the main force acting on a trapped particle, the Newton
equation Meff

p q̈ = FMagnus implies the following expression for the frequency spectrum of the
particle velocity:

〈|v̂p(ω)|2〉 = �2
p

�2(ω − �p)2
〈|� × v̂s(ω)|2〉. (10)

Independently of the external superfluid velocity, the expression (11) predicts that the spectrum
〈|v̂p(ω)|2〉 must be peaked around the natural frequency of trapped particles ω = �p. Such behavior
has been studied in detail in the case of particles trapped inside slightly perturbed straight vortex
filaments [36]. The spectrum of this simple configuration is also reported for comparison in Fig. 6(a)
for a small particle of relative unit mass. A clear bump in the frequency spectrum, corresponding
to �p, is still visible when particles are immersed in a complex quantum vortex tangle. For the
large particles, the presence of a peak is less evident because the natural frequency is lower, and
therefore a longer sampling (in time) would be necessary to resolve it properly (2π/�p = 0.7TL for
the particles of size ap = 10ξ and mass M = 1). Moreover, as large particles are multiply trapped
by many vortices, the resulting motion is certainly more complex than a precession with a single
characteristic angular frequency of one single vortex. The broadness of the peak around the Magnus
frequency for the small particles in Fig. 10(a) could also be related to this fact.

At small timescales, a different scaling of the velocity spectrum is observed for the light
particles, now in agreement with 〈|v̂p(ω)|2〉 ∝ |ω|−1. This behavior is consistent with the fact
that at scales smaller than the intervortex distance, the typical velocities of a superfluid turbulent
tangle are supposed to scale as vfast (t ) ∝ √

κ/|t − t0|, because the circulation becomes the only
relevant physical parameter, and the motion of vortices is dominated by their mutual advection and
reconnections. In this scenario, if particles are sufficiently light to be able to follow the fast vortex
dynamics, we can substitute 〈|v̂p(ω)|2〉 ∼ v̂2

fast (ω) ∝ κ|ω|−1. Another effect that could contribute
to the same result is the attraction of particles by the vortices, since the scaling in time of the
particle-vortex distance is the same as that of vortex reconnection [34]. Note that for the heaviest
particles, such fast scaling is absent since their reaction is probably too slow to be sensible to the
fast fluctuations of the tangle.

C. Particle velocity and acceleration statistics

Unlike classical turbulence, where the statistics of the one-point particle velocity v is known
to be Gaussian [1], experiments in superfluid helium using hydrogen and deuterium particles as
tracers have reported long tails, with a v−3 power-law scaling in their velocity distribution [24–26].
Such scaling has been related to the singular velocity field of quantized vortices [51,52]. At low
temperatures, as Stokes drag is negligible, particles should not move with the superfluid flow
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FIG. 7. (a) Probability density function of the single-component particle velocity, for different species of
particles. The dotted golden line is the Eulerian velocity field ∇φ, corresponding to the simulation without
particles at the time 1.4 TL . The data for the particles are averaged in time between t = 1.2TL and 1.6TL . Inset:
Standard deviation of the particle velocity as a function of the particle mass. (b) The same as (a) but with the
velocities normalized by the standard deviation σv . Dotted lines are Gaussian, dash-dotted line is a power-law
scaling |vi|−3.

and such scaling can be understood as a consequence of quantum vortex reconnections sampled
by trapped particles [7,24]. Furthermore, in Ref. [25], by using particle tracking velocimetry in
counterflow turbulence, it was shown that while varying the sampling scale, the velocity PDFs
continuously change from Gaussian statistics to power-law tails, the crossover taking place at scales
of the order of the intervortex distance. In this final subsection we present measurements of particle
velocity and acceleration statistics within the GP-P model.

We start the discussion by presenting the Eulerian velocity field. Formally, the velocity of
the superfluid is simply given by ∇φ. This field contains the density fluctuations, as well as the
divergence of the vortex velocity flow close to its core. This divergence leads to the well-observed
v−3 scaling of velocity PDF [51,53,54]. The PDF of ∇φ is displayed in Fig. 7. We turn now to
analyze the particle velocity PDFs. We compute the velocity PDFs for all runs in the turbulent
regime. Data are filtered with a Gaussian convolution in order to smooth out the noisy oscillations
at frequencies ω < ωnoise = 50 (2π/τ�) (see Appendix). In Fig. 7 the PDF of the single-component
velocity is plotted for all the species of analyzed particles. In Fig. 7(a), velocities are expressed
in terms of the speed of sound c, whereas in Fig. 7(b) they are normalized by their root-mean-
squared values. The root-mean-squared values are displayed in the inset of Fig. 7(a) as a function
of the mass for the two particle sizes. It is apparent from Fig. 7(b) that the particle statistics
exhibits a Gaussian distribution. Note that Gaussian velocity statistics was also observed in thermal
counterflow simulations of the vortex filament method with tracers particles [30]. The absence of
power-law tails could be a consequence of weak statistical sampling of large velocity fluctuations
due to the low number of particles present in the system and/or by compressible effects of the GP
model. We will comment more about this in Sec. IV.

We would like to remark here that high-frequency fluctuations are strongly sensitive to numerical
artifacts. In the Appendix, inspired by the experimental results of Ref. [25], we have computed
the velocity PDFs of the velocity fluctuations filtered at a given frequency ωc. The frequency was
varied from values lower to larger than 2π/τ�. For one simulation we have compared two different
interpolation methods to evaluate the force term in Eq. (3) needed to drive the particles. It turns out
that for the fourth-order B-spline method, the velocity PDFs start to develop tails while the filtering
scale is varied, eventually leading to a v−3 scaling. However, when using Fourier interpolation,
which is an exact evaluation (up to spectral convergence of the pseudospectral code) of the force
term, the PDFs do not develop any tail and remain Gaussian. We have decided to keep this example
with spurious numerical effects in the Appendix, as it might be useful for future numerical studies
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FIG. 8. (a) Probability density functions of the single-component particle acceleration. (b) Probability
density functions of the norm of the particle acceleration. The dotted line is a Gaussian, the dashed line is a χ3

distribution, and the dash-dotted line is an exponential tail e−|a|/σ|a| . Inset: Probability density functions of the
natural logarithm of the norm of the particle acceleration. The dashed golden line is a log-normal distribution.

and data analysis of similar problems. We have checked that the results presented in the paper are
independent of the interpolation scheme.

We turn now to study the acceleration statistics. As displayed in Fig. 8(a), the PDF of the
acceleration presents some deviations from a Gaussian distribution at large values. The norm of
the acceleration has also an exponential tail for |a| > σ|a|, as displayed in Fig. 8(b). The core of
the PDF in this case is a χ3 distribution, which is expected for the norm of a vector with Gaussian
components. In classical Lagrangian turbulence, the norm of the particle acceleration is observed
to obey a log-normal distribution [55]. In the inset of Fig. 8(b), we compare our data with such
distribution. For the lightest and smallest particle, the small accelerations appear to be more probable
than in the classical case. Note that, as pointed out in [55], small values of the acceleration are very
sensible to experimental (numerical) errors. By contrast, the large accelerations are less probable
than a log-normal distribution. This observation is compatible with classical numerical calculations
in the framework of the viscous vortex filament model, in which it has been shown that, because of
inertia, solid particles undergo less rapid changes of velocity than fluid particles [56].

Finally, in Fig. 9, we show the two-point correlator of the particle acceleration, defined as

ρa(t ) = 〈ai(t0)ai(t0 + t )〉 − 〈ai(t0)〉〈ai(t0 + t )〉
σa(t0)σa(t0 + t )

. (11)

FIG. 9. Acceleration two-point correlator, plotted vs time normalized by the dissipation timescale τ� (a),
and by the Magnus natural frequency 1/�p. (b) Markers indicate the time of acceleration decorrelation ta.
Inset: ta normalized by 1/�p as a function of the particle relative mass.
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In classical Lagrangian turbulence, the decorrelation time ta [such that ρa(ta) = 0] is related to
the Kolmogorov timescale ta = 2τη [57]. This is not the case in quantum turbulence. Figure 9(a)
displays the autocorrelation ρa(t ) for all the simulations. It is apparent that the acceleration
decorrelates much faster than τ�, the equivalent of the Kolmogorov timescale in our system. This
fact is a consequence of the myriad of physical phenomena taking place at smaller scales. As most
particles are trapped by vortices, they oscillate at the Magnus frequency �p in Eq. (9). If time is
normalized by �p (9), then ta�p becomes of order 1, at least for the heaviest particles [see Fig. 9(b)
and the inset therein]. For the lightest particles, the decorrelation time is even lower, meaning that
they are sensible to other mechanisms, such as reconnection events between vortex filaments and
Kelvin wave excitations at even smaller scales.

IV. DISCUSSION

In this work, we used the Gross-Pitaevskii model to study free decaying quantum turbulence at
zero temperature in the presence of finite-size active particles. We considered different families of
spherical particles having sizes smaller than and of the order of the mean intervortex distance. We
first performed a standard analysis of the observables commonly used for studying Kolmogorov
turbulence, such as the energy decomposition, the temporal evolution of mean energy, the rate of
incompressible kinetic energy, and the mean intervortex distance. Although particles are active and
get captured by vortices generating Kelvin waves, there is not a significant impact at scales larger
than the intervortex distance, where Kolmogorov turbulence takes place. Monitoring the motion of
the particles in the system, we confirmed their tendency to remain trapped into vortex filaments
during the evolution of the tangle, with intermittent episodes of detachment and recapture. This
behavior is independent of the vortex line density. We also found that particles can be easily captured
simultaneously by several quantum vortices.

We also studied turbulence from the Lagrangian point of view. In particular, we computed the
power spectra of the particle velocities. At large scales the particle dynamics is compatible with
that of Lagrangian tracers in classical turbulence, while at short timescales the Magnus precession
around the filaments caused by the vortex circulation is dominating the motion. Such information
can be extracted consistently both in the frequency spectrum of the velocity and in the decay time
of the correlation of the acceleration. Furthermore, if particles are light enough, faster frequencies
are also excited. This suggests (as intuitively expected) that light particles can be more sensitive to
the small-scale fluctuations of the flow.

Finally, we investigated the particle velocity statistics. The distribution of the particle velocity
is Gaussian, in contrast with the power-law scaling |vi|−3 recently observed in superfluid helium
experiments [24,25]. There are several reasons why power-law tails are absent in our simulations.
First, since the simulation of each particle has an important numerical cost, the number of particles
is restricted only to a couple of hundred. Due to this issue, vortex reconnections might be unlikely
sampled by the sparse distribution of particles. Note also that, as particles have a finite size,
increasing their number keeping the size of the system constant will increase substantially the filling
fraction. In this case, turbulence could even be prevented by the presence of particles. Although
interesting, this limit is beyond the scope of this work. Secondly, the GP model is compressible,
and particles moving at large velocities are slowed down by vortex nucleations. This certainly
reduces large velocity fluctuations, perhaps limiting the development of power-law tails. It would
be interesting to address such issues in generalized GP models, including a roton minimum and
high-order nonlinearities. Moreover, our simulations are by definition at zero temperature, and
particles do not follow the singular superfluid velocity field because of the lack of viscosity in
the system. Indeed, in the GP model the pressure gradients that drive the particle dynamics are
always regular because of the vanishing density at the vortex cores, unlike other models such as
the vortex filament method. As a consequence, the divergence of the superfluid velocity along the
vortex lines cannot be experienced by the particles. Conversely, at finite temperature the superfluid
and the normal component can be locked thanks to mutual friction. In this case, since particles
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would sample the normal fluid velocity because of Stokes drag, they might be able to sample the
1/r flow around a quantum vortex. Finally, we observed that fast velocity fluctuations are highly
sensitive to interpolation and filtering methods that could even lead to power-law tails. These tails
are completely spurious, and special care is needed while analyzing numerical or experimental data.
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APPENDIX: NUMERICAL ARTIFACTS ON THE PARTICLE VELOCITY STATISTICS:
COMPARISON BETWEEN B-SPLINE AND SPECTRAL INTERPOLATION METHODS

As explained in the main text, we evaluate the force fGP
i = −(Vp ∗ ∇ρ)[qi] (3) at the particle

position qi using a B-spline interpolation method [39] at each time step. Such a method is precise
and computationally cheap, but it turns out to present some issues that we have to take care of.
To check the reliability of the method, we rerun a simulation using Fourier interpolation for one
species of particles in the time window corresponding to the turbulent regime. Fourier interpolation
is exact in the sense that it uses the information of the full three-dimensional field, which is resolved
with spectral accuracy (i.e., discretization errors are at most exponentially small with the number
of discretization points). The numerical cost of this method is that of one Fourier transform (per
particle). In Fig. 10 the velocity and acceleration spectra computed using B-spline and Fourier
interpolation methods are compared. Clearly, the B-spline interpolation introduces nonphysical fast
oscillations, but at the frequencies ω < ωnoise = 50(2π/τ�) the behavior of the spectra is unchanged.
Nevertheless, some differences in the features of particle statistics are still visible at fast timescales
once the noise is filtered out.

We use a Gaussian convolution to perform a filtering of the velocity time series for each particle
in the frequency window ωc < ω < ωnoise, where ωc is a variable infrared cutoff frequency. Then
we compute the PDF of the filtered velocity for different values of ωc. Such PDFs are shown in
Fig. 11 comparing the simulations in which Fourier and B-spline interpolation are used for the same
species of particle. Surprisingly, only in the latter case do we observe power-law tails for the fast
oscillation distributions. Such PDFs are similar to the ones observed experimentally [24,25], but in
the present case they are just a consequence of numerical artifacts.

FIG. 10. Velocity spectra (a) and the acceleration spectra (b) for particles of size ap = 10ξ and mass M =
0.13, evolved using B-spline interpolation (blue lines) and spectral Fourier interpolation (green lines). The
spectra are averaged over particles and over the times 1.3TL < t < 1.5TL .
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FIG. 11. Probability density function of the velocity filtered in the frequency window ωc < ω < ωnoise

for different values of ωc. Data refer to particles of size ap = 10ξ and mass M = 0.13. The dotted line is a
Gaussian distribution, and the dash-dotted line is a power-law scaling 0.002(vi − 〈vi〉)−3. The data are averaged
over particles and over the times 1.3TL < t < 1.5TL . Different PDFs are shifted for visualization. (a) Particle
force interpolated with the B-spline method. (b) Particle force interpolated with the Fourier method.

[1] U. Frisch and A. N. Kolmogorov, Turbulence: The Legacy of AN Kolmogorov (Cambridge University
Press, Cambridge, 1995).

[2] R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991), Vol. 2.
[3] T. Frisch, Y. Pomeau, and S. Rica, Transition to Dissipation in a Model of Superflow, Phys. Rev. Lett. 69,

1644 (1992).
[4] T. Winiecki and C. S. Adams, Motion of an object through a quantum fluid, Europhys. Lett. 52, 257

(2000).
[5] J. Koplik and H. Levine, Vortex Reconnection in Superfluid Helium, Phys. Rev. Lett. 71, 1375 (1993).
[6] G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, Characterization of reconnecting

vortices in superfluid helium, Proc. Natl. Acad. Sci. USA 105, 13707 (2008).
[7] A. Villois, D. Proment, and G. Krstulovic, Universal and nonuniversal aspects of vortex reconnections in

superfluids, Phys. Rev. Fluids 2, 044701 (2017).
[8] L. Galantucci, A. W. Baggaley, N. G. Parker, and C. F. Barenghi, Crossover from interaction to driven

regimes in quantum vortex reconnections, Proc. Natl. Acad. Sci. USA 116, 12204 (2019).
[9] C. Nore, M. Abid, and M. E. Brachet, Decaying Kolmogorov turbulence in a model of superflow, Phys.

Fluids 9, 2644 (1997).
[10] A. W. Baggaley, J. Laurie, and C. F. Barenghi, Vortex-Density Fluctuations, Energy Spectra, and Vortical

Regions in Superfluid Turbulence, Phys. Rev. Lett. 109, 205304 (2012).
[11] V. Shukla, P. D. Mininni, G. Krstulovic, P. C. di Leoni, and M. E. Brachet, Quantitative estimation of

effective viscosity in quantum turbulence, Phys. Rev. A 99, 043605 (2019).
[12] J. Maurer and P. Tabeling, Local investigation of superfluid turbulence, Europhys. Lett. 43, 29 (1998).
[13] J. Salort, C. Baudet, B. Castaing, B. Chabaud, F. Daviaud, T. Didelot, P. Diribarne, B. Dubrulle, Y. Gagne,

F. Gauthier, A. Girard, B. Hébral, B. Rousset, P. Thibault, and P.-E. Roche, Turbulent velocity spectra in
superfluid flows, Phys. Fluids 22, 125102 (2010).

[14] W. F. Vinen, Decay of superfluid turbulence at a very low temperature: The radiation of sound from a
kelvin wave on a quantized vortex, Phys. Rev. B 64, 134520 (2001).

[15] V. S. L’vov and S. Nazarenko, Weak turbulence of kelvin waves in superfluid he, Low Temp. Phys. 36,
785 (2010).

[16] J. Laurie, V. S. L’vov, S. Nazarenko, and O. Rudenko, Interaction of kelvin waves and nonlocality of
energy transfer in superfluids, Phys. Rev. B 81, 104526 (2010).

[17] G. Krstulovic, Kelvin-wave cascade and dissipation in low-temperature superfluid vortices, Phys. Rev. E
86, 055301(R) (2012).

054608-18



ACTIVE AND FINITE-SIZE PARTICLES IN DECAYING …

[18] A. W. Baggaley and J. Laurie, Kelvin-wave cascade in the vortex filament model, Phys. Rev. B 89, 014504
(2014).

[19] A. Villois, D. Proment, and G. Krstulovic, Evolution of a superfluid vortex filament tangle driven by the
Gross-Pitaevskii equation, Phys. Rev. E 93, 061103(R) (2016).

[20] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech.
41, 375 (2009).

[21] W. Guo, M. La Mantia, D. P. Lathrop, and S. W. Van Sciver, Visualization of two-fluid flows of superfluid
helium-4, Proc. Natl. Acad. Sci. USA 111, 4653 (2014).

[22] G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Superfluid helium: Visualization of quantized vortices,
Nature (London) 441, 588 (2006).

[23] E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop, Direct observation of kelvin waves
excited by quantized vortex reconnection, Proc. Natl. Acad. Sci. USA 111, 4707 (2014).

[24] M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and D. P. Lathrop, Velocity Statistics Distinguish Quantum
Turbulence from Classical Turbulence, Phys. Rev. Lett. 101, 154501 (2008).

[25] M. L. Mantia and L. Skrbek, Quantum, or classical turbulence?, Europhys. Lett. 105, 46002 (2014).
[26] M. La Mantia and L. Skrbek, Quantum turbulence visualized by particle dynamics, Phys. Rev. B 90,

014519 (2014).
[27] M. La Mantia, D. Duda, M. Rotter, and L. Skrbek, Lagrangian accelerations of particles in superfluid

turbulence, J. Fluid Mech. 717, R9 (2013).
[28] Y. A. Sergeev and C. F. Barenghi, Particles-vortex interactions and flow visualization in 4he, J. Low Temp.

Phys. 157, 429 (2009).
[29] C. F. Barenghi, D. Kivotides, and Y. A. Sergeev, Close approach of a spherical particle and a quantised

vortex in helium II, J. Low Temp. Phys. 148, 293 (2007).
[30] Y. Mineda, M. Tsubota, Y. A. Sergeev, C. F. Barenghi, and W. F. Vinen, Velocity distributions of tracer

particles in thermal counterflow in superfluid 4He, Phys. Rev. B 87, 174508 (2013).
[31] E. Varga, C. F. Barenghi, Y. A. Sergeev, and L. Skrbek, Backreaction of tracer particles on vortex tangle

in helium ii counterflow, J. Low Temp. Phys. 183, 215 (2016).
[32] J. I. Polanco and G. Krstulovic, Inhomogeneous distribution of particles in coflow and counterflow

quantum turbulence, Phys. Rev. Fluids 5, 032601 (2020).
[33] V. Shukla, M. Brachet, and R. Pandit, Sticking transition in a minimal model for the collisions of active

particles in quantum fluids, Phys. Rev. A 94, 041602(R) (2016).
[34] U. Giuriato and G. Krstulovic, Interaction between active particles and quantum vortices leading to kelvin

wave generation, Sci. Rep. 9, 4839 (2019).
[35] U. Giuriato, G. Krstulovic, and D. Proment, Clustering and phase transitions in a 2d superfluid with

immiscible active impurities, J. Phys. A 52, 305501 (2019).
[36] U. Giuriato, G. Krstulovic, and S. Nazarenko, How trapped particles interact with and sample superfluid

vortex excitations, Phys. Rev. Research 2, 023149 (2020).
[37] A. Griffin, S. Nazarenko, V. Shukla, and M.-E. Brachet, The vortex-particle magnus effect,

arXiv:1909.11010.
[38] P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Dual cascade and dissipation mechanisms in helical

quantum turbulence, Phys. Rev. A 95, 053636 (2017).
[39] M. A. T. van Hinsberg, J. H. M. Thije Boonkkamp, F. Toschi, and H. J. H. Clercx, On the efficiency and

accuracy of interpolation methods for spectral codes, SIAM J. Sci. Comput. 34, B479 (2012).
[40] N. Sasa, T. Kano, M. Machida, V. S. L’vov, O. Rudenko, and M. Tsubota, Energy spectra of quantum

turbulence: Large-scale simulation and modeling, Phys. Rev. B 84, 054525 (2011).
[41] G. Krstulovic, Grid superfluid turbulence and intermittency at very low temperature, Phys. Rev. E 93,

063104 (2016).
[42] W. F. Vinen, Mutual friction in a heat current in liquid helium ii iii. theory of the mutual friction, Proc. R.

Soc. London, Ser. A 242, 493 (1957).
[43] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054608 for

movies of the simulations.

054608-19



UMBERTO GIURIATO AND GIORGIO KRSTULOVIC

[44] N. G. Berloff and P. H. Roberts, Capture of an impurity by a vortex line in a Bose condensate, Phys. Rev.
B 63, 024510 (2000).

[45] A. Villois, G. Krstulovic, D. Proment, and H. Salman, A vortex filament tracking method for the gross-
pitaevskii model of a superfluid, J. Phys. A 49, 415502 (2016).

[46] The circulation measured with this method is subjected to a numerical error coming from the grid
spacing. Such error is removed in postprocessing, knowing that � can only be an integer multiple of
κ . Furthermore, extremely high values of � have been removed since they are related to the ill-defined
situation in which a topological defect is placed at the boundary C.

[47] P. K. Yeung, Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations,
J. Fluid Mech. 427, 241 (2001).

[48] H. Tennekes, J. L. Lumley, J. Lumley et al., A First Course in Turbulence (MIT Press, Cambridge, 1972).
[49] D. Kivotides, Y. A. Sergeev, and C. F. Barenghi, Dynamics of solid particles in a tangle of superfluid

vortices at low temperatures, Phys. Fluids 20, 055105 (2008).
[50] L. Kiknadze and Y. Mamaladze, The magnus (kutta-jukovskii) force acting on a sphere, arXiv:cond-

mat/0604436.
[51] A. C. White, C. F. Barenghi, N. P. Proukakis, A. J. Youd, and D. H. Wacks, Nonclassical Velocity Statistics

in a Turbulent Atomic Bose-Einstein Condensate, Phys. Rev. Lett. 104, 075301 (2010).
[52] M. S. Paoletti and D. P. Lathrop, Quantum turbulence, Annu. Rev. Condens. Matter Phys. 2, 213 (2011).
[53] A. W. Baggaley and C. F. Barenghi, Quantum turbulent velocity statistics and quasiclassical limit, Phys.

Rev. E 84, 067301 (2011).
[54] V. Shukla, M. Brachet, and R. Pandit, Turbulence in the two-dimensional fourier-truncated gross-

pitaevskii equation, New J. Phys. 15, 113025 (2013).
[55] N. Mordant, A. M. Crawford, and E. Bodenschatz, Three-Dimensional Structure of the Lagrangian

Acceleration in Turbulent Flows, Phys. Rev. Lett. 93, 214501 (2004).
[56] D. Kivotides, C. F. Barenghi, A. J. Mee, and Y. A. Sergeev, Interaction of Solid Particles with a Tangle of

Vortex Filaments in a Viscous Fluid, Phys. Rev. Lett. 99, 074501 (2007).
[57] P. K. Yeung and S. B. Pope, Lagrangian statistics from direct numerical simulations of isotropic

turbulence, J. Fluid Mech. 207, 531 (1989).

054608-20



6 Dynamics of impurities in the truncated
Gross–Pitaevskii model

In this chapter we report a supplementary study on the dynamics of immiscible
active impurities coupled with a quantum fluid at finite temperature. First, we
give a short introduction to the truncation procedure for the Gross–Pitaevskii
equation, which is a method to implement finite temperature effects in the system.
This allows us to provide the minimal theoretical background to understand the
two subsequent original papers. The first of them, “Stochastic motion of finite-size
immiscible impurities in a dilute quantum fluid at finite temperature” [78], is
related to the random dynamics of a single impurity in a thermal bath. In particular,
we characterize the friction coefficient and its temperature dependence. In the
second publication, “Clustering and phase transitions in a 2D superfluid with
immiscible active impurities” [80], we consider the dynamics of many impurities
in two dimensions. The random motion of the impurities induced by the thermal
bath combined with their mutual interaction leads to the formation of clusters. We
characterize the critical temperature of such clustering transition and its dependence
on the particle repulsion. Eventually, we observe a shift of the condensation and
Berezinskii-Kosterlitz–Thouless critical temperatures, which is proportional to the
filling fraction of the impurity clusters.

6.1 The truncated GP equation as a model for finite temperature
quantum fluids

Until now, we have considered the Gross–Pitaevskii equation to model a superfluid at
very low temperature, namely when the number of non-condensed atoms is negligible
and a the use of a single collective mean field wavefunction to describe the system is
justified. As shown in the first chapter, the GP equation can be derived from the more
general dynamics of a bosonic system, given by the quantum Heisenberg equation
(1.46) for the Bose operator 𝛹̂, under the assumption that the fundamental mode, the
condensate, is largely populated. However, if the other modes of the system are also
highly occupied (𝑛𝒌 ≫ 1) the classical fluctuations are dominating over the quantum
fluctuations and therefore also these states may be described by a (classical) coherent
wavefunction. This is the fundamental intuition behind the use of the truncated (or
projected) GP equation to model a bosonic system at nonzero temperature, developed
in the early 2000s by Davis et al [52].

One issue which is immediately evident when one tries to use the GP equation to

163
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model a system in thermal equilibrium is the arising of an ultraviolet catastrophe.
Indeed, being GP a classical equation, the equipartition theorem holds at low temperat-
ure, meaning that each mode would carry a thermal energy 𝑛𝒌𝐸𝑘 = kB𝑇 at temperature
𝑇, where 𝐸𝑘 is the single-particle energy. This implies that the total energy ∫ 𝑛𝒌𝐸𝑘 d𝒌
diverges at infinitely small scales, as in the historical problem of the black body radi-
ation [132]. Another consequence of equipartition is that at small scales, where the
single-particle energy scales as 𝐸𝑘 ∼ 𝑘2 (1.10), the occupation number 𝑛𝒌 = kB𝑇/𝐸𝑘
becomes smaller and smaller and at a certain scale the classical limit 𝑛𝒌 ≫ 1 is no
longer valid. In this perspective, the ultraviolet divergence is nothing but an unphysical
occurrence due to the fact that a classical theory is being extrapolated in a region where
the dynamics is fully quantum.

The technique of truncating the system imposing an ultraviolet cutoff scale 𝑘max is
an approximation which solves this problem. The idea is to set the cutoff such that the
modes with energies higher than the value ℏ𝜔(𝑘max) = kB𝑇 are simply ignored, and
thus the region where a classical description is not valid is just not considered. The
justification is that in the full quantum statistics (1.20) the small scale (high energy)
modes with ℏ𝜔(𝑘) ≫ kB𝑇 are indeed weakly populated in comparison to the classical
ones. Note that in practice the same cutoff is used for every temperature, which is a
further approximation. Formally, one can define a projection operator 𝒫̂ that acts on
the boson operator (1.47) as [51, 52]

𝒫̂𝛹̂(𝒙) = ∑
𝒌∈𝐶

𝛹𝒌(𝒙) ̂𝑎𝒌 ∼ ∑
𝒌∈𝐶

𝛹𝒌(𝒙)𝑐𝒌 = 𝜓(𝒙), (6.1)

where 𝐶 is a “classical” region with highly populated modes 𝑛𝒌 = ⟨ ̂𝑎†
𝒌 ̂𝑎𝒌⟩ ≫ 1. In this

region it is safe to treat the annihilation and creation operators ̂𝑎𝒌 and ̂𝑎†
𝒌 as c-numbers

𝑐𝒌 (namely neglecting the quantum fluctuations ̂𝛿𝒌 in the expansion ̂𝑎𝒌 = 𝑐𝒌 + ̂𝛿𝒌) and
describe the system with a coherent field 𝜓(𝒙) = ⟨𝛹̂(𝒙)⟩. Analogously, the orthogonal
projector 𝒬̂ = 1 − 𝒫̂ acts on the Bose operator projecting it to the “incoherent” region
𝐼, which is the complement of 𝐶. The resulting field ̂𝜂(𝒙) = ∑𝒌∈𝐼 𝒬̂𝛹̂(𝒙) describes an
effective heat bath coupled with the field 𝜓(𝒙) and that in principle evolves according
to some quantum kinetic theory. Applying the decomposition of the Bose operator
𝛹̂ = [𝒫̂ + 𝒬̂] 𝛹 to the quantum equation (1.46), taking the expectation values of the
operators and neglecting the quantum fluctuations in the coherent region (6.1), one
obtains the finite temperature Gross–Pitaevskii equation

𝑖ℏ𝜕𝜓
𝜕𝑡 = 𝒫̂ [− ℏ2

2𝑚∇2𝜓 + 𝑔|𝜓2|𝜓 + 𝑉ext𝜓] (6.2)

+ 𝒫̂ [2𝑔|𝜓|2 ⟨ ̂𝜂⟩ + 𝑔𝜓2 ⟨ ̂𝜂†⟩ + 𝑔𝜓∗ ⟨ ̂𝜂 ̂𝜂⟩ + 2𝑔𝜓 ⟨ ̂𝜂† ̂𝜂⟩ + ⟨ ̂𝜂† ̂𝜂 ̂𝜂⟩] . (6.3)

Several sophisticated techniques to deal with the thermal cloud exist [183]. For the
sake of simplicity and conciseness, only the truncation procedure is described here,
which basically consists in neglecting all the terms that contain the heat bath ̂𝜂 in Eq.
(6.3). The resulting equation is therefore microcanonical and conserves the energy.
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However, if the classical region is large (𝑛k ≫ 1), the fluctuations of energy in the
full equation (6.3) are small. As a consequence, the truncated equation and the full
equation (6.3) would relax to a similar equilibrium state.

Operatively, in numerical simulations the truncation operation is performed in
Fourier space introducing a Galerkin operator 𝒫G, which acts on the field 𝜓(𝒙) as1:

𝒫G [𝑓 (𝒓)] = ∑
𝒌

̂𝑓 (𝒌)𝑒𝑖𝒌⋅𝒙𝜃H(𝑘max − |𝒌|) (6.4)

where ̂𝜓(𝒌) is the Fourier transform of 𝜓(𝒙) and 𝜃H(𝑘max − |𝒌|) ≡ 𝜃𝒌 is the Heaviside
theta. The resulting truncated Gross–Pitaevskii (TGP) equation reads

𝑖ℏ𝜕𝜓
𝜕𝑡 = 𝒫G [− ℏ2

2𝑚∇2𝜓 + 𝑔𝒫G [|𝜓2|] 𝜓 + 𝑉ext𝜓] , (6.5)

which conserves exactly energy, mass and, if properly dealiased using the 2/3 rule, also
the momentum (see [128, 131] and the Appendix A). The fundamental dimensionless
parameter of such system is 𝜉𝑘max (where 𝜉 is the standard healing length at zero
temperature (1.104)), that controls the amount of dispersion at the cutoff scale and
which is inversely proportional to the intensity of the non-linear interactions [131, 213].
Indeed, for a larger value of 𝜉𝑘max, more modes with a free particle dispersion relation
are present in the system (as it can be seen from the Bogoliubov spectrum (1.110)) and
thus the non-linearity is weaker. This fact can be also appreciated considering the mag-
nitude of the non-linear broadening 𝛥𝜔(𝑘) of the dispersion relation, which provides
a measure of the non-linear interaction time. As it is observed in the spatio-temporal
spectra measured in [213] and reported in Fig.6.1, 𝛥𝜔(𝑘) significantly decreases when
𝜉𝑘max is increased, confirming that the strength of the non-linearity is indeed weaker.

Given a finite size system of volume 𝑉, so that it contains a number of modes
𝒩 = 𝑘3

max𝑉, the thermodynamic limit must be performed by setting 𝒩 → ∞ and
keeping 𝜉𝑘max = const, in order to obtain equivalent systems. In this limit, the relev-
ant thermodynamic variables are the intensive quantities 𝐻/𝑉, 𝑁/𝑉 (and 𝑷/𝑉 if the
average momentum if different from zero).

The truncated GP equation possesses absolute equilibrium solutions, distributed
with the probability

ℙ [ ̂𝜓𝒌] ∝ 𝑒−𝛽(𝐻−𝜇𝑁), (6.6)

which is a solution of the Liouville equation associated to Eq. (6.5). The argument of
the exponent in Eq. (6.6) is a linear combination of the invariants of the TGP equation,
namely energy and mass2 [128]. The parameters 𝛽 and 𝜇 are Lagrange multipliers
that play the roles of inverse temperature and chemical potential, respectively. At the

1Note that actually every system simulated numerically is always implicitly truncated, since the existence
of a numerical cutoff (which defines the resolution of the numerical approximation) is an unavoidable
occurrence of the descrete calculations performed by a machine.

2Considering for simplicity only the zero momentum states.
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FIG. 9. Temporal evolution of the kinetic energy spectra: (a) in-
compressible component ei

kin(k) at T = 0; (b) incompressible com-
ponent ei

kin(k); and (c) compressible component ec
kin(k), for the TGPE

run at T = 0.33 Tλ with linear spatial resolution N = 1024 and
ξkmax = 2.5. The energy spectra are in units of MU 2L−2 and k in
units of L−1.

In Figs. 13(a)–13(c) we show the plots of λ(k, T ) vs k
from our simulations for different values of temperatures
(below and above Tλ) for ξkmax = 1.5, 2.5, and 4, respectively.
The dispersion relation at different temperatures was directly

FIG. 10. Spatiotemporal spectra with ξkmax = 1.5 and N =
2563, for different temperatures as indicated in each panel. The
(green) dashed line indicates the theoretical Bogoliubov dispersion
relation. Bright (red to yellow) areas indicate modes with large
excitation. The frequency ω(k) is given in units of T −1, and k is in
units of L−1.

measured from the STS in Fig. 11. We find that λ(k, T ) in
many cases, for wave numbers larger than k ≈ 1/ξ , has a
tendency to either saturate or fluctuate around a mean value.
For simplicity, we approximate the mean-free path at each
temperature by taking λ(T ) = λ(k ≈ kmax, T ). In Fig. 14(a)
we show the plot of λ(T ) vs T for three different values of
ξkmax = 1.5, 2.5, and 4; we find that λ(T ) decreases as we
increase the temperature. Also, in general, it increases with
ξkmax, i.e., reduction in the nonlinear interaction strength.

From the mean-free path, we estimate the effective viscos-
ity by writing

νeff (T ) ∼ λ(T )
dωB

dk

∣∣∣∣
k≈kmax

=
( dωB

dk

∣∣
k≈kmax

)2

%ω(k ≈ kmax, T )
, (40)

wherein we evaluate %ω(T ) and dωB/dk at k = 80 ≈ kmax.
In Fig. 14(b) we show the temperature dependence of νeff (T ),
wherein we have normalized it by the quantum of circulation
4πα = 4πcξ

√
2. For temperatures above 0.5Tλ, both λ and
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FIG. 11. Spatiotemporal spectra with ξkmax = 2.5 and N =
2563, for different temperatures as indicated in each figure. The
(green) dashed line indicates the theoretical Bogoliubov dispersion
relation. Bright (red to yellow) areas indicate modes with large
excitation. The frequency ω(k) is given in units of T −1, and k is in
units of L−1.

νeff are roughly constant. For the runs with ξkmax = 2.5, we
have

λ(T ) ∼ 10ξ , (41)

νeff (T ) ∼ 50α = 50cξ/
√

2. (42)

We emphasize that Eq. (42) provides an estimate of the ef-
fective viscosity in terms of physical parameters: the speed of
sound c and the healing length. Therefore, for the simulations
with c = 2U and ξ = 2.5/kmax = 2.5 × 3L/N , we write the
effective viscosity as

νeff (T ) ∼ L U
500
N

, (43)

where U and L are the unit velocity and length, and N is
the linear spatial resolution. In dimensionless units, with U =
L = 1, we obtain an estimate of the Reynolds number as

Re(TG) = C
νeff

= CN
500

, (44)

where C is a prefactor of order unity. We remark that νeff is an
effective transport coefficient; we can ascertain its value from
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FIG. 12. Spectral broadening &ω(k) of the dispersion relation,
for different temperatures and values of ξkmax. The vertical dashed
lines indicate the value of 1/ξ in each case: (a) as a function of k for
different temperatures and for ξkmax = 1.5, (b) same for ξkmax = 2.5,
and (c) same for ξkmax = 4. The frequency &ω(k) is given in units
of T −1, and k is in units of L−1.

the mean-free path only up to a multiplicative constant. Also,
Re ∼ 1/νeff is the usual definition of the Reynolds number in
numerical studies of the Taylor-Green flow [43].

In Sec. III F we provide a comparison of the GPE runs
with DNSs of the Navier-Stokes equations at low Reynolds
numbers; therefore, for convenience we give yet another
definition of the Reynolds number based on the dynamic root
mean square (r.m.s.) flow velocity

U0 =
√

2E (45)

and the flow correlation length

L0 = 2π

∫
E (k)/k dk∫
E (k) dk

(46)

(i.e., the flow integral scale). Moreover, if we write U0 and L0
in units of U and L, the Reynolds number is

Re = C
U0L0

νeff
= C

U0L0N
500

. (47)
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Figure 6.1. Spatio-temporal spectra of the superfluid field 𝜓 in three-dimensional truncated
GP simulations with 𝜉𝑘max = 1.5 (left) and 𝜉𝑘max = 2.5 (right), for different values of the
temperature. Simulations are perfomed with 𝑁c = 2563 collocation points. The linear Bogoli-
ubov dispersion relation is reported as dashed green line. At fixed temperature, the non-linear
broadening of the spectrum decreases when 𝜉𝑘max increases. Note also that it increases when
the temperature increases as a consequence of the larger amplitude of the density fluctuations
(and thus of the non-linearity). Image taken from [213] to which we refer for further details.
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equilibrium, the mean occupation of the mode 𝒌 is the Reyleigh-Jeans distribution

⟨𝑛𝒌⟩ = ⟨|𝜓𝒌|2⟩ = kB𝑇
𝐸𝑘 − 𝜇 , (6.7)

which is the classical limit of the Bose-Einstein distribution (1.20) and where the
temperature and the chemical potential depend on the energy and waveaction of the
initial condition (conserved over time). This fact is expected, since the TGP is the
high occupation limit of the full equation for the Bose field operator [52]. Indeed, the
spectrum (6.7) is different from the standard Bose distribution (1.20) only close to
the boundary of the coherent region: the Bose distribution goes smoothly to zero for
𝑘 > 𝑘max, while in the truncated system the Reyleigh-Jeans distribution is abruptly set
to zero at the UV cutoff 𝑘max.

We remark that for a field 𝜓 which is a regular solution of the (zero temperature)
GP equation, the spectrum vanishes in the limit 𝑘 → ∞. The standard GP equation
and the TGP model coincide for these solutions (if 𝑘max is large enough), and the
presence of a cutoff in Fourier space does not play an important role. On the contrary,
the truncation is crucial for the states (6.7), since the small scale modes are highly
populated. Note that in such regime the gradients do not exist, and the TGP equation
(6.5) shall be considered as a large set of ordinary differential equations (one for each
mode), rather than a single partial differential equation. In physical terms, one can
consider the thermal states of the TGP model as a gas constituted by a finite number
of classical modes in thermal equilibrium.

The TGP equation is also expected to describe the BEC phase transition, as long as
the condition 𝑛𝒌 ≫ 1 is satisfied for the coherent region. In fact the energy functional
of the GP model corresponds exactly to that of the two-components “𝜆 − 𝜙4” theory
used to study second order phase transitions with the renormalization group approach
[100].

In [52] Davis et al. showed that the condensation transition can be reproduced
by the truncated GP equation. In particular, they simulated the evolution of initial
states with a flat distribution of momentum (up to a maximum wavenumber) and
random phases. The maximum wavenumber was determined by the prescribed energy,
increasing which the system reached microcanonical equilibrium states with less
average condensed fractions. Above a critical value of the energy (and therefore of the
temperature, which is its conjugate variable in the canonical ensable) the condensate
was observed to vanish, compatibly with the BEC phase transition. This condensation
transition was later interpreted as a condensation process of classical waves due to
non-linear interactions [46, 57]. More recently, the out-of-equilibrium thermalization
process in the TGP equation has been associated to a direct energy cascade, with a
partial thermalization at small scales accompanied by vortex annihilation [131].

The TGP equation has been also a successful tool for studying quantum vortex
dynamics at finite temperature. In [27] Berloff and Youd observed the dissipation of a
vortex ring, measuring a linear decay in time of its length, which is in accordance with
the HVBK model of superfluid helium [96]. On the contrary, if a thermal counterflow
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6 Dynamics of impurities in the truncated Gross–Pitaevskii model

is imposed to the system (setting 𝑷 ≠ 0 [131]) a dilatation of vortex rings has been
observed, as well as their slowdown due to the presence of thermally excited Kelvin
waves [130].

Finally, in the articles [78] and [80], introduced at the end of this chapter, we con-
sidered for the first time the truncated GP equation coupled with highly repulsive
impurities, adapting the model introduced in section 2.3.3.

6.1.1 The stochastic real Ginzburg–Landau model

The TGP equation (6.5) provides a microcanonical description of the thermal states.
However, achieving the thermal equilibrium with such dynamical process is in general
numerically costly. Moreover, it does not provide a direct access to the conjugate
thermodynamical variables, like temperature and chemical potential (and counterflow
velocity, if the average momentum is not zero [131]). The stochastic real Ginzburg–
Landau model is an algorithm that has been developed to overcome these issues
[131]. It is a grand-canonical approach leading to the same thermal states of the
(microcanonical) truncated GP model, but much faster and with the temperature as
an explicit tunable parameter. Given the free energy of the truncated system

𝐹 = ∫ ( ℏ2

2𝑚|∇𝜓|2 + 𝑔
2𝒫G [|𝜓|2]2 + 𝑉ext𝒫G [|𝜓|2] − 𝜇|𝜓|2) d𝒙, (6.8)

we consider the following stochastic equation (in Fourier space)

ℏ𝜕 ̂𝜓𝒌
𝜕𝑡 = − 𝜕𝐹

𝜕 ̂𝜓𝒌
+ √2ℏ

𝛽
̂𝜉𝒌, (6.9)

where 𝛽 is a real parameter corresponding to the inverse temperature and ̂𝜉𝒌 are
independent Gaussian white noises of unit variance. Equation (6.9) is nothing but the
gradient descent equation used in the imaginary time evolution to reach the steady state
associated with the minimum of 𝐹, with the addition of the stochastic noise. The role of
the noise is indeed to generate fluctuations around the ground state, whose amplitude
is related to the temperature. More precisly, the stationary probability distribution,
which solves the Fokker–Planck equation associated to the stochastic process (6.9),
is given by the Gibbs grand-canonical distribution ℙ [ ̂𝜓𝒌] ∝ 𝑒−𝛽𝐹. Note that such
distribution is also the stationary solution (6.6) of the Liouville equation that describes
the evolution of the phase-space in the microcanonical ensemble. The stochastic real
Ginzburg–Landau model (6.9) has been adapted to the case when impurities are
present in the system in the publication [80], reported in section 6.3.

Finally, we mention another model which can be used to study a finite temperat-
ure BEC. The stochastic Gross–Pitaevskii equation [45, 183] describes the (real time)
evolution of cold bosons in contact with a thermal cloud. It reads:

𝑖ℏ
𝜕𝜓
𝜕𝑡 = (1 − 𝑖ℏ

𝛽
4 𝛾) [− ℏ2

2𝑚∇2𝜓 + 𝑔|𝜓2|𝜓 + 𝑉ext𝜓] + 𝜂, (6.10)

168



6.1 The truncated GP equation as a model for finite temperature quantum fluids

where 𝜂(𝒙, 𝑡) is a Gaussian noise such that ⟨𝜂∗(𝒙, 𝑡)𝜂(𝒙′, 𝑡′)⟩ = 𝑖(ℏ2/2)𝛾(𝒙, 𝑡)𝛿(𝒙′ −
𝒙)𝛿(𝑡 − 𝑡′). The function 𝛾(𝒙, 𝑡) describes the interaction with the thermal cloud and it
is usually set to a phenomenological damping constant [40, 183]. In practice, the model
(6.10) is a combination of the microcanonical dynamics of the GP equation (6.5) with
the fluctuations-dissipation dynamics of the stochastic real Ginzburg–Landau model
(6.9).

6.1.2 Superfluid and normal fluid decomposition from the momentum correlation

In this section we briefly recall the theoretical justification behind a useful method that
allows to extract the superfluid and the normal fluid components from the decomposi-
tion of the momentum correlation matrix. Such tecnique, based on a linear response
approach, is thoroughly explained for instance in [42], [176] or in the Appendix of
[65] and can be applied to a mean field theory as the TGP model. We used it in the
article [78], discussed below.

Consider a superfluid at finite temperature confined in a pipe. The superfluid com-
ponent of the system flows with an average velocity 𝒗s inside the pipe. The system is
in equilibrium, meaning that the normal component is at rest and in equilibrium with
the walls of the pipe, i.e. 𝒗n = 0. In the two-fluid framework, the momentum (density)
is thus carried entirely by the superfluid and reads 𝒑 = 𝜌s𝒗s. Performing a Galileian
transformation to the reference frame of the superfluid, moving with speed 𝒖 = −𝒗s
with respect to the pipe, the momentum density becomes

𝒑 = 𝜌s𝒗s − 𝜌𝒗s = 𝜌n𝒖. (6.11)

The idea is to compare Eq. (6.11) with the microscopic calculation of the momentum
density, evaluated averaging over states comoving with the superfluid (with 𝒗s = 0).
In general, the expectation value of 𝒑(𝒙) = 𝑖ℏ

2 (𝜓∇𝜓∗ − 𝜓∗∇𝜓) in a reference frame
moving with velocity 𝒖 is

⟨𝒑(𝒙)⟩𝒖 =
∫ 𝑒−𝛽(𝐻−𝜇𝑁−𝑷⋅𝒖+ 1

2 𝑀𝑢2)𝒑(𝒙)𝒟𝜓𝒟𝜓∗

∫ 𝑒−𝛽(𝐻−𝜇𝑁−𝑷⋅𝒖+ 1
2 𝑀𝑢2)𝒟𝜓𝒟𝜓∗

, (6.12)

where 𝑃, 𝑀 and 𝑁 are the total momentum, mass and wave action in the reference
frame at rest. Choosing the coordinates so that the velocity 𝒖 is aligned to the 𝑧 direction,
the normal fluid density is formally defined as [131, 140]

𝜌n =
𝜕 ⟨𝑝𝑧⟩𝑢

𝜕𝑢
∣∣∣∣𝑢=0

. (6.13)

Expanding the expectation value (6.12) for small 𝒖 one gets

⟨𝒑(𝒙)⟩𝒖 = ⟨𝒑(𝒙)⟩0 + 𝛽 (⟨𝒑(𝒙)𝑷 ⋅ 𝒖⟩0 − ⟨𝒑(𝒙)⟩0 ⟨𝑷 ⋅ 𝒖⟩0) , (6.14)
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where ⟨⋅⟩0 is the expectation values in the equilibrium system at rest, in which 𝒗s = 𝒖 =
0 and thus ⟨𝒑(𝒙)⟩0 = 0. In the infinite domain limit, where homogeneity and isotropy
hold, the component of (6.14) along the direction of 𝒖 (chosen to coincide with the 𝑧
axis) can be rewritten as [42, 65]

⟨𝑝𝑧(𝒙)⟩𝒖 = lim
𝒌→0

𝛽𝜒𝑧𝑧(𝒌)𝑢, (6.15)

where 𝜒𝑖𝑗(𝒌) ∝ ∫ ⟨𝑝𝑖(𝟎)𝑝𝑗(𝒓)⟩
0

𝑒−𝑖𝒌⋅𝒓 d𝒓 is the momentum correlation matrix. The subtle
point is that in order to match Eq. (6.15) with the momentum density (6.11), we need
to consider in the expectation value (6.12) only states with zero superfluid velocity.
This is equivalent to ask that the pipe has open ends, namely it extends infinitely in the
𝑧 direction. In other words, one has to perform the limit (𝑘𝑧 → 0) before performing the
infinite domain limit in the transverse direction (𝒌⟂ → 0). On the other end, inverting
the order of the limits (performing 𝒌⟂ → 0 before 𝑘𝑧 → 0) is equivalent to consider a
box with closed ends. In this case all the states contributing to the expectation value
(6.12) have nonzero superfluid velocity, since both the superfluid component and the
normal fluid component move, together with the box, with the speed of the Galileian
transformation 𝒖. As a consequence, the momentum density (6.15) should be set equal
to 𝜌𝑢 instead of 𝜌n𝑢. This argument can be generalized for an arbitrary direction of 𝒖
considering the decomposition of the momentum correlation matrix in its transverse
and longitudinal components:

𝜒𝑖𝑗(𝒌) = 𝜒C(𝑘)
𝑘𝑖𝑘𝑗

𝑘2 + 𝜒I(𝑘) (𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

𝑘2 ) , (6.16)

where 𝜒C(𝑘) and 𝜒I(𝑘) are respectively the longitudinal (compressible) and transverse
(incompressible) coefficients, and 𝑘 = |𝒌|. Indeed, observing that

lim
𝒌⟂→0

lim
𝑘𝑧→0

𝑘𝑧𝑘𝑧
𝑘2 = 0 and lim

𝑘𝑧→0
lim

𝒌⟂→0

𝑘𝑧𝑘𝑧
𝑘2 = 1 (6.17)

we can provide the microscopic expressions for 𝜌n and 𝜌, confronting Eq. (6.15) re-
spectively with 𝜌n𝑢 (6.11) and with 𝜌𝑢:

𝜌n = 𝛽 lim
𝑘→0

𝜒I(𝑘), 𝜌 = 𝛽 lim
𝑘→0

𝜒C(𝑘). (6.18)

Practically, the superfluid fraction and the normal fluid fraction are thus computed as

𝜌n
𝜌 = lim𝑘→0 𝜒I(𝑘)

lim𝑘→0 𝜒C(𝑘) ,
𝜌s
𝜌 = 1 − 𝜌n

𝜌 . (6.19)

We stress that the analytical argument just summarized, in which boundaries and
Galileian velocity have been introduced, must be intended just as a thought experiment
to apply the linear response method. As it is clear from the result (6.19), the knowledge
of the coefficients of the momentum correlator decomposition is actually sufficient to
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estimate the superfluid and the normal fluid fractions. Indeed, such technique can be
succesfully used in isotropic numerical simulations with periodic boundary conditions
[65].

For completeness, we mention another method that can be used to compute the
normal fluid density in the truncated GP framework. It consists in the direct evaluation
of Eq. (6.13) by performing several simulations with different counterflow velocities
imposed to the system, and then extrapolating the value of the momentum derivative
when 𝑢 → 0 [130, 131]. However, besides requiring to perform many simulations, this
method turns out not to be very robust because of the metastability of the truncated
GP counterflow states [131].

6.2 Publication: Stochastic motion of finite-size immiscible impurities
in a dilute quantum fluid at finite temperature

In this article we introduce the coupling between the truncated GP model (6.5) and
the dynamics of immiscible and finite-size 3D impurities. The impurities are modeled
with the method described in section 2.3.3 and thus they are effectively analogous
to the particles described in the zero temperature works, presented in the previous
chapters. We stress that both in this case and in [80] the particles are modeled with a
spherical symmetry potential. Moreover, no rotational degrees of freedom are added
to the particles. The roughness observed about the sphere (see Fig.1 of [78]) is due to
the density fluctuations on the particle surface and it does not induce any rotation.

In the framework of dilute Bose–Einstein condensates, these kind of impurities
could mimic an additional condensate satisfying the immiscibility condition in the
highly repulsive regime [107, 191]. We are interested in characterizing the dynamics of
such objects when they are immersed in a bosonic thermal bath. Our first observation
is that an impurity thermalizes fast, respecting the classical equipartition theorem,
regardless of its mass and size. Then we measure an exponential decay of the impurity
velocity correlation function, suggesting that its dynamics is compatiblewith a standard
Ornstein–Uhlenbeck process. This picture is confirmed by the transition of the mean
squared displacement from a ballistic behaviour at short times to a diffusive one at
large time.

The final result is the measurement of the temperature dependence of the friction
coefficient, derived from the dynamical relaxation time of the impurity. We observe
a linear proportionality with the temperature, which can be explained phenomeno-
logically by a momentum exchange between the impurity and the thermal waves, in
the same spirit of the Epstein drag exerted on a sphere by a classical gas [60]. Indeed,
in the range of temperatures studied, the mean free path of the GP excitations (𝜆mfp
between 10𝜉 and 50𝜉, see Fig.6.2 bottom left) is larger than the particle sizes considered
(𝑎p ≲ 10𝜉). Thus, the corresponding Knudsen number Kn = 𝜆mfp/𝑎p is typically larger
than 1, meaning that the quantum fluid behaves more like a dilute gas of thermal
waves than a continuous medium. For this reason, the Stokes drag proportional to the
viscosity of the normal component of a quantum fluid is not observed by using the TGP
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FIG. 13. Mean-free path as a function of k for different tem-
peratures in simulations with ξkmax = 1.5 (a), ξkmax = 2.5 (b), and
ξkmax = 4 (c). The vertical dashed line indicates the value of 1/ξ .
The wave number k is given in units of L−1.

It is worth reiterating that νeff (T ) depends on the value
of ξkmax; the nonlinear interaction strength decreases, if we
increase ξkmax. Therefore, in simulations with ξkmax = 1.5 we
have a stronger turbulence than in the case of ξkmax = 2.5.
Moreover, the mean-free path (see Fig. 14) in the runs with
ξkmax = 1.5 is λ(T ) ∼ 5ξ , which gives a smaller νeff (T ) ∼
15α. Therefore, a larger Reynolds number

Re = C
U0L0

νeff
= C

U0L0N
90

. (48)

However, we cannot arbitrarily decrease ξkmax to obtain
higher values of Re. At a fixed spatial resolution, ξkmax must
be larger than unity if we want to properly resolve the vortices
in simulations.

In a two-fluid framework, the viscosity in Eq. (43) cor-
responds to a viscosity acting on the normal fluid (as it was
obtained from the thermalized component). This is consistent
with derivations of damping from stochastic equations for
quasiclassical fields (see, e.g., [31,32]), where modes below
an energy cutoff are considered as the condensate, and modes
above the cutoff are considered as thermalized noise. In
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FIG. 14. (a) Mean free-path as a function of temperature T for
different values of ξkmax. (b) Effective viscosity (acting on the normal
fluid), normalized by the quantum of circulation 4πα = 4πcξ/

√
2,

as a function of temperature T for different values of ξkmax.

our case, the distinction is made using the STS, and from
an extraction of the excitations lying in the vicinity of the
dispersion relation of the waves. Therefore, at very high
temperatures we basically have one fluid with viscosity νeff .
At intermediate temperatures, if the mutual friction is large
enough, the two fluids are then locked together. Mutual fric-
tion in this case is estimated to be proportional to ρn/ρ0 (see
[37]). Thus, at intermediate temperatures we can assume that
the two fluids are locked with an effective mutual viscosity

ν ′
eff = ρn(T )

ρ0
νeff (T ). (49)

These results are consistent with the following interpre-
tation. At temperatures close to the transition temperature,
the TG flow is very viscous. In the next subsection, we
provide a verification of this by performing Navier-Stokes
simulations using νeff and comparing them with the TGPE
runs. This will also allow us to confirm that the effective
Reynolds number of the finite-temperature TGPE flows are
low, even for the high-resolution runs presented in this work.
At the same time, this will enable us to obtain an estimate
of the prefactor C in Eq. (47). Moreover, this assessment is
also consistent with previous estimations based on the free
decay of the incompressible kinetic energy in Ref. [42]. In
fact, estimates based on Eq. (47) suggest that to obtain a
turbulent normal fluid described by the TGPE near or above Tλ

would require resolutions that are not achievable even in the

043605-15

Phonon Mediated Helium Atom Transmission 445

Fig. 12. The mean free paths of phonons and rotons in the superfluid as a function of qua-
siparticle energy and superfluid temperature from Refs. 16–18.

at the opposite surface, an atomic beam mediated by the quasiparticles
should be observable.

Once the quasiparticles are created, they may traverse the superfluid
film to eject atoms from the opposite surface. Propagation of the quasi-
particles may be hindered by scattering from thermally excited phonons
within the film. Since the population of the background thermal phonons
is a strong function of temperature, the mean free paths19−21 of the prop-
agating quasiparticles likewise are highly dependent on the temperature of
the superfluid film (see Fig. 12). The mean free paths of rotons are much
longer than those of phonons, and as illustrated in Fig. 12, the probabil-
ity of a phonon traversing a 1 mm sample with a temperature of 0.2 K
(approximately the ambient temperature in the transmission experiments)
is rather small.

If one were to assume that the probability of roton and phonon cre-
ation is energy independent and the same for rotons and phonons, then
one could predict the form of the quasiparticle mediated signal using the
data of Fig. 12, as we did Ref. 10. However, the calculation reported in
Ref. 10 predicted a very substantial roton mediated signal through a 1 mm
film which we did not observe in the set of experiments reported here. To
understand the experimental results in Fig. 8, we modified the hypothe-
sis that the probabilities of phonon and roton creation are energy inde-
pendent and equal. Instead we use the calculations of Ref. 7 to model
the probability of phonon and roton creation probabilities as a function
of energy and a detailed simulation8 of the pulse properties to simulate

Figure 6.2. (top left) Temperature dependence of the mean free path of phonons and rotons inHe
II and that of 3He-quasiparticles in 3He and 3He-4He mixture. Figure taken from [157]. (top
right) Mean free paths of phonons and rotons in the superfluid as a function of quasiparticle
energy and superfluid temperature. Figure taken from [142]. (bottom left) Mean free path
computed in the truncated GP system as a function of temperature for different values of 𝜉𝑘max.
Figure taken from [213]. (bottom right) Drag coefficient measured in the experiment discussed
in [163], from which the plot is taken. The solid line is computed assuming ballistic phonon
scattering.

model in the regime studied. If one wants to recover such effect, much larger particles
need to be considered, which however require too expensive numerical resources and
are not achievable in the current atomic BEC experimental facilities.

Forwhat concernes liquid helium,we briefly comment here on the values of themean
free path 𝜆mfp estimated from the phonons or rotons scattering theory (see for instance
[224]). Such estimations are reported in Fig.6.2 top as a function of temperature. It
is evident how the mean free path strongly depends on temperature. In particular,
for temperatures larger than 0.8 𝐾 it is smaller than 1 𝜇𝑚, which is the typical size
of the solidified hydrogen particles used in PTV experiments (see section 2.1.3 and
references therein). Since the typical temperature of such experiments is larger than
1.5 𝐾, the Knudsen number in this regime is certainly smaller than 1, implying that the
drag force experienced by the particle is of the Stokes type. However, at temperatures
smaller than 0.5 𝐾 one can reach Kn > 1 for particles of a size 𝑎p > 100 𝜇𝑚. This is
precisely the regime investigated in the experiments by Niemetz and Schoepe [163],
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in which a megnetically levitated microsphere is placed in superfluid helium at very
low temperature. In Fig. 6.2 bottom right the drag coefficient measured in [157] is
displayed as a function of temperature. For low temperature it is dominated by the
ballistic scattering of phonons and its temperature dependence is thus controled by the
phonon density 𝜌ph ∝ 𝑇4. The physics behind such behavior is thus consistent with
what we observe in the truncated GP system (see Fig.7 of [78]), although in the latter
the temperature dependence of the non-condensed modes density is linear rather than
quartic.

As a final note, the article presented below contains already references to the public-
ation [80] (presented in the next section) because the latter has been completed before.
However, since the stochastic motion of a single impurity is essential to trigger the
clustering transition discussed in [80], it is smoother to present the work [78] first.
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The dynamics of an active, finite-size, and immiscible impurity in a dilute quantum fluid at finite temperature
is characterized by means of numerical simulations of the Fourier truncated Gross-Pitaevskii equation. The
impurity is modeled as a localized repulsive potential and described with classical degrees of freedom. It is
shown that impurities of different sizes thermalize with the fluid and undergo a stochastic dynamics compatible
with an Ornstein-Uhlenbeck process at sufficiently large time lags. The velocity correlation function and the
displacement of the impurity are measured and an increment of the friction with temperature is observed. Such
behavior is phenomenologically explained in a scenario where the impurity exchanges momentum with a dilute
gas of thermal excitations, experiencing an Epstein drag.

DOI: 10.1103/PhysRevB.103.024509

I. INTRODUCTION

A Bose-Einstein condensate (BEC) is an exotic state of
matter, which takes place in bosonic systems below a crit-
ical temperature, when a macroscopic fraction of particles
occupy the same fundamental quantum state [1]. Almost three
decades ago, Bose-Einstein condensation was observed for
the first time by Anderson et al. in a dilute ultracold atomic
gas [2]. Since then, BECs have been realized in a wide range
of different systems, from solid-state quasiparticles [3,4] to
light in optical microcavities [5].

Bose-Einstein condensation is intimately related to the no-
tion of superfluidity, which is the capability of a system to
flow without viscous dissipation [1]. Superfluidity was first
detected almost one century ago in liquid helium 4He [6,7]
below 2.17 K, and it is a known feature also of atomic BECs
and light in nonlinear optical systems [8]. Both superfluid-
ity and Bose-Einstein condensation are a manifestation of
quantum effects on a macroscopic scale, which is why these
systems are usually called quantum fluids. Theoretically, a
quantum fluid can be described by a macroscopic complex
wave function. This represents the order parameter of the
Bose-Einstein condensation phase transition and it is directly
related to the density and the inviscid velocity of the superflow
via a Madelung transformation [9].

As a consequence of superfluidity, an impurity immersed in
a quantum fluid does not experience any drag and can move
without resistance. However, if the speed of the impurity is
too large, superfluidity is broken because of the emission of
topological defects of the order parameter, known as quantum
vortices [10–13]. Moreover, at finite temperature the thermal
excitations in the system may interact with the impurities
and drive their motion [14]. The behavior of particles and
impurities immersed in a superfluid has been a central subject
of study since long time [10]. The interest has been recently

*umberto.giuriato7@gmail.com

renewed by the experimental implementation of solidified hy-
drogen particles to visualize quantum vortices in superfluid
helium [15,16], the study of polarons in atomic gases [17,18],
and the use of impurities to investigate the properties of su-
perfluids of light [19,20]. A particularly interesting kind of
impurity arises in the immiscible regime of the multicom-
ponent BEC. It has been shown that when two condensates
of different species highly repel each other, one of the two
components exists in a localized region and can be thought as
a finite-size impurity [21,22]. If many components are present
simultaneously, different phases can be identified, depending
on the ratios between the coupling constants [22]. In particu-
lar, for positive scattering lengths between the impurity fields,
the components separate from the main condensate and show
a hard-sphere repulsion between each other. Experimentally,
mixtures of different condensates have been realized with cold
atomic gases [23,24], and the immiscibility properties have
been studied [25].

In this work we aim at studying numerically the dynam-
ics of an immiscible and finite-size impurity in a quantum
fluid at finite temperature. There are several models which
have been proposed to take into account finite-temperature
effects in a quantum fluid, although at the moment there is
no uniform consensus on which is the best one [26]. A suc-
cessful example is the Zaremba-Nikuni-Griffin framework, in
which a modified-dissipative Gross-Piteaevskii equation for
the condensate wave function is coupled with a Boltzmann
equation for the thermal cloud [27]. A simpler model is the
Fourier truncated Gross-Pitaevskii (FTGP) equation, in which
thermal fluctuations of the bosonic field are naturally taken
into account without the coupling with an external thermal
bath [28]. The main idea behind the FTGP model is that
imposing an ultraviolet cutoff kmax, and truncating the system
in Fourier space, allows for the regularization of the classi-
cal ultraviolet divergence and states at thermal equilibrium
can be generated. The FTGP model has been successfully
used to reproduce the condensation transition [28–31], to
study finite-temperature effects on quantum vortex dynam-
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ics [32–34], and to investigate the effective viscosity in the
system [35].

In this paper, we couple the FTGP equation with a min-
imal model for impurities, which are described as localized
repulsive potentials with classical degrees of freedom [13,36].
It has been recently utilized systematically to investigate the
interaction between particles and quantum vortices at very
low temperature [37–40]. We stress that this minimal model
is suitable for extensive numerical simulations and Monte
Carlo sampling. Indeed, its simplicity makes it computation-
ally much cheaper than more complex approaches in which
the impurities have many (infinite) degrees of freedom, like
the Gross-Clark model [41,42] or the multicomponent BEC
model [22].

Recently, a drag force acting on an impurity in the weak
coupling regime has been detected using a damped GP equa-
tion at finite temperature [43], extending an analytical work
in which the resistance of the GP fluid on a point particle was
studied at zero temperature [44]. In the case of immiscible
active impurities, it has been shown that a multitude of them
coupled with the FTGP model can form clusters, depending
on the temperature and the ratio between the fluid-mediated
attraction and the impurity-impurity repulsion [14]. Moreover,
the presence of such clusters turned out to be responsible for
an increase of the condensation temperature. However, the
precise characterization of the dynamics of a single impurity
immersed in a bath of FTGP thermal modes has not been
addressed yet. This is indeed the purpose of this work. In
the next section, we present the FTGP model coupled with
a single three-dimensional impurity, and provide details for
the numerical techniques used to simulate such system. In
Sec. III, we present a statistical analysis of extensive numer-
ical simulations of the system. In particular, we find that at
large times the dynamics of an impurity in a finite-temperature
quantum fluid is akin to an Ornstein-Uhlenbeck process with
a temperature-dependent friction coefficient, that we are able
to explain. Eventually, we exploit this information to show
that for the sizes of the impurities considered, their motion
is consistent with a scenario where the thermal excitations
behave as a gas of waves rather than a continuum liquid.

II. FINITE-TEMPERATURE MODEL

We use the Fourier truncated Gross-Pitaevskii model to
describe a weakly interacting quantum fluid at finite tem-
perature, with a repulsive impurity immersed in it [14]. The
Hamiltonian of the model is given by

H =
∫ (

h̄2

2m
|∇ψ |2 + g

2
|PG[|ψ |2]|2

)
dx

+
∫

VI(|x − q|)PG[|ψ |2] dx + p2

2MI
, (1)

where ψ (x, t ) is the bosonic field, m is the mass of the
constituting bosons, and g = 4πash̄

2/m is the self-interaction
coupling constant, with as the boson s-wave scattering length.

The bosonic field is coupled with an impurity of mass MI,
described by its classical position q(t ) and momentum p(t ) =
MIq̇(t ). The impurity is modeled by a repulsive potential
VI(|x − q|), which defines a spherical region centered in q(t )

where the condensate is completely depleted. Note that the
functional shape of the potential VI(|x − q|) is not important,
provided that it is sufficiently repulsive to completely deplete
the fluid. The relevant parameter is indeed the size of the de-
pleted region, which in turns identifies the impurity radius aI.
The Galerkin projector PG truncates the system imposing an
UV cutoff in Fourier space: PG[ψ̂k] = θ (kmax − |k|)ψ̂k with
θ (·) the Heaviside theta function, ψ̂k the Fourier transform of
ψ (x) and k the wave vector. The time-evolution equation of
the wave function and the impurity are obtained straightfor-
wardly by varying the Hamiltonian (1):

ih̄
∂ψ

∂t
= PG

[
− h̄2

2m
∇2ψ + gPG[|ψ |2]ψ + VI(|x − q|)ψ

]
,

(2)

MI
dq̇
dt

= −
∫

VI(|x − q|)PG[∇|ψ |2] dx. (3)

Note that the projection of the density |ψ |2 in Eq. (2) is
a dealiasing step that is necessary to conserve momentum
[34] in the truncated equations. This procedure slightly dif-
fers with the projected Gross-Pitaevskii model [28] as some
high-momentum scattering processes are not considered in the
FTGP framework.

At zero temperature and without the impurity, Eq. (2)
can be linearized about the condensate ground state ψ0 =
|ψ0| exp (−iμt/h̄), fixed by the chemical potential μ =
g|ψ0|2. The excitations of the condensate propagate with the
Bogoliubov dispersion relation

ωB(k) = ck

√
1 + ξ 2k2

2
, (4)

where k = |k|, c =
√

g|ψ0|2/m is the speed of sound, and ξ =√
h̄/2gm|ψ0|2 defines the healing length at zero temperature.

Note that the impurity completely depletes the condensate in
the region where VI > μ.

The Hamiltonian H and the number of bosons N =∫ |ψ |2dx are invariants of the FTGP model. Thus, it possesses
finite-temperature absolute equilibrium solutions, distributed
with the probability

P [ψ, q, q̇] ∝ e−β(H−μN ). (5)

The concept of absolute equilibria of Fourier truncated equa-
tions was first introduced in the context of the Euler equation
[45,46] and directly generalizes to FTGP [34]. Such equilibria
are steady solutions of the associated Liouville equation. The
Liouville equation describes the microcanonical evolution of
the phase-space distribution function of an ensemble of states
driven by Eqs. (2) and (3). Note that a state which solves
Eqs. (2) and (3) conserves the invariants N and H , and the
equilibrium distribution in Eq. (5) is nothing but the probabil-
ity of picking one of these states at given inverse temperature
β and chemical potential μ. This is true whether the impurity
is present in the system or not. The argument of the expo-
nential in Eq. (5) is a linear combination of the invariants
H and N , and β is a Lagrange multiplier identified with the
inverse temperature. Given a random initial condition with
energy H and number of bosons N , long time integration of
Eqs. (2) and (3) will let the system evolve to an equilibrium
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state belonging to the distribution (5). The temperature is not
directly available as a control parameter since such dynamics
is microcanonical, but it is biunivocally associated to the given
conserved invariants [28].

At finite temperature, many modes are excited and interact
nonlinearly. Such interactions lead to a spectral broadening of
the dispersion relation, together with small corrections of the
frequency. Overall, the dispersion relation can be well approx-
imated taking into account the depletion of the condensate
mode in the following manner [35]:

ωT
B (k) = ck

√
n0(T ) + ξ 2k2

2
, (6)

where n0(T ) is the condensate fraction. We define it as

n0(T ) = 〈| ∫ ψ dx|2〉T

〈| ∫ ψ dx|2〉T =0

, (7)

namely, as the ratio between the occupation number of the
zero mode at temperature T and at temperature T = 0. With
such definition, the condensate fraction is normalized to be
one at zero temperature. In this way, the depletion of the
condensate due to the presence of the impurity is properly
taken into account [14]. The fraction of superfluid component
ns(T ) = ρs/ρ̄ and normal fluid component nn(T ) = ρn/ρ̄,
where ρ̄ = 1

L3

∫
m|ψ |2 dx is the average mass density, can be

computed using a linear response approach [14,47,48]. They
read as, respectively,

nn(T ) = limk→0 χI (k)

limk→0 χC (k)
, ns(T ) = 1 − nn(T ), (8)

where χC (k) and χI (k) are, respectively, the compressible
(longitudinal) and incompressible (transverse) coefficients of
the two-point momentum correlator:

〈 ĵi(k) ĵ j (−k)〉 ∝ kik j

k2
χC (k) +

(
δi j − kik j

k2

)
χI (k), (9)

with ĵi(k, t ) the Fourier transform of the ith component of the
momentum density ji(x, t ) = ih̄

2 [ψ∂iψ
∗ − ψ∗∂iψ].

A. Numerical methods and parameters

In the numerics presented in this work, we integrate the
system (2) and (3) by using a pseudospectral method with
Nres = 128 uniform grid points per direction of a cubic do-
main of size L = 2π . We further set the UV cutoff kmax =
Nres/3, so that, aside from the Hamiltonian H and the number
of bosons N , the truncated system (2) and (3) conserves the
total momentum P = ∫

ih̄
2 (ψ∇ψ∗ − ψ∗∇ψ )dx + p as well

(provided that initially PG[ψ] = ψ and PG[VI] = VI) [34,39].
In thermal states, the cutoff kmax plays an important role.
The dimensionless parameter ξkmax controls the amount of
dispersion of the system and therefore the strength of the
nonlinear interactions of the BEC gas. The smaller its value,
the stronger the interaction is. Note that, as scales of the
order of the healing length have to be resolved numerically,
it cannot be arbitrarily small. See, for instance, Refs. [34,35]
for further discussions. In this work we fix this parameter
to ξkmax = 2π/3. Note that in our results all the lengths are
expressed in units of the healing length at zero temperature

FIG. 1. Snapshots of the GP field with an impurity of size aI =
7.6ξ at time t = 3056ξ/c [(a), (b)] and an impurity of size aI =
12.7ξ at time t = 7130ξ/c [(c), (d)] at temperatures T = 0.22 Tλ

[(a), (c)] and T = 0.52 Tλ [(b), (d)]. The GP sound waves are ren-
dered in blue, the dark sphere is the impurity potential, and the green
surfaces are contours of the GP density at ρ/ρ̄ = 0.15. The impurity
trajectory is displayed as a solid line.

ξ and the velocities in units of the speed of sound c at zero
temperature. In these units, the system size is L = 128ξ .

The potential used to model the impurity is a smoothed

hat function VI(r) = V0
2 (1 − tanh [ r2−η2

a
4�2

a
]). The impurity radius

aI is estimated at zero temperature by measuring the volume
of the displaced fluid 4

3πa3
I = ∫

(|ψ0|2 − |ψp|2) dx, where ψp

is the steady state with one impurity. The impurity mass
density is then ρI = MI/( 4

3πa3
I ). In all the simulations we

fix μ = |ψ0| = 1 and for the impurity potential V0 = 20μ

and �a = 2.5ξ . We consider an impurity of radius aI = 7.6ξ

setting ηa = 2ξ and an impurity of size aI = 12.7ξ setting
ηa = 10ξ .

Note that, although the shape of the impurity potential is
fixed, fluctuations of the impurity surface are allowed by the
model. Such fluctuations are shown in Fig. 1 (that will be
commented in Sec. III) as green contours of the fluid density
at a low value around the spherical potential.

We prepare separately the ground state with an impurity
ψp (at zero temperature) and the FTGP states at finite tem-
perature ψT , without the impurity. The first one is obtained
by performing the imaginary-time evolution of Eq. (2), while
the second one is realized with the stochastic real Ginzburg-
Landau (SRGL) [14,34,35], protocol that allows to explicitly
control the temperature. The SRGL method is briefly recalled
below. The initial condition for the FTGP simulations is then
obtained as ψ = ψp × ψT . For our analysis, we considered
∼22 different realizations for each of the 15 studied tem-
peratures and for each impurity. The initial velocity of the
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impurity is always set to zero and the temporal length of
each realization is ∼9000 ξ/c. In all the statistical analysis
presented in the following sections, we checked that including
or not the data associated to the early times of the simulation
does not change the results. The thermalization of the impurity
will be studied explicitly in Sec. III, but this fact gives already
a first indication that the impurity reaches the equilibrium with
the thermal bath in the very early stages of the simulations.

We operatively define the condensation temperature Tλ as
the first point of the temperature scan at which the conden-
sate fraction n0(T ) goes to zero. The normal fluid fraction
nn(T ) and consequently the superfluid fraction ns(T ) = 1 −
nn(T ) are evaluated numerically with the following protocol
[48]. At fixed temperature, we measure the angle-averaged
incompressible and compressible spectra of the momentum
correlator, respectively, χ1d

I (k) ∝ 〈k2|jI (k)|2〉 and χ1d
C (k) ∝

〈k2|jC (k)|2〉. We fit the logarithm of χ1d
I (k)/k2 and χ1d

C (k)/k2

with a cubic polynomial in the range 3L/2π < k < 3kmax/2;
we extrapolate the values of the fits at k = 0 and finally di-
vide them to get nn(T ) = χI (k = 0)/χC (k = 0). Such method
works well at low temperatures while it is strongly affected
by numerical noise at temperatures T � Tλ [48]. These last
points are then simply assumed to be equal to zero.

Finally, note that in this work, if not explicitly specified,
all the averages are intended over realizations for a fixed
temperature T . Moreover, because of isotropy, we treat each
dimension of any vectorial quantity as a different realization
of the same distribution.

B. Grand-canonical thermal states

We recall here the SRGL protocol used to obtain equilib-
rium thermal states of the truncated GP equation. We refer
to Ref. [34] for further details about the method. The FTGP
grand-canonical thermal states obey the (steady) Gibbs dis-
tribution which coincides with Eq. (5). A stochastic process
that converges to a realization of this probability distribution is
given by the following stochastic equation (in physical space):

h̄
∂ψ

∂t
= PG

[
h̄2

2m
∇2ψ + μψ − gPG[|ψ |2]ψ + VI(|x − q|)ψ

]

+
√

2h̄

βL3
PG[ζ (x, t )], (10)

where ζ (x, t ) is a complex Gaussian white noise with
zero mean and delta correlated in space and time:
〈ζ (x, t )ζ ∗(x′, t ′)〉 = δ(x − x′)δ(t − t ′). In principle, such pro-
cess is coupled with analogous equations for the impurity
degrees of freedom [14]. Here, we do not consider them
since we are interested in generating thermal states without
impurities. As explained in the previous section, the impurity
is added afterwards to the thermal states in order to observe
its dynamics according to the evolution equations (2) and (3).
In the right-hand side of Eq. (10) a deterministic term and a
stochastic term compete against each other. The distribution
which entails the balance between such fluctuations and dissi-
pation is Eq. (5), i.e., the steady solution of the Fokker-Planck
equation associated to Eq. (10) [34].

We define the temperature as T = 1/kNβ, where kN =
L3/N and N = 4

3πk3
max is the number of Fourier modes in

the system. With this choice, the temperature has units of
energy density and the intensive quantities remain constant in
the thermodynamic limit, that is kmax → ∞ with L constant.
Finally, in order to control the steady value of the average den-
sity ρ̄, the chemical potential is also dynamically evolved with
the ad hoc equation μ̇ = −νρ (ρ̄ − ρ̄t ) during the stochastic
relaxation. In this way, the system converges to the control
density ρ̄ = ρ̄t that we set equal to m|ψ0|2 = 1.

We finally mention that a similar approach can be used
to generate and study thermal states, which is the stochastic
GP model [26]. There, the stochastic relaxation (10) is com-
bined with the physical GP evolution (2). However, unlike the
FTGP model, the stochastic GP model is dissipative and has
an adjustable parameter in which the interaction between the
condensate and the thermal cloud is encoded.

III. IMPURITY MOTION

We perform a series of numerical simulations of the models
(2) and (3), varying the temperature and the size of the impu-
rity. Typical impurity trajectories are displayed in Fig. 1 for
two different temperatures, together with a volume rendering
of the field and of the impurity. The motion of the impurity is
clearly driven by a random force, due to the interaction with
the thermal excitations of the condensate.

Before studying the stochastic dynamics of the impurity,
we characterize some properties of the thermal states that
will be used later. In Fig. 2(a) we show the condensate frac-
tion n0, the superfluid component ns, and the normal fluid
component nn plotted against temperature. The lines refer to
the simulations without impurity while the circles are obtained
in presence of the largest impurity considered (aI = 12.7ξ ).
Almost no difference between the two cases is detected since
the volume occupied by the impurity is only 0.5%. Indeed, in
Ref. [14] it was shown that the condensate fraction starts to
increase at high temperatures if the impurities filling fraction
is larger than 4%. We can therefore safely assume that the
impurity has no impact on the statistical properties of the
thermal fluctuations.

From the impurity (3), we observe that the quantum fluid
interacts with the impurity via a convolution between the im-
purity potential and the density gradient. It is thus interesting
to understand the typical correlation time of density fluctua-
tions, in particular of its gradients. In Fig. 2(b) we compute the
decorrelation time τGP of the thermal excitations as a function
of temperature. Such time is evaluated performing a FTGP
evolution of thermal states without impurity and considering
the time correlator of one of the components of the density
gradient:

C∂ρ (t ) = 〈∂iρ(t0)∂iρ(t0 + t )〉
〈(∂iρ)2〉 . (11)

The averages in Eq. (11) are performed over space and
different realizations. Three examples for three different tem-
peratures of the time evolution of this correlator are shown
in the inset of Fig. 2(b). They show a damped oscillating
behavior and touch zero for the first time after a time ∼1c/ξ .
We estimate the decorrelation time τGP as the time after which
the correlator (11) is always less than 1%. At timescales larger
than τGP, we expect that the interactions between the impurity
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FIG. 2. (a) Temperature evolution of condensate fraction (green
solid line), superfluid fraction (dashed blue line), and normal fraction
(dotted red line) for simulations without impurity. The circles of cor-
responding colors refer to simulations in presence of an impurity of
size aI = 12.7ξ and mass density ρI = ρ̄. (b) Temperature evolution
of the decorrelation time of the FTGP density gradients. (Inset) Time
evolution of the two-point correlators of the FTGP density gradients
(11) for three different temperatures.

and the thermal excitations can be considered as random and
rapid. Before checking if this is the case, we verify explicitly
whether the impurity reaches the thermal equilibrium with the
quantum fluid.

If the number of the excitations-impurity interactions is
large, the velocity of the impurity is expected to be normally
distributed at the equilibrium, in accordance with the central
limit theorem. Indeed, we show this in Fig. 3, where the
probability density function (PDF) for the single component
of the impurity velocity is displayed. Assuming ergodicity,
the PDFs are computed averaging also over time, besides over
realizations. Since we expect the impurity to be in thermal
equilibrium with the surrounding GP fluid, the second-order
moment of its velocity should relax to a constant value, that is
related to the temperature via the equipartition of energy:

〈
q̇2

i

〉 = kN T

MI
. (12)

The perfect agreement between Eq. (12) and the numerical
simulations is displayed in Fig. 4. It confirms that the impurity
is indeed in thermal equilibrium with the thermal bath. Note
that the linear scaling with temperature persists also at high
temperatures, where the GP energies are not in equipartition
anymore because of high nonlinear interactions. This is not
a contradiction since the impurity is a classical object with
a simple quadratic kinetic energy. For comparison, the de-
viation from equipartition of the GP energy density eGP =

−0.2 0.0 0.2
(q̇i − 〈q̇i〉)/c

10−3

10−1

101

P
D

F

(a)

−5.0 −2.5 0.0 2.5 5.0
(q̇i − 〈q̇i〉)/σv

10−5

10−3

10−1

P
D

F

(b)

T/Tλ = 0.07

T/Tλ = 0.15

T/Tλ = 0.22

T/Tλ = 0.3

T/Tλ = 0.37

T/Tλ = 0.44

T/Tλ = 0.52

T/Tλ = 0.59

T/Tλ = 0.67

T/Tλ = 0.74

T/Tλ = 0.81

T/Tλ = 0.89

T/Tλ = 0.96

T/Tλ = 1.04

Gaussian

FIG. 3. PDF of the single-component velocity of an impurity
of size aI = 7.6ξ and mass density ρI = ρ̄, for different temper-
atures. (a) Velocities normalized with the speed of sound at zero
temperature. (b) Velocities normalized with the standard deviation.
Dotted black line is a Gaussian distribution with zero mean and unit
variance.

(H − μN )/L3 + μ2/2g (without impurities) is reported in the
inset of Fig. 4.

We consider now the evolution of the two-point impurity
velocity correlator Cv (t ). If the collisions between the super-
fluid thermal excitations and the impurity are fast and random,
we expect it to decay as

Cv (t ) = lim
t→∞

〈q̇i(t0)q̇i(t0 + t )〉 − 〈q̇i〉2〈
q̇2

i

〉 − 〈q̇i〉2
= e− t

τI , (13)

where τI is the dynamical correlation time of the impurity
velocity. Specifically, the behavior (13) should certainly hold

0.0 0.2 0.4 0.6 0.8 1.0
T/Tλ

0.000

0.001

0.002

0.003

0.004

0.005

〈 q̇2 i

〉
/c

2 aI = 7.6

aI = 12.7

kNT/MI

0.0 0.5 1.0
T/Tλ

0

1

e G
P
/T

λ

FIG. 4. Second-order moment of the single-component velocity
of impurities of size aI = 7.6ξ (red circles) and aI = 12.7ξ (blue
diamonds), as a function of the temperature. The mass density
is ρI = ρ̄ for both. (Inset) GP energy density versus tempera-
ture (blue points). Orange dashed line is the equipartition line
eGP = Tλ.
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FIG. 5. Time evolution of the two-point velocity correlator for
the impurity of size aI = 7.6ξ and mass density ρI = ρ̄ in (a) log-lin
scale and (b) log-log scale. Different colors are associated to different
temperatures (same legend of Fig. 3). Dotted lines are linear fits.
(Inset) Temperature evolution of the dynamical correlation time of
the impurity.

at time lags larger than the decorrelation time of the GP excita-
tions τGP, estimated in Fig. 2(b). This scenario is confirmed by
the measurements of Cv (t ), reported in Fig. 5 for the impurity
of size aI = 7.6ξ . The exponential decay is evident for time
lags larger than ∼10ξ/c for all the temperatures.

According to the results mentioned so far, at sufficiently
large timescales the interactions between the impurity and the
thermal bath can be considered to be effectively fast, random,
and decorrelated. Thus, it is natural to suppose that the im-
purity dynamics may be described by the Ornstein-Uhlenbeck
(OU) process [49]:

MIq̈ = −γ q̇ +
√

σ 2ζr (t ), (14)

where ζr (t ) is a (Gaussian) white noise in time, i.e., 〈ζr (t )〉 =
0 and 〈ζr,i(t1)ζr, j (t2)〉 = δi jδ(t1 − t2) where σ 2 is related to
the diffusion coefficient. The term −γ q̇ is the drag force,
with γ a friction coefficient that in general may depend on
temperature and on the impurity size. In particular, the friction
should be directly related to exponential decay timescale τI

of the correlator (13) as γ = MI/τI. In Fig. 5 we clearly see
that the correlators decay faster for higher temperatures. The
values of the correlation time τI at different temperatures are
obtained through linear fits of ln Cv (t ), shown as dotted lines
in Fig. 5(a). The decreasing of τI with temperature is then ex-
plicitly displayed in the inset of Fig. 5(b). Note that τI � τGP,
consistently with the assumptions of the OU process. The
physical consequence of such behavior, according to the OU
picture, is that the friction γ between the impurity and the
fluid is larger for larger temperatures. We will dedicate the

next section to the discussion on the temperature dependence
of γ .

We briefly comment on the short time-lag limit (t �
10ξ/c), where the measured correlator appears to decay fast
and with the same slope for all the temperatures. This is
particularly evident in the log-log plots in Fig. 5(b). In this
regime, the assumptions necessary for an OU regime to be
established are certainly not valid. Indeed, we are looking at
timescales shorter than the decorrelation time of the thermal
excitations τGP, so that the collisions between the excitations
and the impurity cannot be considered random, rapid, and
decorrelated as in the forcing ζr (t ) in (14). It is worth noting
that, for low temperatures, the velocity correlator partially
recovers before the exponential decay. This unusual feature
may be a consequence of a lack of decorrelation due to the
small fraction of thermal excitations at low temperatures,
which prevents the emergence of a diffusive regime. Such
phenomenon requires further investigations.

Another important prediction that can be obtained from the
OU process is that the variance of the displacement δt qi(t ) =
qi(t + t0) − qi(t0) obeys the law

〈(δt qi )
2〉 = σ 2MI

γ 3

( γ

MI
t − 1 + e− γ

MI
t
)
. (15)

Two regimes can be identified. At short time lags [but still
large enough to consider the forcing ζr (t ) delta correlated],
the displacement is ballistic

〈(δt qi )
2〉 −→

t
MI/γ

σ 2

2γ MI
t2. (16)

Conversely, after the dynamical relaxation, a diffusive regime
is established

〈(δt qi )
2〉 −→

t�Mp/γ

σ 2

γ 2
t = 2Dt, (17)

where we have defined the diffusion constant D = σ 2/2γ 2.
Finally recall that, since in the OU process we also have

that 〈q̇2
i 〉 = σ 2/2MIγ = Dγ /MI, the diffusion coefficient in

Eq. (17) can be related to the equipartition of energy in ther-
mal equilibrium (5) through the Einstein relation

D = kN T

γ
. (18)

The measurements of the average squared displacement
for the impurity of size aI = 7.6ξ are shown in Fig. 6 for
all the temperatures analyzed, and compared with the OU
predictions. Once the squared displacement is normalized
with the prefactor of the prediction (15) and assuming the
Einstein relation (18) to estimate the diffusion coefficient,
the separation between the ballistic regime and the diffusive
one is apparent (bottom panel). The transition happens at the
measured values of the dynamical correlation time t = τI,
confirming the validity of the analysis of the velocity cor-
relator. The diffusion coefficient D is measured as the slope
of the squared displacement in the diffusive regime and it
is shown in the inset of Fig. 6(a). It is slightly larger than
the prediction given by the Einstein relation (18). Such trend
can be the signature of a memory effect due to a stochastic
forcing of the fluid on the impurity which is not perfectly
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FIG. 6. Time evolution of the averaged squared displacement
for the impurity of size aI = 7.6ξ for different temperatures. Dif-
ferent colors are associated to different temperatures (same legend
of Fig. 3). Dashed green line is the prediction (15), assuming the
Einstein relation (18), dashed-dotted black line and dotted line are,
respectively, the asymptotic equations (16) and (17). (a) lin-lin scale,
times normalized with ξ/c and distances normalized with ξ . (b) log-
log scale, times normalized with the correlation time τI and distances
normalized with the prefactor of (15). (Inset) Measured diffusion
coefficient as a function of temperature compared with the Einstein
relation (18).

delta correlated. For instance, it could be traced back to the
presence of coherent structures in the fluid or to the impurity
surface fluctuations, due to the actual interaction between the
impurity and the thermal excitations.

Friction modeling

In this section we show explicitly the behavior of the fric-
tion coefficient observed in the numerical simulations and we
give a phenomenological argument to explain it. In Fig. 7, the
friction γ is plotted as a function of the temperature for the
two impurity sizes analyzed (red circles for the small one and
blue diamonds for the large one). Each value of γ = Mp/τI

is estimated from the measured decay time τI of the impurity
velocity correlator, shown in the inset of Fig. 5(b).

In general terms, the friction γ depends on the interaction
between the impurity and the surrounding fluid. For a classical
fluid there are different regimes, depending on the value of the
Knudsen number Kn = λmfp/aI, where λmfp is the mean-free
path of the fundamental constituents of the fluid. If Kn 
 1,
at the scale of the impurity, the fluid can be effectively consid-
ered as a continuous medium and the Navier-Stokes equations
hold. As a consequence, the drag force acting on the impurity
is the standard Stokes drag Fd = −6πaIηq̇ [50], so that the
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FIG. 7. Friction coefficient γ nondimensionalized by cMI/ξ as
a function of the temperature, for impurities of size aI = 7.6ξ (red
circles) and aI = 12.7ξ (blue diamonds), with mass density ρI = ρ̄.
Dashed-dotted lines are fits of the Epstein drag (20) using the normal
fluid density ρn. Solid lines are fits of the Epstein drag using the
density of noncondensed modes ρ̄ − ρ0. (Inset) Average excitation
velocity 〈vg〉 (21) as a function of temperature.

friction is related to the viscosity η as

γ = 6πaIη. (19)

Instead, if Kn � 1, the fluid behaves as a dilute gas of free
molecules. In this case, the resistance of the impurity is well
described by the Epstein drag [51]:

Fd = −γ q̇, γ = 4π

3
Cda2

I ρg〈vg〉 = Cd
MIρg〈vg〉

aIρI
, (20)

where ρg is the mass density of the gas and 〈vg〉 � |q̇| is
the average velocity of the molecules. The prefactor Cd is
a dimensionless constant that depends on the interaction be-
tween the impurity and the fluid molecules. In the case of
elastic collisions of the fluid excitations (specular reflection),
a simple way of understanding the formula (20) is summa-
rized in the following [52]. If an object of mass MI moves
with velocity q̇ in an isotropic gas of free molecules, the
momentum exchanged in the collision between a surface el-
ement dA and a molecule (assuming elastic collisions) is
�p ∼ −2mg|q̇| cos θ n̂, where mg 
 MI is the molecule mass
and θ is the angle between the object velocity and the outward
normal to the surface element n̂. Assuming that the typical
speed of the molecules 〈vg〉 is much larger than the object
velocity, the average number of collisions in a time interval
�t is dncoll = ng〈vg〉�t dA, which is the number density of
molecules ng = ρg/mg times the volume spanned by each
molecule 〈vg〉�t dA. The infinitesimal force arising from the
momentum exchange is therefore dFd = (�p/�t ) dncoll. By
symmetry, if the object is spherical, the force components
orthogonal to its direction of motion will cancel. Account-
ing for this, the net drag force results from the integration
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of |dFd| cos θ (q̇/|q̇|) over half of the sphere surface. This
leads precisely to Eq. (20) with Cd = 1. Considering differ-
ent reflection mechanisms leads to the same equation with a
different value of the prefactor Cd. For instance, in the case
of full accommodation of the excitations with the impurity
surface one gets Cd = (1 + π/8) ∼ 1.39 [51].

The mean-free path λmfp(T ) in the FTGP model has been
recently estimated in Ref. [35] as the product of the group
velocity of the excitations and the nonlinear interaction time
(i.e., the reciprocal of the spectral broadening of the dispersion
relation) at a given temperature. For ξkmax = 2π/3, the value
used in this work, the mean-free path λmfp turns out to lie
between 10 ξ and 50 ξ at temperatures T < 0.7 Tλ, thus larger
than the sizes of the impurities studied here (cf. Fig. 14 of
Ref. [35]). As a consequence, we can treat the fluid as a gas
of free molecules and confront the measured friction with the
Epstein drag. In particular, the role of “gas molecules” in the
GP fluid is played by the thermal excitations. Therefore, we
can substitute the gas density ρg in Eq. (20) with the density
of the noncondensed modes ρg = ρ̄ − ρ0, where ρ0 = n0ρ̄

or with the normal fluid density ρg = ρn = nnρ̄, computed
using the momentum density correlator [48] (see Fig. 2). The
velocity of the excitations vg = ∂ωk

∂k is averaged as

〈vg〉 =
∑

|k|∈Sk
nk

∂ωk
∂k∑

|k|∈Sk
nk

=
∑kmax

k=1 k2n1d
k

∂ωk
∂k∑kmax

k=1 n1d
k

, (21)

with nk the occupation number of the mode k ∈ Sk = {1 �
|k| � kmax} and n1d

k = ∑
|k|=k nk its angle average.

In Fig. 7, the Epstein drag prediction (20) is compared
with the numerical data. Both using the normal fluid density
(dashed-dotted lines) or the density of noncondensed modes
(solid lines) we get a good accordance at low temperatures,
with a fitted prefactor Cd, whose values are of the order 0.1.
Note that in this way we are implicitly guessing that the
impurity-excitations interaction is independent of tempera-
ture. The specific values of Cd are reported in the legend
of Fig. 7. They are consistent with a reasonable scenario in
which thermal waves are much less efficient in transferring
momentum to the impurity with respect to the standard parti-
cles reflection mechanisms [51]. We observe that Cd is slightly
increasing with the impurity size (perhaps because of some
variation of the impurity surface fluctuations) but it is inde-
pendent of temperature. Note that the precise determination of
radius dependence of Cd would require even further numerical
simulations of what has been presented here.

In the inset of Fig. 7, we show the temperature depen-
dence of the averaged excitations velocity (21), which turns
out to be larger than the speed of phonons because it is
dominated by high wave-number excitations. Note that the
friction increment starts to diverge from the prediction at high
temperatures. One reason is that the mean-free path of the
GP excitations is becoming of the same order of the impurity
size and thus the viscosity starts to play a role in the mo-
mentum exchange. A second cause may be that the impurity-
excitations interactions are modified because of the high
nonlinearity of the GP waves, leading to a temperature depen-
dence of the constant Cd in Eq. (20). Eventually, note that a
larger discordance with the measurements at high temperature
is observed if the normal fluid density is used. This is probably

due to a lack of accuracy in the computation of ρn at high tem-
peratures, but it also suggests that it can be more reasonable to
identify the density of the excitations simply with that of the
noncondensed modes.

IV. DISCUSSION

In this paper we studied how the stochastic motion of an
active, finite-size, and immiscible impurity immersed in a GP
quantum fluid changes when the temperature is varied. We
demonstrated that the interaction with the thermal excitations
in the system always leads to a fast thermalization of the im-
purity. At time lags larger than 10ξ/c the correlation function
of the impurity velocity shows an exponential decay, which is
steeper for higher temperatures. This and the impurity squared
displacement are reminiscent of an Ornstein-Uhlenbeck pro-
cess.

From the measurements of the velocity correlation we ex-
tracted the temperature dependence of the friction coefficient
γ (T ). The clear result is that the impurity does not experience
the typical Stokes drag present in a classical fluid. Indeed, in
the case of Stokes drag, the temperature dependence of the
friction (19) is through the viscosity η. Since the viscosity
has been shown to be slightly decreasing with temperature in
the FTGP model [35], it cannot explain the trend observed
in Fig. 7. The reason is that the settings studied are asso-
ciated with large values of the Knudsen number, meaning
that at the scale of the impurity the GP quantum fluid at
finite temperature cannot be considered as a continuous liquid.
On the contrary, describing phenomenologically the system
as a gas of dilute thermal excitations reproduces the correct
temperature increment of the friction γ (T ). Moreover, we
observe a dependence of the friction with the impurity size
compatible with the quadratic scaling γ ∝ a2

I predicted by the
Epstein drag (20), despite some small deviations hidden in
the prefactor Cd. In the case of Stokes drag, one should have
observed a linear scaling γ ∝ aI that is not in agreement with
our data.

We stress that the picture outlined does not apply to the
particles typically used as probes in superfluid helium ex-
periments [15,16]. Indeed, aside from being liquid helium a
strongly interacting system, the typical size of those particles
is four orders of magnitude larger than the healing length.
Thus, in that case the Knudsen number is certainly small
enough to entail the standard Stokes drag. However, a similar
regime in terms of Knudsen number has been studied experi-
mentally by using microspheres in liquid helium below 0.5 K
[53]. It has been observed that the drag is determined by the
ballistic scattering of quasiparticles and the temperature de-
pendence of the friction coefficient is given by the temperature
dependence of the quasiparticles density. Aside from helium,
we hope that our study may be relevant for future BEC ex-
periments, in which finite-size and immiscible impurities can
be produced in the strong repulsive regime of multicomponent
condensates [22], or in the study of the impurity dynamics in
quantum fluids of light [19,20].

A possible follow-on of this work is the development of a
self-consistent theory for the interaction between the thermal
excitations and the impurity, which takes into account the
dependence on the wave numbers of the colliding waves. This
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could give an analytical explanation to the small value of the
prefactor Cd in Eq. (20) compared to the classical Epstein
drag for elastic collisions. Note that in a recent publication,
the motion of a bright soliton moving in a thermal cloud of
distinct atoms has been successfully modeled by using an OU
dynamics [54]. In that case, the soliton is treated by using
a wave function and the thermal (noncondensed) cloud as a
reservoir. Although in our model the impurity is a rigid body
with classical degrees of freedom, the result of [54] could
inspire an analytical derivation of the OU dynamics for an im-
purity (14). Moreover, the characterization of the motion of a
multitude of impurities in the FTGP system can be deepened,
expanding the findings of Ref. [14]. Finally, the fundamental
problem of vortex nucleation due to fast impurities has been
thoroughly investigated at zero temperature [11–13], but few
results are known in the finite-temperature regime [55,56].

In particular, the FTGP model coupled with impurities (1)
would be a suitable framework to address the impurity-vortex
interaction at nonzero temperature.
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6 Dynamics of impurities in the truncated Gross–Pitaevskii model

6.3 Publication: Clustering and phase transitions in a 2D superfluid
with immiscible active impurities

In this article we study numerically a system composed of a collection of immiscible
impurities in the two-dimensional truncated Gross–Pitaevsii equation. Note that this
is the only publication of this Thesis in which we deal with a 2D system. We recall
that in this case the true condensation transition is formally forbidden by the Mermin–
Wagner–Hohenberg theorem [99, 154]. Thus, the condensation transition must be
considered as a finite size effect (see section 1.2.2), even if it is generated in the truncated
GP framework [211].

We first consider the system at zero temperature, placing a number of light impurities
in a random position. We observe that the superfluid mediated interaction between the
impurities [212] sets them in motion and triggers a thermalization mechanism. Indeed,
the sound waves produced by the particle dynamics interact among themselves until
the fluid reaches a thermal equilbrium. Simultaneously, the short-range inter-particle
interparticle interaction let them collapse into clusters, which move in a stochastic
way, similarly to what observed in [78]. Eventually all the impurities collapse into a
single large cluster, in thermal equilibrium with the surrounding bath of phonons.
Subsequently, we generate thermal states of the system, generalizing the stochastic real
Ginzburg–Landau algorithm discussed in section 6.1.1 to include also the impurity
degrees of freedom. We perform a temperature scan, varying the range 𝑟rep of the
repulsion potential (2.58). We observe the existence of a critical temperature below
which all the impurities are clustered in the equilibrium state. It turns out that this
“clustering” temperature 𝑇cl strongly depends on the ratio between the superfluid
mediated attraction and the short-range repulsion (2.58) imposed to avoid the impurity
overlap. In particular, it can be explained qualitatively as an escape problem from
the potential well generated by the sum of attraction and repulsion: if the thermal
fluctuations are sufficiently strong two sticked impurities are expected to split in a
finite time, breaking in this way the cluster.

Besides, we observe that the presence of a large impurity cluster is responsible for
an increase of the condensate fraction at large temperatures and thus an increase of the
condensation temperature 𝑇𝜆 itself. This phenomenon does not occur if the impurities
are unclustered at the condensation temperature, namely if the inter-particle repulsion
is tuned to have a range 𝑟rep larger than the particle radius 𝑟rep > 𝑎p, so that 𝑇cl < 𝑇𝜆.
Moreover such condensation shift becomes more and more important as the volume
fraction 𝛷 occupied by the impurities becomes larger. This suggests that it can be
explained as a finite size effect, compatibly with what is expected in atomic BECs
trapped by power-law potentials [11]. Indeed if a large object occupies a portion of the
available domain, the number of active modes (and thus the energy) of the quantum
fluid decreases, so that a higher temperature is required to induce the transition. Note
that such effect is independent of the dimensionality of the system. For completeness,
in Fig.6.3 we show that the increment of the condensate fraction at high temperatures
takes place also in the three-dimensional case. Also in this case the amount of such
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Figure 6.3.Condensate fraction as a function of temperature for different values of the filling
fraction in the 3D truncated GP model with impurities. (left) The full temperature range
analyzed. (right) Close-up at high temperatures. The parameters of the simulations are 𝑁c = 64
collocation points per side, 𝐿 = 2𝜋, 𝜉 = 𝐿/𝑁c and thus 𝜉𝑘max = 2𝜋/3. The parameters for the
impurities and the definitions of 𝑇0

𝜆 and 𝑛0 are the same as in Figure 4 of [80].

increment is proportional to the filling fraction 𝛷.
Finally, the changes in the Berezinskii–Kosterlitz–Thouless (BKT) phase transition

has been briefly addressed. The BKT phase transition is the well known topological
phase transition of the two-dimensional XY (vector-spin) model [124, 125], whose
signature is a power-law decay of the first order correlation function 𝑔1(𝑟) = ∫ 𝑛𝒌𝑒𝑖𝒌⋅𝒓 d𝒌
below a critical temperature 𝑇BKT (in contrast to the exponential decay of the disordered
phase). In the case of the 2D BEC, at sufficiently low temperature (kB𝑇 ≪ 𝑔𝑛) the
density fluctuations are suppressed and the effective large scale Hamiltonian is akin to
the XY model, where the gradient of the phase (superfluid velocity) plays the role of
the vector-spins [95]. A key role in the BKT transition is given by vortices, which are
arranged in bounded vortex-antivortex pairs below 𝑇BKT and in a gas of free vortices
at 𝑇 > 𝑇BKT. The role of vortices in the BKT transition of the GP model has been
studied for instance in [65] and [161], where the topological defects have been called
“ghost vortices”, since they appear and disappear continuosly in contrast to the stable
objects of the zero temperature regime. In our case, we checked the existence of a
power-law decay of the correlation function and measured an increase of the BKT
temperature with the filling fraction of the impurity cluster. The result is thus similar
to the corresponding measurement for 𝑇𝜆.
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Abstract
Phase transitions of a !nite-size two-dimensional super"uid of bosons 
in presence of active impurities are studied by using the projected Gross–
Pitaevskii model. Impurities are described with classical degrees of freedom. 
A spontaneous clustering of impurities during the thermalization is observed. 
Depending on the interaction among impurities, such clusters can break due 
to thermal "uctuations at temperatures where the condensed fraction is still 
signi!cant. The emergence of clusters is found to increase the condensation 
transition temperature. The condensation and the Berezinskii–Kosterlitz–
Thouless transition temperatures, determined numerically, are found to 
strongly depend on the volume occupied by the impurities: a relative increase 
up to a 20% of their respective values is observed, whereas their ratio remains 
approximately constant.
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1. Introduction

When a "uid composed of bosons is cooled down or the number of particles is increased, 
the system experiences a phase transition giving rise to a macroscopic state known as Bose–
Einstein condensate (BEC) [1]. Since its !rst experimental observation by Anderson et  al 
[2], BECs have been realized in systems of very different nature such as cold atomic gases  
[1, 3], solid-state quasiparticles [4, 5] and light in optical micro-cavities [6]. Whereas in three 
spatial dimensions a condensate is stable with respect to thermal "uctuations, in two dimen-
sions such "uctuations can destroy the long-range order of the system. This is a general result 
in statistical !eld theory known as the Mermin–Wagner–Hohenberg theorem [7, 8]: it states 
that a continuous symmetry cannot be spontaneously broken in dimensions lower than three, 
otherwise large-scale Goldstone modes would have an in!nite infrared contribution to the 
two-point correlator. This theorem assumes the thermodynamic limit, that is the system size 
being in!nite. However, for a !nite system, condensation can be recovered, having a transition 
temperature Tλ that vanishes as the inverse of the logarithm of the system size.

Although condensation is formally forbidden in an in!nite two-dimensional system, a 
peculiar phase transition of a different nature has attracted the attention of physicists and 
mathematicians since its independent discovery in the early 70s by Berezinskii, Kosterlitz and 
Thouless (BKT) [9–11]. The BKT transition is an in!nite-order topological phase transition 
and manifests itself in systems that belong to the same universality class. By approaching the 
BKT transition temperature, TBKT, from below, the system switches from a gas of bounded 
vortex-antivortex pairs to a gas of free vortices, moving from a quasi-ordered phase to a dis-
ordered one. The BKT transition has been observed in BECs made of dilute gases [12–16], 
exciton-polaritons [17], liquid helium !lms [18] and studied theoretically and numerically 
[19–22]; for a review on the topic, see for instance [3].

The purpose of this article is to study how the statistical mechanical properties of a two 
dimensional super"uid of bosons are affected by the presence of impurities. Particles and 
impurities have been used in super"uids since the early experiments in 4He [23] mainly with 
detection purposes: electrons, ions and neutral impurities such as hydrogen particles and exci-
mers have been exploited to visualize quantized vortices, to study their dynamics and the 
statistics of super"uid (quantum) turbulence [24–26]. More recently, the investigation of the 
interaction between one or more impurities and super"uids has been the main topic of experi-
ments in cold atoms [27, 28], super"uids of light [29, 30] and polaritons in semiconductor 
microcavities [31]. On the theoretical side, the dynamics of impurities in a BEC has been also 
addressed [32], as well as the properties of 3He and H impurities on thin 4He !lms [33, 34]. In 
addition, Ricaand Roberts studied how a collection of impurities affects the ground-state of a 
BEC by using a mean !eld model [35]. In this last work, four phases were identi!ed, depend-
ing on the value of the interaction couplings. In particular, if the scattering lengths between 
impurity !elds are positive, impurities behave as localized objects, they separate from the 
condensate and present a hard-sphere repulsion between each other.

We investigate here impurity clustering and phase transitions occurring in a minimal 
model that mimics such situation: the Gross–Pitaevskii (GP) equation coupled with active 
immiscible impurities having classical degrees of freedom. Such model was introduced in 
[36] and recently used in two-dimensional numerical simulations to study impurity-impurity 
and impurity-vortex interactions [37, 38]. Finite-temperature BECs can be studied by using 
the projected GP equation, that is obtained by introducing a cut-off kmax in Fourier space: 
this regularizes the classical mean-!eld ultra-violet divergence. The projected GP model is an 
effective model to study the condensation transition in two and three dimensions [21, 39–41] 
and super"uid vortex dynamics at !nite temperature [42–44].
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2. Theoretical model and numerical results

2.1. Model for impurities in a super"uid

We generalize the projected GP model to include the dynamics of active impurities. The model 
is then described by the Hamiltonian

H =

∫ ( !2

2m
|∇ψ|2 + g

2
|PG[|ψ|2]|2 +

NI∑

i=1

VI(|x − qi|)PG[|ψ|2]
)

dx

+
NI∑

i=1

p2
i

2MI
+

NI∑

i<j

Vrep(|qi − qj|),
 

(1)

where ψ is the collective wave-function of bosons having mass m, and g = 4πas!2/m being as 
the s-wave scattering length of bosons interaction. NI is the total number of impurities of mass 
MI, that are described using their classical position and momentum qi and pi, respectively. 
The strong repulsive potential VI determines the shape of the impurities by creating a large 
depletion in the "uid density. Vrep is a repulsive potential between impurities. The Galerkin 
projector PG truncates the system acting in Fourier space as PGψ̂k = θ(kmax − k)ψ̂k with θ(·) 
the Heaviside function, ψ̂k the Fourier transform of ψ(x) and k the wave vector. The equa-
tions of motion are directly obtained by varying (1):

i!∂ψ
∂t

= PG[−
!2

2m
∇2ψ + gPG[|ψ|2]ψ +

NI∑

i=1

VI(|x − qi|)ψ] (2)

MIq̈i = −
∫

VI(|x − qi|)PG[∇|ψ|2] dx −
NI∑

j!=i

∇Vrep(qij), (3)

where qij = |qi − qj| and we have replaced pi = MIq̇i. The previous set of equations exactly 
conserves the Hamiltonian, the number of bosons N =

∫
|ψ|2dx  and momentum 

P =
∫ i!

2

(
ψ∇ψ − ψ∇ψ

)
dx +

∑
i pi.

The impurities in the system feel an attractive force mediated by the super"uid density 
!eld [35, 37]. However, unlike the case of impurities described by classical !elds [35], in 
the model (1) no repulsion mediated by the "uid exists. In order to mimic such a hard-sphere 
repulsion, we consider the Lennard–Jones-like potential Vrep(r) = εr12

min/r12, as in [37]. We !x 
the energy ε in order to set the minimum of the total interaction energy between impurities at 
zero temperature at a distance rmin. Note that the speci!c shape of Vrep is not important, as long 
as it reproduces a hard-sphere repulsion. For the impurities potential we use a smoothed hat-
potential VI(r) = V0(1 − tanh

[
(r2 − a2

I )/4∆l2
]
)/2, where aI sets the characteristic radius of 

the impurity and ∆l  is a smoothing parameter. Finally, let us notice that in absence of impu-
rities and at zero temperature, equation (2) can be linearized about a uniform density state 
|ψ|2 = ρ∞/m, de!ning the phonon (sound) velocity c =

√
gρ∞/m2  with dispersive effects 

taking place for length scales smaller than the healing length ξ =
√
!2/2gρ∞.

We integrate the system (2) and (3) by using a pseudo-spectral code with Nres uniform 
grid points per direction of a squared domain of size L = 2π. We set kmax = Nres/3 so that 
the truncated system exactly conserves all the invariants (provided that initially PGψ = ψ and 
PGVI = VI) [44], c = ρ∞ = 1, V0 = 10 and ε = 0.006 74. As the healing length changes with 
temperature, we parametrize the solutions of (2) and (3) using its value taken at zero temper-
ature. In thermal states, the only relevant dimensionless parameters are L/ξ , aI/ξ , NI, the 
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relative mass M = MI/ρ∞πa2
I  and ξkmax. We set L/ξ = 128. The value of ξkmax controls the 

strength of the nonlinear interactions and it is kept !xed to ξkmax = 2π/3. For this value, most 
of the excitations are phonons when the condensate fraction is large. For instance, it is com-
patible with the one used in [39], that is ξkmax ∼ 2; such value applies to a gas of 87Rb atoms.

We start by presenting a long temporal evolution of a system having 40 impurities of mass 
M = 0.1, radius aI = 4ξ, initially located at random positions (avoiding overlaps) and hav-
ing zero velocity. The density !eld of the initial condition is displayed in !gure 1 (t = 0ξ/c). 
Impurities correspond to dark holes. During the time evolution, the short-range interaction 
among impurities mediated by the "uid let them collapse into small clusters (t = 815ξ/c); 
waves with random phases are generated, populating small length scales and starting the ther-
malization process. This thermal noise induces the clusters to move in a stochastic way, and to 
grow further (t = 1691ξ/c). Eventually, the system reaches thermal equilibrium where only 
one big cluster is observed in a bath of thermalized waves, (t = 10 965ξ/c). A movie of the the 
evolution is available in the supplementary data (stacks.iop.org/JPhysA/52/305501/mmedia).

2.2. Grand-canonical thermal states

The evolution illustrated in !gure 1 is an example of thermalization occurring in the micro-
canonical ensemble, as the thermal state is achieved keeping all the invariants conserved. Such 
dynamical process is numerically costly and does not directly provide access to the conjugate 
thermodynamical variables: temperature and chemical potential (here we only consider zero 
momentum states). To overcome these issues, in [44] a stochastic relaxation was introduced in 
order to ef!ciently generate thermal states in the grand-canonical ensemble. We make use of 
this approach adapting it to the Hamiltonian (1). The stochastic dynamics is ruled by

!∂ψ̂k

∂t
= − ∂F

∂ψ̂∗
k
+

√
2!
β
ξ̂k (4)

∂qi

∂t
= − ∂F

∂qi
+

√
2
β
ξq

i , MI
∂q̇i

∂t
= − ∂F

∂q̇i
+

√
2MI

β
ξq̇

i (5)

where F = H − µN  is the free energy of the system, µ is the chemical potential controlling 
the number of bosons and β is the inverse temperature; ξ̂k, ξq

i  and ξq̇
i  are independent Gaussian 

white noises of unit variance. It can be shown by using the Fokker–Planck equation associated 
to (4) and (5), that the stationary probability distribution is given by the Gibbs grand-canonical 
distribution P[ψ̂k, qi, q̇i] ∝ e−βF . In the micro-canonical ensemble, P[ψ̂k, qi, q̇i] is also the 
stationary solution of the Liouville equation that describes the evolution of the phase-space 

Figure 1. Snapshots of the "uid density during the GP temporal evolution of a state 
with 40 impurities (dark holes).
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distribution of the Hamiltonian system (1) [44]. It is evident from (5) that varying the impu-
rity masses modi!es only the variance of impurity momenta in the steady state. Namely, the 
con!gurations of impurities in the steady state and the statistical properties of the thermalized 
system are independent of impurity masses. We de!ne the temperature as T = 1/kNβ, with 
kN = L2/N  and N = πk2

max the total number of Fourier modes. With this de!nition T is an 
energy per unit of surface such that at low temperatures F ≈ TL2, because of equipartition. 
With these choices, intensive quantities remain constant when increasing the system size. In 
addition, we !x the total density mass ρ̄ = mN/L2 = 1 by dynamically adjusting the chemical 
potential [44]. We use (4) and (5) to study the effect of impurities on the super"uid condensed 
fraction n0 de!ned as

n0 =
〈
∣∣∫

V′ ψ(x) dx
∣∣2〉T

〈
∫
V′ |ψ(x)|2 dx〉T

, (6)

where V ′ is the domain excluding the region occupied by the impurities and 〈·〉 stands for 
average over realizations at temperature T4.

2.3. Clustering of impurities

We !rst perform a temperature scan without impurities. The condensed fraction is shown in 
!gure 2(a) (solid blue line). The transition temperature Tλ is the lowest temperature where the 
condensed fraction can be considered negligible. We estimate it in a consistent way adopt-
ing the following numerical protocol: we take the points around which n2

0(T) is close to zero 
and we perform a linear interpolation of it. Tλ is then determined by !nding the point where 
the linear !t vanishes. From now on, we indicate with T0

λ the transition temperature in the 
system without impurities. Then, we perform temperature scans varying the repulsive poten-
tial parameter rmin with a !xed number of impurities NI = 31 having radius aI = 4ξ. The 
results are also shown in !gure 2. In !gures 2(b) and (c) snapshots of in the steady date are 
displayed respectively in the case of high and low repulsion among impurities. For both cases 
we report three different temperatures. Depending on the strength of the repulsion potential 
two different behaviors of n0 can be observed, as it is clear in !gure 2(a). When the repulsion 
among impurities is strong enough (blue markers, rmin ! 11ξ), clusters are broken already at 
temperatures lower than T0

λ (see !gure 2(b)) and impurities have no appreciable effect on n0. 
On the other hand, for rmin ! 10.5ξ (red markers) impurities remain clustered and lead to an 
increase of the n0 at medium-high temperatures (see !gure 2(c)).

It has been shown that impurities experience a short-range attractive force, mediated by 
the super"uid density [35, 37]. This interaction is characterized by a potential energy, denoted 
here EI↔I. We compute this energy numerically by measuring the full GP free energy of the 
ground state with two impurities placed at a distance ∆q, without the contribution of the 
repulsion. The constant contribution to EI↔I is eventually set to zero. Impurities are then 
repelled because of Vrep, generating cluster structures as the one observed in !gure  1(d). 
However, if thermal "uctuations are large enough, the bound among impurities can be broken. 
In !gure 3(a) we compute the interaction energy between two impurities at zero temperature 
EI↔I, as a function of their distance ∆q (dotted black line). As a reference, the !gure also 
displays the repulsive potential Vrep with rmin = 2aI (dotted–dashed golden line). The sum of 
both potentials is displayed in the same !gure for different values of rmin: for suf!ciently small 

4 This de!nition gives the same result as n0 =
(

|〈ψ〉T |2
N

)(
|〈ψ〉T=0|2

N

)
−1 = |〈ψ〉T |2

|〈ψ〉T=0|2
. For numerical convenience we 

use the latter in our computations.
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values of rmin, a potential well ∆U centered at rmin appears. We thus expect a pair of impurities 
to split in a !nite time at the temperature Tcl ∼ ∆U/kN , as in a standard escape problem from 
a potential well [45]. In order to quantify this clustering transition, we measure the average 
square distance between impurities and their center of mass

δ2(T) =
d2(T)− d2(0)

d2(0)
, with d2(T) =

NI∑

j=1

〈|qj − qcm|2〉 and qcm =
NI∑

j

qj

NI
. (7)

Figure 3(b) displays δ2(T) as a function of T/Tcl for different values of rmin. A transition 
around Tcl is indeed observed, where discrepancies are likely due to oversimpli!cations made 
in the estimation of Tcl, namely by neglecting the many-body impurity interactions and by 

Figure 2. (a) Condensed fraction as a function of the temperature for different values 
of rmin. Temperatures are expressed in units of the condensation temperature with 
no impurities T0

λ. (b) Snapshots of the density !eld in the steady state at different 
temperatures in the case of high repulsion (rmin = 11ξ) among impurities. (c) The same 
of (b) but for low repulsion (rmin = 8ξ). Scans are performed with NI = 31 and aI = 4ξ.

Figure 3. (a) Impurity-impurity interaction EI↔I as a function of their distance 
∆q/ξ (dotted black line) and repulsive potential (dotted-dashed golden line) for 
rmin = 8ξ. Different markers correspond to total energy EI↔I + Vrep for different 
values of rmin. (b) Relative impurity distance δ2(T) as a function of the normalized 
temperature T/Tcl. Scans are performed with NI = 31 and aI = 4ξ. The ratios Tcl/Tλ 
are 7.41, 2.51, 1.5, 1.02, 0.53, 0.002 for rmin from 8ξ to 12ξ respectively. The markers 
refer to the same legend as in !gure 2.
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using the interaction potential obtained at T  =  0. For weak repulsion, even if the condensate 
vanishes, impurities still feel the density-mediated attraction.

2.4. Condensation and BKT transition temperatures in presence of impurity clusters

Studying different values of rmin allowed us to show that an increasing of n0 occurs only when 
the "uid depletion, due to the presence of impurities, is con!ned to a large connected region 
at all temperatures. Therefore such effect can not be simply explained by the local increase of 
density in regions not occupied by impurities. In the following we consider hard-sphere impu-
rities by !xing rmin = 2aI. In order to quantitatively characterize the change in n0, we study 
how the condensation transition changes when varying the !lling fraction

Φ = 1 − |〈ψ〉T=0|2

〈|ψ|2〉T=0
, (8)

which corresponds to the fraction of the total volume occupied by the impurities. In !gure 4(a) 
the condensed fraction is shown for different values of Φ, obtained by varying the number of 
impurities. It is evident that the larger is the number of clustered impurities, the higher results 
the condensation transition temperature. We explicit the dependence of the transition temper-
ature on the !lling fraction as Tλ(Φ).

The condensation temperature Tλ(Φ) is measured for different values of Φ following 
the same procedure explained in the previous section. In !gure  5(a) the relative increase 
∆Tλ = (Tλ(Φ)− T0

λ)/T0
λ is displayed. Remarkably, ∆Tλ scales linearly with Φ growing up 

to 20%. We have checked by varying the number of impurities, their size and the parameter 
rmin for values lower than 2aI, that n0 only depends on Φ and T (data not shown). Despite the 
change on Tλ, the condensed fraction curves collapse as expected to a single one, once plotted 
versus T/Tλ(Φ) (see !gure 4(b)).

Finally, we brie"y address the role of impurities in the the BKT transition. A detailed study 
will be left for a further work. This phase transition manifests through a change in the behavior 
of the correlation function g1(r) = 〈ψ(0)ψ∗(r)〉 at the BKT transition temperature TBKT. At 

Figure 4. (a) Condensed fraction as a function of temperature for different values of the 
!lling fraction Φ. Temperatures are expressed in units of the condensation temperature 
with no impurities T0

λ. (b) Condensed fraction as a function of the temperature 
normalized with Tλ(Φ). Scans with rp = 4ξ and rmin = 2rp = 8ξ .
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T < TBKT, it presents a power-law decay g1(r) ∼ r−α, where α depends linearly on the temper-
ature; at high temperatures, it exhibits the standard exponential decay of disordered systems. 
In !gure 5(b) we show g1(r) at different temperatures (lower, close and higher than TBKT) 
where these two behaviors are clearly distinguishable. The BKT transition temperature can be 
thus determined by !nding where g1(r) abruptly changes its behavior [46]. With no impurities 
and the parameters used in this article, the BKT transition takes place at TBKT = 0.83T0

λ. Note 
that because of the Mermin–Wagner–Hohenberg theorem [7, 8], the condensation critical 
temperature vanishes as 1/ log L in the thermodynamic limit, so in principle for a very large 
system we could have T0

λ < TBKT. We do not address such limit in this article. The presence of 
impurities in the system modi!es the decay of g1(r) by shifting TBKT to higher temperatures. 
Figure 5(a) also displays the relative increase ∆TBKT = (TBKT(Φ)− T0

BKT)/T0
BKT of the BKT 

transition temperature for different !lling fractions Φ. Although Tλ and TBKT both grow up to 
20% when the Φ is increased, their ratio remains almost constant. Let us remark that there are 
no important effects on TBKT if impurities are not clustered.

The increase of the transition temperatures Tλ and TBKT can be explained by a simple phe-
nomenological argument. Large objects in the system, such as the clustered impurities, mod-
ify the "uid wave-function boundary conditions. In particular, they impose effective Dirichlet 
boundary condition leading to symmetries in Fourier space, decreasing the number of active 
modes. At a given temperature, with less active modes, the energy is smaller and thus a higher 
temperature is necessary to induce a transition. We stress that this result is general and does 
not depend on the choice of the repulsion potential Vrep, as long as it is suf!ciently short-range 
to allow the formation of a large-size cluster at all T < Tλ. Our results could apply as well to 
two-component BECs, with the components having different condensation temperatures and 
strong repulsion between them. Finally, the same effect on the condensation curve will occur 
in three dimensions, as it comes from a geometrical effect.

Figure 5. (a) Relative increments of Tλ and TBKT as a function of the !lling fraction Φ. 
The relative increment of the ratio TBKT

Tλ
 is also shown. (b) Spatial correlation function 

g1(r) for three different temperatures (lower, close and higher than TBKT) with and 
without impurities.
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3. Discussion

In this article we studied thermal states of two-dimensional super"uids with active impurities. 
We demonstrated how the phase transitions are affected by the emergence of impurity clus-
ters, opening up the possibility to raise the transition temperatures in experiments by doping 
super"uids with speci!c types of impurities. Such result rises new questions that would be 
interesting to address in detail. In particular, it is remarkable that the presence of impurities 
does not disorder the system inducing a loss of coherence. Is there a maximum value of the 
critical temperature that can be reached using impurities, or it will continue to increase until 
the impurities occupy the full domain? Could the modi!cation of the condensation curve be 
rephrased as a competition between the full perimeter and the full area of the impurities? 
Moreover, this system presents a rich behaviour that, up our knowledge, has not yet been 
addressed in details. For instance, during the thermalisation dynamics, impurities cluster simi-
larly to a diffusion-limited aggregation process [47]. Also, a complete study of the BKT trans-
ition, considering the opposite limit Tλ < TBKT, needs to be investigated and might devise 
new interesting physics.
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Conclusions

In this Thesis we investigated systematically the dynamics of particles in superfluids,
by exploiting numerical simulations of the Gross–Pitaevskii model coupledwith highly
repulsive moving potentials [89, 214, 242]. The main body of the results concerns the
interaction between particles and superfluid vortices at very low temperature. The
experimental motivation of this part of the work is the recent implementation of micron
sized particles as probes in superfluid helium [28, 91, 208]. We first focused on specific
settings, characterizing in detail the mutual interaction between particles and vortices.
Then we explored the dynamics of particles in a complex quantum turbulence regime,
in which all the mechanisms addressed before are present.

In the study about the long-range interaction between a particle and a vortex [75], we
derived from the GP model an effective theory for describing the capture mechanism.
This allowedus to validate the robustness of themodel, besides showing a novelmanner
to excite monochromatic Kelvin waves along the vortex filaments. Such mechanism
could inspire innovative experimental techniques for studying vortex waves in atomic
Bose–Einstein condensates. The long-range effective theory exhibits a scale invariance
which is qualitatively reproduced also in the reconnections of vortices mediated by
trapped particles [77]. Thus, although the size of the particles that can be effectively
implemented in our simulation is less than 100 vortex core sizes, this scale invariance
suggests that a similar dynamics may exist also at the typical scales of superfluid
helium experiments. A simple way to expand the results of this work is to consider
different initial velocities of the particle in different directions. This could allow to
build a cross-section for the vortex-particle collision and determine a threshold for the
angle at which a particle can escape.

The simulations of vortex reconnectionsmediated by trapped particles [77] provided
interesting insights on the momentum exchanges occurring in the system during such
violent events. We showed that the main channel of momentum transfer is between
the filaments and the particle (at which the reconnection takes place), that indeed gets
strongly accelerated. Then, as a further support of superfluid helium experiments, we
showed that the dynamics of the reconnection is almost unaffected if light particles are
used to sample the vortices.

Consistently, light particles turned out to be the most suitable also for the tracking
of vortex waves [79]. This direct observation from GP simulations is one of the predic-
tions of the phenomenological model that we developed specifically to address this
problem. Such effective theory stems from an analogy with the quantum mechanical
description of one-dimensional crystals, in which vortex waves play the role of electron
wavefunctions and particles that of atomic barriers [127]. The main difference is that
the effective potential barriers due to the particles depend on the frequency of the
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incoming waves, besides the inertia. The consequence of this fact is that light particles
deform less the vortex wave dispersion relation, while large scale Kelvin waves can
be efficiently sampled by particles of any mass. Moreover, the GP simulations and
the crystal analogy agree on predicting the arising of new high frequency excitations
branches in the dispersion relation, an explicit signature of the crystal behaviour of
the system. Another prediction confirmed by the simulations and which has direct
interest for experimental applications is the existence of a precession frequency for
trapped particles, due to Magnus effect. Being such frequency proportional to the
circulation, its measurement may be an indirect way of determining whether and
how many vortices are piercing a particle in superfluid helium. Note that in [79], we
considered only linear vortex excitations. A natural question is whether particles can
be able to grasp some signatures of the energy cascade due to nonlinear interactions of
Kelvin waves. At the same time, a non trivial problem is understanding if and how an
array of trapped particles could affect such nonlinear interactions. One remark about
the study [79] is that particles are initially set by hand at equal distances along the
vortices. Although this fact is consistent with what observed in experiments, a proven
theoretical explanation for such behaviour is still missing.

The effective model based on vortex line displacements coupled with point particles
could be further developed in future works. Given the similarity with a crystal, ad-
ditional studies might discover in superfluids the analog of phenomena typically
belonging to solid state physics. For instance, tight-binding models [111] may be adap-
ted to the vortex-particle system when particles of different masses or different sizes
are considered. Considering particles randomly distributed along the vortex filament
will enable vortex waves to propagate in a disorder medium and this might give rise to
behaviours akin to Anderson localization [2]. More simply, allowing the point particles
of the effective model to move along the vortex direction could allow to compute the
momentum exchange between a particle and a packet of Kelvin waves propagating to-
wards it. Then, it would be straightforward to compare such calculation with direct GP
simulations. Finally, since the effective model is built with hydrodynamical equations,
in principle it applies to vortices in classical fluids, which may be easier to generate
and study in a laboratory. In this sense, it could be interesting to use classical fluids to
build analogs of quantum systems.

Monitoring the dynamics of particles in a turbulent vortex tangle [76] revealed that
their presence does not affect the building and the decay of a quantum turbulence
regime. Even in such complex system, particles tend to remain attached to the vortex
filaments most of the time, proving to be good candidates to be used as probes. The
motion of particles is compatible with a classical Lagrangian dynamics over long
periods [248], meaning that they can detect the Kolmogorov turbulence regime existing
at scales larger than the inter-vortex distance. At smaller scales, the Magnus precession
frequency is dominating the velocity spectrum, which may be responsible also for the
fast decay of the acceleration correlation function. In future studies within a quantum
turbulence configuration, it may be relevant to consider larger simulations and include
more particles, in order to improve the statistics and maybe observe deviations from
Gaussian distributions, in accordance to superfluid helium experiments [137, 197].
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Moreover, the dynamics of particles coupled with a nonlocal model of quantum fluids
[23, 159, 187] in a turbulent regime can be investigated. In this way, the compressibility
effect would be reduced and a scenario more similar to actual superfluid helium can
be achieved.

We stress that the particle model based on the GP equation exploited in this Thesis is
minimal, in the sense that each particle is described just by its position and momentum,
although having a finite size. Moreover, in all the settings with many particles involved,
we considered only particles with the same mass and the same size. The next level of
such research project is thus to add more complexity to the model. The Gross–Clark
model for instance has already been used to study the dynamics of impurity fields
in a superflow and their interaction with vortices [24, 232]. However, we remark that
modeling particles as bubble fields limits the possibility to consider a large number of
them, because of the computational cost. A longer viable solution consists in modeling
particles as anisotropic potentials with a fixed ellipsoid shape, which would allow to
add rotational degrees of freedom1. Note indeed that currently there are experimental
suspects about the presence of relevant anisotropies of the particles used in superfluid
helium. For example, a flickering of the light reflected by solidified hydrogen particles
has been observed in experiments, which is possibly due to the (non-spherical) particle
rotation. Ideally, all the problems addressed so far and presented in this manuscript
could be reformulated with such more complex particles in future works. For instance,
when an elongated particle attaches to a vortex or detaches from it, some angular
momentum may be exchanged.

In the last part of the Thesis we included finite temperature effects to the GP model
coupled with particles. In particular, we adopted the Galerkin truncation procedure,
which is a well-established technique to simulate thermal modes in the GP framework
[52, 128]. It turned out that the system behaves more as a gas of thermal waves than a
continuous liquid [78], at least for the typical sizes of simulations and impurities that
can be effectively achieved with the current computational power. In such system, the
dynamics of isolated impurities is akin to an Ornstein–Uhlenbeck process. However,
when many impurities are present, a clustering transition may take place [80], because
of the fluid mediated attraction [212]. In presence of a cluster of impurities, we found
that the critical temperatures associated to the phase transitions in the system are
shifted towards higher values. This could be useful for experimental applications with
atomic BECs, where active and finite-size impurities can be generated by additional
condensates in the highly repulsive regime [191].

As a final remark, we stress once again that since the GPmodel captures naturally the
hydrodynamics of quantum vortices, it is an optimal framework to study the dynamics
of particles in a low temperature quantum fluid. In this sense, the results presented
from chapter 3 to chapter 5 may be relevant for superfluid helium experiments, in the
case where the normal component is negligible. Conversely, the GP model is not the
best setting to reproduce the finite temperature effects typical of a viscous liquid on the
particle dynamics, like the Stokes drag. One possibility to overcome this issue could

1We remark that since a superfluid is inviscid, the rotation of a spherical object has no effect on the flow.
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be for instance to add explicitly a Stokes drag term in the equations for the particles,
although this may generate a lack of consistency with the coupled GP equation. In
this regard, using different methods to model the dynamics of particles in a finite
temperature superfluid could be a better solution [179, 208], leaving the GP model in
its original domain of very low temperature quantum fluids.
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A Numerical Methods

In this Appendix, we provide a short description of the main numerical techniques
used to achieve the results presented in the Thesis. The details related to each spe-
cific configuration studied are reported in the corresponding article, included in this
manuscript.

The coupled equations (2.59) and (2.60) considered in this Thesis are respectively a
PDE for the superfluid field 𝜓 and a set of 𝑁p ODE’s, one for each particle position 𝒒𝑗.
We report them also here for clarity:

𝑖ℏ 𝜕
𝜕𝑡𝜓(𝒙, 𝑡) = ⎡⎢

⎣
− ℏ2

2𝑚∇2 + 𝑔|𝜓(𝒙, 𝑡)|2 − 𝜇 +
𝑁p

∑
𝑖=1

𝑉p (|𝒙 − 𝒒𝑖(𝑡)|)⎤⎥
⎦

𝜓(𝒙, 𝑡) (A.1)

𝑀p ̈𝒒𝑖 = − ∫ 𝑉p (𝒙 − 𝒒𝑖(𝑡)) ∇|𝜓(𝒙, 𝑡)|2 d𝒙 −
𝑁p

∑
𝑗≠𝑖

𝜕
𝜕𝒒𝑖

𝑉𝑖𝑗
rep. (A.2)

The field 𝜓 is discretized with a linear span over a 3D lattice of sides 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 with
respectively 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 points per side (so that the total number of collocation
points is 𝑁c = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 and periodic boundary conditions. The length of each
side is a multiple of 2𝜋, typically simply 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 2𝜋. The 2D simulations are
performed in the same setting but with 𝑁𝑧 = 1.

A.1 Time stepping

Calling 𝛹 the matrix describing the discretized superfluid field, 𝑄 the array containing
all the particle positions and 𝑉 the array containing all the particle velocities, the
corresponding equations can be written schematically as

𝜕𝛹
𝜕𝑡 = RHS𝛹 [𝛹(𝑡),𝑄(𝑡)] , (A.3)

𝜕𝑉
𝜕𝑡 = RHS𝑄 [𝛹(𝑡),𝑄(𝑡)] , (A.4)

𝜕𝑄
𝜕𝑡 = 𝑉(𝑡), (A.5)

where RHS𝛹 and RHS𝑄 are the discretized versions of the right hand sides of Eqs.
(2.59) and (2.60), respectively. The time stepping used to solve these equations is the
same for each variable 𝛹, 𝑄 and 𝑉. Indeed, denoting by 𝑈 a generic array, each of the
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equations (A.3), (A.4), (A.5) can be written as

𝜕𝑈
𝜕𝑡 = RHS [𝑈(𝑡)] , (A.6)

where RHS is an array having the same dimensions of 𝑈. Supposing that 𝑈(𝑡 = 0) in
the initial condition is known and being 𝛥𝑡 the time step, we denote 𝑡𝑛 = 𝑛 𝛥𝑡 with 𝑛
the integer number of time steps, so that 𝑈𝑛 = 𝑈(𝑡𝑛). We use a 4th order Runge–Kutta
scheme for the time stepping, which is of order 𝒪(𝛥𝑡4):

𝑈𝑛+1 = 𝑈𝑛 + 𝛥𝑡
6 (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) , (A.7)

𝐾1 = RHS [𝑈𝑛] ⋅ 𝛥𝑡, (A.8)

𝐾2 = RHS [𝑈𝑛 + 𝐾1
2 ] ⋅ 𝛥𝑡, (A.9)

𝐾3 = RHS [𝑈𝑛 + 𝐾2
2 ] ⋅ 𝛥𝑡, (A.10)

𝐾4 = RHS [𝑈𝑛 + 𝐾3] ⋅ 𝛥𝑡. (A.11)
(A.12)

Note that for the realization of the thermal states using the stochastic real Ginzburg–
Landau equation (see sections 6.1.1 and 6.3), just a simple Euler scheme is used for
the time stepping.

A.2 Pseudo-spectral method for the superfluid field

The right-hand side of the GP equation (A.3) is composed of linear terms in 𝛹 and a
non-linear term. In general, it can be written as

𝜕𝛹
𝜕𝑡 = 𝐿 [𝛹] + 𝑁𝐿 [𝛹] , (A.13)

where 𝐿 is a linear operator and 𝑁𝐿 is the non-linear term. In particular, the linear
terms contain themultiplication of the field with the particle potential and the chemical
potential, and the Laplacian of 𝛹. Since the boundary conditions are periodic, the de-
rivatives can be simply computed in Fourier space, where they are just a multiplication
by wave numbers. Specifically, considering for the sake of simplicity the 1D case1 and
calling 𝛥𝑥 the spatial mesh, the interval [0, 2𝜋] is splitted into 𝑁c collocation points
𝑥𝑗 = 𝑗𝛥𝑥 with 𝑗 ∈ [0,𝑁c − 1]. Thus, any field 𝑓 (𝑥) can be expressed by its discrete
Fourier series:

̂𝑓𝑁(𝑘) =

𝑁c
2 −1

∑
𝑗=− 𝑁c

2

𝑓 (𝑥𝑗)𝑒𝑖 2𝜋𝑗
𝑁c

𝑘
, (A.14)

1The generalization tomore dimensions is straightforward, being the Fourier transform on each direction
independent of the others.
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with thewavenumber 𝑘 ∈ [−𝑁c
2 ,

𝑁c
2 − 1]. The Fourier transform (A.14) requires 𝒪(𝑁2

c )
operations. In the simulations, the Fast Fourier Transform (FFT) algorithm is applied,
which requires only 𝒪(𝑁c log2 𝑁c) operations [182].

Once the Laplacian of 𝛹 has been computed in Fourier space, an inverse FFT is
applied and the other terms are dealt with in physical space. In particular, the non-
linear term would imply expensive convolutions in Fourier space, while it is just a
multiplication in physical space. Note that the error committed by using a pseudo-
spectral approach to approximate a PDE is smaller than any power of 1/𝑁c.

A.3 Projection and dealiasing

Despite the great performance improvement provided by the use of a pseudo-spectral
algorithm, one of its downside is given by the aliasing. For example, assuming a non-
linearity of order 2, two modes 𝑘1 and 𝑘2 (in 1D for simplicity) would interact giving
rise to a contribution to the modes 𝑘1 ± 𝑘2. Then, because of the intrinsic periodicity
of the Fourier transforms, modes such that |𝑘1 ± 𝑘2| > 𝑁c/2 would be considered as
low wavenumbers and affect the conservation of the invariants of the PDE. Such issue
can be avoided dealiasing the system, namely reducing the Fourier space by a factor
𝑝−1
𝑝+1 , where 𝑝 is the order of non-linearity [85]. In practice, a maximum wavenumber
𝑘max = 1

𝑝+1𝑁c and all the modes |𝒌| < 𝑘max are set to zero. This operation is performed
by means of a Galerkin operator 𝒫G, which acts on a function 𝑓 (𝒙) as

𝒫G [𝑓 (𝒙)] = ∑
𝒌

̂𝑓 (𝒌)𝑒𝑖𝒌⋅𝒙𝜃H(𝑘max − |𝒌|), (A.15)

where ̂𝑓 (𝒌) is the Fourier transform of 𝑓 and 𝜃H(𝑘max − |𝒌|) ≡ 𝜃𝒌 is the Heaviside theta.
For a quadratic non-linearity, this implies a reduction by a factor 1/3 of the Fourier
space, namely only 2/3 of the total number of modes are active. For this reason, the
dealiasing procedure takes the name “2/3 rule”. Since the non-linearity of the GP
equation (A.13) is cubic, this would imply the use of a 2/4 = 1/2 rule, that means
losing one half of the resolution. However, a scheme has been developed specifically
for the GP equation, in which the 2/3 rule is restored even for a cubic non-linearity at
the cost of performing an extra FFT [128, 131]. Such scheme is the same used in the
works presented in this Thesis. Also the Leibniz rule for the derivation of a product of
functions is recovered by the use of a 2/3 dealiasing. It means that for two periodic
dealiased functions 𝑓 (𝑥) ≡ 𝒫G [𝑓 (𝑥)] and 𝑔(𝑥) ≡ 𝒫G [𝑔(𝑥)] the following equation
holds:

𝑓 𝜕𝑥𝑔 + 𝑔𝜕𝑥𝑓 = 𝜕𝑥𝒫G [𝑓 𝑔] , (A.16)

which in general is not true when dealiasing is not applied [128]. It can be shown that
the validity of Eq. (A.16) is crucial for the conservation of momentum in GP without
particles [128]. In the following, we show explicitly that this is the case also if particles
are present in the system.
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A.3.1 Dealiasing of the particle interaction term and momentum conservation

In this section we give an explicit demonstration of how the projection procedure with
the 2/3 rule allows to conserve the total momentum of the GP-particles system (A.1),
(A.2). For simplicity, we consider one single particle in 1𝐷 and we do not take into
account the pure GP terms, which are known to conserve momentum on their own if
dealiased with the 2/3 rule [128]. Therefore, the (partial) Hamiltonian of the truncated
system is

𝐻p = ∫ 𝑉p(|𝑥 − 𝑞(𝑡)|)𝒫G [|𝜓(𝑥, 𝑡)|2] d𝑥 + 𝑝(𝑡)2

2𝑀p
, (A.17)

where the particle potential and the superfluid field are always dealiased, i.e. 𝜓 ≡
𝒫G [𝜓] and 𝑉p = 𝒫G [𝑉p]. Besides the restoration of the Leibniz rule (A.16), we will
also need the following property of the Galerkin projector (A.15), which stems from
the Parseval theorem2 and holds for every non dealiased periodic functions 𝑓 (𝑥) and
𝑔(𝑥):

∫ 𝒫G [𝑓 (𝑥)] 𝑔(𝑥)d𝑥 = ∫ 𝑓 (𝑥)𝒫G [𝑔(𝑥)] d𝑥 = ∫ 𝒫G [𝑓 (𝑥)] 𝒫G [𝑔(𝑥)] d𝑥. (A.18)

Moreover, another useful consequence of Parseval theorem is the validity of integration
by parts

∫ 𝜕𝑥𝑓 (𝑥)𝑔(𝑥)d𝑥 = 2𝜋 ∑
𝑘

𝑖𝑘 ̂𝑓 (𝑘) ̂𝑔(−𝑘) = − ∫ 𝑓 (𝑥)𝜕𝑥𝑔(𝑥)d𝑥. (A.19)

In order to compute the terms of the dynamic equation for the field stemming from
the Hamiltonian (A.17), we need its variation with respect to 𝜓:

𝛿𝐻p = ∫ 𝑉p (𝒫G [𝜓𝛿𝜓∗] + c.c) d𝑥 = ∫ 𝒫G [𝑉p] (𝜓𝛿𝜓∗ + c.c) d𝑥, (A.20)

where in the second equality we applied the property (A.18). The Hamilton equation
for 𝜓 is thus

𝑖ℏ𝜕𝑡𝜓 ≡ 𝑖ℏ𝜕𝑡𝒫G [𝜓] = 𝒫G [
𝛿𝐻p
𝛿𝜓∗ ] = 𝒫G [𝒫G [𝑉p] 𝜓] = 𝒫G [𝑉p𝜓] . (A.21)

The variation in time of the total momentum of the system 𝑃 = 𝑃GP + 𝑝 (where 𝑝 is
the particle momentum and 𝑃GP = − 𝑖ℏ

2 ∫ (𝜓∗𝜕𝑥𝜓 − 𝜓𝜕𝑥𝜓∗) d𝑥 the fluid momentum)
is given by

d𝑃
d𝑡 = −𝑖ℏ

2 ∫ (𝜕𝑡𝜓∗𝜕𝑥𝜓 + 𝜓∗𝜕𝑡𝑥𝜓 − 𝜕𝑡𝜓𝜕𝑥𝜓∗ − 𝜓𝜕𝑡𝑥𝜓∗) d𝑥 + d𝑝
d𝑡 . (A.22)

We substitute the dynamic equation (A.21) and its complex conjugate in the first term

2For two functions 𝑓 (𝑥) and 𝑔(𝑥), which are complex-valued on ℝ, square-integrable and of period 2𝜋,
Parseval theorem states that: 1

2𝜋 ∫ 𝑓 (𝑥)𝑔(𝑥)d𝑥 = ∑𝑘
̂𝑓 (𝑘)𝑔̂(−𝑘).

204



A.3 Projection and dealiasing

of the right hand side of Eq. (A.22), which is d𝑃GP
d𝑡 :

d𝑃GP
d𝑡 = 1

2 ∫ (𝒫G [𝑉p𝜓∗] 𝜕𝑥𝜓 + 𝜓∗𝜕𝑥𝒫G [𝑉p𝜓]

−𝒫G [𝑉p𝜓] 𝜕𝑥𝜓∗ − 𝜓𝜕𝑥𝒫G [𝑉p𝜓∗]) d𝑥. (A.23)

After the integration by parts (A.19), it simplifies to

d𝑃GP
d𝑡 = ∫ (𝒫G [𝑉p𝜓∗] 𝜕𝑥𝜓 + 𝒫G [𝑉p𝜓] 𝜕𝑥𝜓∗) d𝑥, (A.24)

which becomes

d𝑃GP
d𝑡 = ∫ 𝑉p (𝜓∗𝒫G [𝜕𝑥𝜓] + 𝜓𝒫G [𝜕𝑥𝜓∗]) d𝑥, (A.25)

after exchanging the projectors according to (A.18)3. Finally, since the dealiasing is
performed with the 2/3 rule, we can apply the Leibniz rule (A.16) to the term in
parenthesis inside the integral, which yields:

d𝑃GP
d𝑡 = ∫ 𝑉p𝜕𝑥𝒫G [|𝜓|2] d𝑥. (A.26)

Now we compute the contribution to the total momentum variation (A.22) coming
from d𝑝

d𝑡 . It is just the Hamilton equation for the particle momentum, i.e. the force due
to the fluid acting on the particle:

d𝑝
d𝑡 = −

𝜕𝐻p
𝜕𝑞 = − ∫ 𝜕𝑞𝑉p(|𝑥 − 𝑞|)𝒫G [|𝜓|2] d𝑥 = ∫ 𝜕𝑥𝑉p(|𝑥 − 𝑞|)𝒫G [|𝜓|2] d𝑥, (A.27)

which becomes
d𝑝
d𝑡 = − ∫ 𝑉p𝜕𝑥𝒫G [|𝜓|2] d𝑥, (A.28)

after integration by parts. Comparing d𝑃GP
d𝑡 (A.26) with d𝑝

d𝑡 (A.28), we see that they are
exactly one the opposite of the other and thus their sum vanishes. As a consequence,
the contribution to the total momentum coming from the particle and its coupling
with the fluid is conserved. This result, together with the momentum consevation
coming from the pure GP terms [128] implies that the total momentum of the system
consisting of truncated GP and a particle is also conserved. The generalization to the
case with many particles is straightforward.

3Note that, since 𝒫G commutes with the derivative, if a function 𝑓 (𝑥) is dealiased also 𝜕𝑥𝑓 (𝑥) is dealiased.
In this sense, writing the projectors in Eq. (A.25) is redundant, because the field 𝜓 and its complex
conjugate are dealiased by definition.
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A.4 Implementation of the particles

In this section,we give the generalmethods used to implement numerically the particles
in Eqs. (A.1) and (A.2). The details associated to each specific problem considered can
be found in the corresponding publication, reported in this manuscript.

A.4.1 Particle potential modeling

The repulsive potential 𝑉p chosen to model each particle must be localized around the
particle position 𝒒 and being stronger than the chemical potential 𝜇 in order to deplete
completely the superfluid field. The particle potential that has been used in the results
reported in this Thesis is the isotropic smoothed hat function:

𝑉p(𝑟) = 𝑉0
2

⎛⎜
⎝

1 − tanh ⎡⎢
⎣

𝑟2 − 𝜁2
p

4𝛥2p
⎤⎥
⎦
⎞⎟
⎠
, (A.29)

where the parameters 𝜁p and 𝛥p are related respectively to the boundary size and
the core size of the particle. Of course this choise is somewhat arbitrary, and in fact
simpler Gaussian potentials have been used elsewhere [88, 212, 214]. However, the
presence of two different adjustable parameters in the potential (A.29) gives more
freedom in tuning the shape of the potential. Given a set of parameter (𝑉0, 𝜁p, 𝛥p), the
ground state 𝜓p of the GPmodel containing a single particle is determined numerically
using the gradient descent method (imaginary time evolution of Eq.(2.54)). Then the
effective radius of the particle is estimated as

𝑎p = ( 3𝑉0
4𝜋𝜌0

)
1
3
, (A.30)

where

𝑉0 = 𝐿3 ⎛⎜
⎝

1 −
∫ |𝜓p|2 d𝒙
∫ |𝜓0|2 d𝒙

⎞⎟
⎠

(A.31)

is the total fluid volume displaced by the particle. Such evaluation assumes that the
particle is a perfect hard sphere and typically the radius estimated in this way lies in the
layer at the boundary of the particle where the superfluid density passes continuously
from zero (at the core of the particle) to the bulk value |𝜓0|2. Therefore, the larger the
size of the particle is, the better its radius is defined and the estimation (A.30) is more
accurate.

One issue that one has to take into account when choosing the particle potential
parameters is the Gibbs effect [53]. Indeed, if the potential 𝑉p is too steep at the
particle boundary, unphysical ringing oscillations appear around the particle when
the potential is Fourier-transformed and then transformed back in physical space (for
instance to perform the truncation procedure discussed in section A.3.1). Such artifacts
are imprinted to the superfluid density as well and could affect the dynamics. In all
our simulations we ingeneered the particle potential parameters trying to minimize

206



A.4 Implementation of the particles

the Gibbs effect without increasing too much the potential boundary layer 𝛥p.

A.4.2 Repulsion potential tuning

When more than one particle is present in the system, in order to avoid an unphysical
overlap of the particle potentials, the inter-particle repulsion potential 𝑉𝑖𝑗

rep must be
added to the system. As already discussed in section 2.3.3, in this Thesis we chose to
use the repulsive part of the Lennard–Jones potential

𝑉𝑖𝑗
rep = 𝛾rep𝜇 (

2𝑟rep
|𝒒𝑖 − 𝒒𝑗|

)
12

, (A.32)

where 2𝑟rep is the range at which the repulsion starts to act (usually set equal to to
the particle diameter) and 𝛾rep is an adjusting numerical pre-factor. Specifically, a
protocol by which 𝛾rep can be tuned is the following. We first calculate numerically
the ground state 𝜓2p of the GP equation with two fixed particles (performing the
imaginary time evolution of Eq. (2.59)) placed exactly at a distance |𝒒1 − 𝒒2| = 2𝑟rep.
When the convergence is reached, we compute the right hand side of Eq. (2.55), which
is the force arising from the particle-superfluid interaction acting on each particle

− ∫ 𝑉p (𝒙 − 𝒒𝑖) ∣∇𝜓2p(𝒙)∣
2
d𝒙. (A.33)

The origin of this force is indeed due to the superfluid mediated attractive inter-particle
interaction and in this configuration it has the same modulus and opposite direction
for each particle. [80, 212]. We impose this force to be equal in modulus and opposite
in sign to the repulsive force imposed via the ad-hoc potential (A.32)

−
𝜕𝑉𝑖𝑗

rep
𝜕𝒒𝑖

= ∫ 𝑉p (𝒙 − 𝒒𝑖) ∣∇𝜓2p(𝒙)∣
2
d𝒙. (A.34)

The condition (A.34) fixes the value of 𝛾rep, so that the repulsion exactly compensate
the superfluid mediated attraction when |𝒒1 −𝒒2| = 2𝑟rep. Given the high steepness and
short range of the potential (A.32) at distances slightly smaller than 2𝑟rep the repulsion
will push the particles away as hard spheres, while at distances slightly larger than
2𝑟rep its effect is negligible.

A.4.3 Interpolation of the superfluid force on the particle

The right hand side of the equation for the velocity of each particle (A.4) is composed of
the force arising from the inter-particle repulsion (if more than one particle is present):

𝑭rep
𝑖 = −

𝑁p

∑
𝑗≠𝑖

𝜕𝑉rep
𝑖𝑗

𝜕𝒒𝑖
, (A.35)
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and the convolution between the particle potential and the gradient of the superfluid
density:

𝑭GP
𝑖 (𝒒𝑖) = − ∫ 𝑉p (|𝒙 − 𝒒𝑖|) ∇ ∣𝜓(𝒙)∣2 d𝒙 = − (𝑉p ⋆ ∇|𝜓|2) [𝒒𝑖] , (A.36)

which have to be computed at each timestep 𝑡n. The first force (A.35) can be simply
evaluated, computing analytically the derivative of the repulsive potential (A.32) and
substituting the known value of the particle positions at that timestep. The force (A.36)
is the force arising from the superfluid-particle interaction and two steps are needed
to evaluate it. The first step is the actual evaluation of the convolution and the second
one is its interpolation at the particle position. The convolution can be easily computed
applying the convolution theorem, namely calculating the FFT of 𝑉𝑝(𝒙) and ∇|𝜓(𝒙)|2,
multiply them and going back to physical space. Since both the field 𝑉𝑝(𝒙) and ∇|𝜓(𝒙)|2
are known in the discretized grid-space, it is necessary to interpolate the convolution
𝒇con(𝒙) = (𝑉p ⋆ ∇|𝜓|2) [𝒙𝑖] at the actual position of the particle 𝒒𝑖. Such operation can
be performed with spectral accuracy as

𝒇con(𝒒𝑖) = ∑
𝒌

̂𝒇con(𝒌)𝑒𝑖𝒌⋅𝒒𝑖, (A.37)

where ̂𝒇con is the Fourier transform of 𝒇con (which is already known as the output of the
convolution evaluation in Fourier space). The spectral interpolation (A.37) requires
𝑁c operations per each component of the position and since it has to be performed for
each particle, its total numerical cost (in 3D simulations) is of about 3𝑁p𝑁c operations.
Such cost quickly becomes unaffordable at high resolutions and/or large number of
particles. For this reason we used the spectral interpolation in all the publications
presented in this manuscript, except the study of the turbulent vortex tangle [76], in
which 𝑁c = 5123 and 𝑁p = 200.

In this last case we adopted a 4th B–spline (or basis-spline) interpolation algorithm,
which is a polynomial method particularly accurate and practical for pseudo-spectral
codes (see [226] for a more detailed description of the method and comparison with
other interpolation techniques). Let us consider for simplicity only one component of
the convolution vector 𝑓 = 𝑓con,𝑥 and perform the interpolation of just one component
of the particle position 𝑞 = 𝑞𝑖,𝑥. The B-spline interpolant functions 𝐵𝑁 are piecewise
polynomyal functions of degree 𝑁 − 1 defined as 𝐵𝑁 = 𝐵𝑁−1 ⋆ 𝐵1, where 𝐵1(𝑥) is
1 for 𝑥 ∈ [−0.5, 0.5] and 0 elsewhere. They are built in order to have a high level of
continuity (𝐶𝑁−1). In Fourier space, the B-spline function of order 𝑁 is simply

𝐵̂𝑁(𝑘) = sinc𝑁(𝑘) = (sin𝜋𝑘
𝜋𝑘 )

𝑁
, (A.38)

If we indicate with ̄𝑓 = (𝑓 (𝑥−1), 𝑓 (𝑥0), 𝑓 (𝑥1), 𝑓 (𝑥2)) the (vertical) array containing
the values of the field 𝑓 in the four grid-points about 𝑞 , then the value of 𝑓 at 𝑞 is
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approximated as
𝑓 (𝑞) = ̄𝑓 𝑇

𝐵 𝑀4 ̄𝑞, (A.39)

where ̄𝑞 = (1, 𝑞, 𝑞2, 𝑞3), the matrix 𝑀4 is the matrix representation of the 4th B-spline
function, and ̄𝑓𝐵 = (𝑓 𝐵(𝑥−1), 𝑓 𝐵(𝑥0), 𝑓 𝐵(𝑥1), 𝑓 𝐵(𝑥2)) is the array of the coefficients of 𝑓
in the B-spline basis, defined from

𝑓 (𝑥) = 𝑓𝐵(𝑥) ⋆ 𝐵4(𝑥). (A.40)

Such coefficients can be easily computed in Fourier space as

̂𝑓𝐵(𝑘) = 𝑐(𝑘) ̂𝑓 (𝑘), (A.41)

where 𝑐(𝑘) are the known constant Fourier coefficients of the inverse B-spline function
𝐵̂−1

4 (𝑘). We can see that such method requires only the computation of an (inverse)
global FFT to determine the coefficients 𝑓𝐵 from 𝑓. Thus, independently of the number
of particles, the B-spline scheme saves a factor ∼ 𝑁p of computational cost compared
to the spectral interpolation method (A.37), making it rather efficient when a large
number of particles is considered. However, some issues with physical quantities at
small scales arise from the B–spline interpolation, which are shown in the Appendix
of Ref. [76], reported in section 5.3.
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